Introductory Exercises I (MAT477 in 2009 - 2010):

1 **DeRham Thm:** $\mathbf{H}^{k}(M) \xrightarrow{Int_{k}} \mathbf{H}^{k}(\Sigma)$

Assume that M is a manifold, $d_k: \Omega^k(M) \to \Omega^{k+1}(M)$ is an exterior differential and that M is *triangulated*, i.e. M = union of simplices $\bigcup_{\sigma \in \Sigma} \sigma$. Form a 'geometric complex' via simplex $\sigma \mapsto$ its boundary $\partial \sigma$ (for both taking into account the orientation as in Stokes formula) with oriented simplices of dimension k being (by definition) a basis of vector space Σ_k ,

$$\partial_{k-1}: \Sigma_k \to \Sigma_{k-1} \quad , \quad \partial_{k-1}^*: \Sigma_{k-1}^* \to \Sigma_k^*$$

Exercise 1. Stokes' formula $\int_{\partial D} \omega = \int_D \partial \omega \Rightarrow$ commutativity of

$$\begin{array}{ccc} \Omega^k(M) & \stackrel{d_k}{\longrightarrow} & \Omega^{k+1}(M) \\ \downarrow_{Int_{k-1}} & & \downarrow_{Int_k} \\ \Sigma^*_k & \stackrel{\partial^*_k}{\longrightarrow} & \Sigma^*_{k+1} \end{array}$$

where Int_k is the integration against the simplices of dimension k.

Exercise 2. Show that

is well-defined and that $\ker \widetilde{Int}_k \supseteq \operatorname{im} d_{k-1}$.

Corollary: \widetilde{Int}_k induces a (well-defined) map

$$\mathbf{H}^{k}(M) :=^{\ker d_{k}} /_{\operatorname{im} d_{k-1}} \xrightarrow{\pi} \mathbf{H}^{k}(\Sigma) :=^{\ker \partial_{k}^{*}} /_{\operatorname{im} \partial_{k-1}^{*}}$$

Elementary forms (a topic) provide an explicit right inverse of Int_k . Exercise 3. Using elementary forms $\Rightarrow \pi$ is onto.

Acyclic (a topic): Subcomplex ker $(Int_k) \subseteq \Omega^k$ is acyclic. Exercise 4. Using subtopic 'Acyclic' $\Rightarrow \pi$ is injective.

2 Resultants.

Let $P(y,a) := y^p + \sum_i a_i y^{p-i}$ and $Q(y,b) = y^q + \sum_j b_j y^{q-j}$. Consider $F(y,c)|_{c=c(a,b)} := y^d + \sum_k c_k(a,b) y^{d-k} := P(y,a) \cdot Q(y,b)$, where d := p+q, and let resultant of P(y,a) and Q(y,b) (in y) be $\operatorname{res}_{P,Q}(a,b) := \det \partial c / \partial (a,b)$.

Exercises 5.

(a) For $P(y, a(\lambda)) := \prod_{1 \le s \le p} (y - \lambda_s)$ and $Q(y, b(\mu)) := \prod_{1 \le j \le q} (y - \mu_j)$ show that $\operatorname{res}_{P,Q}(a(\lambda), b(\mu)) = \prod_{\substack{1 \le s \le p \\ 1 \le j \le q}} (\lambda_s - \mu_j)$.

(b) Consider polynomials $a_i(\lambda)$ and $b_j(\mu)$ in λ and μ defined in (a) (called *elementary symmetric polynomials*). Show that $F \in \Bbbk[a_1, \ldots, a_p]$ and $F(a(\lambda)) \equiv 0$ implies $F \equiv 0$. Similarly $G(a, b) \in \Bbbk[a, b]$ and $G(a(\lambda), b(\mu)) \equiv 0$ implies $G(a, b) \equiv 0$.

(c) Using (b), show that for any $L(y,c) = y^l + \sum_{k=1}^l c_k y^{l-k}$, res_{P·Q,L} $(a, b, c) = \operatorname{res}_{P,L}(a, c) \cdot \operatorname{res}_{Q,L}(b, c)$

(d) In the 3 exercises below when $\mathbb{k} \neq \mathbb{R}$ and $\mathbb{k} \neq \mathbb{C}$ but rather \mathbb{k} is any field of characteristic 0 replace the rings $\mathbb{k}\{\cdot\}$ of convergent power series by the rings $\mathbb{k}[[\cdot]]$ of formal power series expansions (both with coefficients in \mathbb{k}). The exercise here is to detect in which of these 3 exercises it is essential to assume that field \mathbb{k} is of characteristic 0.

(e) Using the definition of $\operatorname{res}_{P,Q}(a, b)$ show that if at $\tilde{c} := c(\tilde{a}, \tilde{b}) \in \mathbb{k}^d$ $\operatorname{res}_{P,Q}(\tilde{a}, \tilde{b}) \neq 0$ then exist $a_i(c)$, $b_j(c) \in \mathbb{k}\{(c-\tilde{c})\}$, $1 \leq i \leq p$, $1 \leq j \leq q$, such that $F(y, c) \equiv P(y, a(c)) \cdot Q(y, b(c))$ in $\mathbb{k}\{(c-\tilde{c})\}[y]$.

(f) Using (d) above show for any $F(y, c(x)) \in \Bbbk\{x\}[y]$, where both xand y are single variables, such that F(y, c(x)) is monic in y with $c_1 \equiv 0$ and some $c_{k_0}(0) \neq 0$), that whenever $\min_{1 \leq k \leq d}(1/k) \cdot \operatorname{ord}_x c_k(x)$ is an integer expansion F(y, c(x)) is a product in $\Bbbk\{x\}[y]$ of P(y, a(x)) and Q(y, b(x)).

(g) **Puiseux Expansion.** Show for any $F(y, c(x)) \in \Bbbk\{x\}[y]$ that $F(y, c(t^{d!}) = \prod_{k=1}^{d} (y - f_k(t))$ in $\Bbbk\{t\}[y]$.

Homogenization: Consider $HP(x_0, \ldots, x_n) := P(\frac{x_1}{x_0}, \ldots, \frac{x_n}{x_0}) \cdot x_0^p$, where $p = \deg P$ and $P \in \Bbbk[x_1, \ldots, x_n]$. Then HP and $\mathcal{L}P(x_1, \ldots, x_n) :=$ $HP(0, x_1, \ldots, x_n)$ are homogenous polynomials of degree p. Consider map $j : \Bbbk^n \hookrightarrow \Bbbk\mathbb{P}^n := \{\text{lines through } 0 \text{ in } \Bbbk^{n+1}\}$ defined by $j(x_1, \ldots, x_n) :=$ $[1 : x_1 : \ldots : x_n] \in \Bbbk\mathbb{P}^n$. Then P(x) = 0 iff HP(j(x)) = 0, while $\Bbbk\mathbb{P}^n \setminus j(\Bbbk^n) = \Bbbk\mathbb{P}^{n-1} = \{[x_0 : x_1 : \ldots : x_n] \in \Bbbk\mathbb{P}^n : x_0 = 0\}$.

Exercise 6. Assume deg $P = \deg_y P$ and deg $Q = \deg_y Q$. Then $\deg_x \operatorname{res}_{P,Q}(x) < \deg P \cdot \deg Q$ iff $\{(x,y) \in \mathbb{C}^2 : \mathcal{L}P(x,y) = 0 = \mathcal{L}Q(x,y)\} \neq \{(0,0)\}$.

3 Rings $\Bbbk[X]_a$, $\Bbbk[[X]]$ and $\Bbbk\{X\}$.

Exercise 7. Let $\Bbbk[[X_1, \ldots, X_n]]$ be the ring of formal power series expansions in $X = (X_1, \ldots, X_n)$ with coefficients in \Bbbk (for $F \in \Bbbk[[X]]$) we write $F = \sum c_{\alpha} X_1^{\alpha_1} \cdots X_n^{\alpha_n}$). When $\Bbbk = \mathbb{R}$ or \mathbb{C} consider also subring $\Bbbk\{X\} := \{F \in \Bbbk[[X]] : F$ has a positive radii of convergence $\}$, i.e. the ring of analytic near $0 \in \Bbbk^n$ functions. Let $\Bbbk[X]_a$ denote the ring of quotients $\frac{P}{Q}$ of polynomials $P, Q \in \Bbbk[X]$ such that $Q(a) \neq 0$. Then for $\Bbbk = \mathbb{R}$ or \mathbb{C} there are inclusions $\Bbbk[X]_0 \hookrightarrow \Bbbk\{X\} \hookrightarrow \Bbbk[[X]]$. Show that for any collection of polynomials P_1, \ldots, P_s vanishing at $a = 0 \in \Bbbk^n$ it follows $\hat{I} \cap \Bbbk\{X\} = I^{\omega}$ and $\hat{I} \cap \Bbbk[X]_0 = I$, where ideals \hat{I} , I^{ω} and I are generated by these polynomials in rings $\Bbbk[[X]]$, $\Bbbk\{X\}$ and $\Bbbk[X]_0$ respectively. Conclude that

$$\Bbbk[X]_0/I \hookrightarrow \Bbbk[X]/I^\omega \hookrightarrow \Bbbk[[X]]/\hat{I}$$

are inclusions.

Advice: Consult with theorems on early pages of the book "Algebraic Geometry. I Complex Projective Varieties" by D. Mumford (a possible topic).

Exercise 8. Let $z = (z_1, \ldots, z_n)$ and $\mathbb{N} := \{0, 1, 2, \ldots\}$. Prove that $\hat{\mathcal{O}}_n := \mathbb{C}[[z]] = \hat{I} \oplus \hat{\mathcal{O}}_n^{\mathcal{N}}$ and $\mathcal{O}_n^{\omega} := \mathbb{C}\{z\} = I^{\omega} \oplus (\mathcal{O}_n^{\omega})^{\mathcal{N}}$, where $\mathcal{N} \subset \mathbb{N}^n$ is the *diagram* (means subset satisfying $\alpha \in \mathcal{N}$ and $\beta \in \mathbb{N}^n$ implies $(\alpha + \beta) \in \mathcal{N}$) of the *initial exponents* $(\alpha \in \mathbb{N}^n)$ of the expansions in \hat{I} (or, equivalently, in I^{ω}) and, by definition, $\hat{\mathcal{O}}_n^{\mathcal{N}} \subset \hat{\mathcal{O}}_n$ consists of all expansions $F \in \hat{\mathcal{O}}_n$ with $F = \sum c_{\alpha} z^{\alpha}$, where all $c_{\alpha} = 0$ for $\alpha \in \mathcal{N}$, and

 $(\mathcal{O}_n^{\omega})^{\mathcal{N}} := \hat{O}_n^{\mathcal{N}} \cap \mathbb{C}\{z\}$. Conclude that $\hat{\mathcal{O}}_n$ and \mathcal{O}_n^{ω} are Noetherian rings.

Exercise 9. Using exercise 8 derive Weierstrass Division Theorem: Let $x = (x_1, \ldots, x_n)$, but y be a single variable. If $P(y, a(x)) = y^d + \sum_{j=1}^d a_j(x)y^{d-j}$ with $a_j \in \mathbb{C}[[x]]$ (respectively $a_j \in \mathbb{C}\{x\}$) then $\forall F \in \mathbb{C}[[x, y]]$ (respectively $\forall F \in \mathbb{C}\{x, y\}$) there exists a unique $R(x, y) = \sum_{j=1}^d r_j(x)y^{d-j} \in \mathbb{C}[[x, y]]$ such that $F = Q \cdot P + R$ and $Q \in \mathbb{C}[[x, y]]$ (respectively R and $Q \in \mathbb{C}\{x, y\}$). As a consequence prove Weierstrass Preparation Theorem: Every $f \in \mathbb{C}[[x, y]]$ (respectively in $\mathbb{C}\{x\}$) with $\operatorname{ord}_y f(0, y) = d \neq 0$ coincides (up to an invertible factor in the respective ring) with some P(y, a(x)).

Exercise 10. Show using Weierstrass Preparation and Division Theorems that rings $\mathbb{C}[[z]]$ and $\mathbb{C}\{z\}$ are unique factorization domains.

4 Bezout Theorem.

Exercise 11. (a) Using previous 3 exercises show that for any ideal I^{ω} in $\mathbb{C}\{z\}$ such that $I^{\omega} \cap \mathbb{C}\{z_1, \ldots, z_m\} = \{0\}$, 0 < m < n, it follows that $0 \in \mathbb{C}^n$ is not an isolated point of the set of common zeroes of $f \in I^{\omega}$.

(b) Let $\{P_j\}_{j\leq n} \subset \mathbb{C}[z]$ and assume that $0 \in \mathbb{C}^n$ is an isolated point of $\{z \in \mathbb{C}^n : P_1(z) = \ldots = P_n(z) = 0\}$. Show that then $\dim_{\mathbb{C}} \mathbb{C}\{z\}/I^{\omega} < \infty$ and that $\mathbb{C}\{z\}/I^{\omega} \hookrightarrow \mathbb{C}[[z]]/\hat{I}$ is an isomorphism, where I^{ω} and \hat{I} are the ideals generated by P_j 's in $\mathbb{C}\{z\}$ and $\mathbb{C}[[z]]$ respectively. Hint. Use previous 3 exercises and (a).

(c) $\forall f \in \mathbb{C}[[z]]$ let $(in_0 f)(z) := [t^{-\operatorname{ord}_0 f} \cdot f(t \cdot z)]|_{t=0}$. For $\{P_j\}_{j \leq 2}$ from (b) and coordinates $z = (z_1, z_2)$ such that $(in_0 P_j)(z_1, 0) \neq 0$, j = 1, 2, let $\operatorname{res}_{P_1, P_2}(z_2) := \operatorname{res}_{\tilde{P}_1, \tilde{P}_2}(z_2)$, where monic $\tilde{P}_j \in \mathbb{C}\{z_2\}[z_1]$ are provided by Weirstrass Preparation Theorem (with $\deg_{z_1} \tilde{P}_j = \operatorname{ord}_0 P_j$ and the same ideals generated in $\mathbb{C}\{z\}$ by \tilde{P}_j and P_j , j = 1, 2). Show that

$$\dim_{\mathbb{C}} \mathbb{C}^{\{z_1, z_2\}}/(P_1, P_2) = \operatorname{ord}_0 \operatorname{res}_{P_1, P_2}(z_2)$$

Advice: Consult regarding the properties of $\dim_{\mathbb{C}} \mathbb{C}^{\{z_1, z_2\}}/_{(P_1, P_2)}$ with theorems in the book on "Algebraic curves" by W. Fulton (a possible topic).

Exercise 12. Prove Bezout's Theorem in dim = 2 : Assume $\#\{(x,y) \in \mathbb{C}^2 : P(x,y) = Q(x,y) = 0\} < \infty$. Show that

$$\sum_{(a,b)\in V(P,Q)} \operatorname{mult}_{(a,b)}(P,Q) \le \deg P \cdot \deg Q \quad ,$$

where $\operatorname{mult}_{(a,b)}(P,Q) := \dim_{\mathbb{C}} \mathbb{C}[x,y]_{(a,b)}/(P,Q)$ and, moreover, $\sum_{(a,b)\in V(P,Q)} \operatorname{mult}_{(a,b)}(P,Q) = \deg P \cdot \deg Q$ iff there are no roots at ∞ , i.e. $(\mathcal{L}P)(x,y) = 0 = (\mathcal{L}Q)(x,y) \Rightarrow (x,y) = (0,0).$

5 Sard Theorem and applications.

Exercise 13. \forall closed $X \subset \mathbb{R}^n \exists f \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$ such that $f(x) \ge 0 \forall x$ and $X = \{x : f(x) = 0\}$.

Exercise 14. Assume open $U \subset \mathbb{R}^n$, $\phi \in C^{\infty}(U, \mathbb{R}^m)$ and closed in $U Z_{\phi} := \{x \in U : \operatorname{rank} D\phi(x) < m\}$. Let $b \in \phi(U) \setminus \phi(Z_{\phi})$. Then $\phi^{-1}(b)$ is a C^{∞} -submanifold of U of dimension m - n. If $a \in \phi^{-1}(b)$ then there are C^{∞} -coordinate changes in \mathbb{R}^n near a and in \mathbb{R}^m near b such that ϕ is a linear map near a.

Exercise 15. Let M^m be a C^2 -submanifold in \mathbb{R}^n and $f \in C^2(M^m, \mathbb{R})$. Let $a \in M$ and choose coordinates (x_1, \ldots, x_m) on M near a. Show that the following two properties do not depend on the choice of coordinates:

- $\nabla f(a) \neq 0$.
- $\nabla f(a) = 0$ and det $\operatorname{Hess}_f(a) \neq 0$.

Exercise 16. Assume $M = \operatorname{graph} \psi$, where open $U \subset \mathbb{R}^m$, $\psi : U \to \mathbb{R}^{n-m}$ and $f_{c,\theta}(x,y) = \sum_{j=1}^m c_j x_j + \sum_{j=1}^{n-m} \theta_j y_j$ and $g_{c,\theta} = f_{c,\theta}(x,\psi(x))$. Let map $\phi : U \times \mathbb{R}^{n-m} \to \mathbb{R}^n$ be defined by $\phi : (x,\theta) \mapsto (\sum_{j=1}^{n-m} \theta_j \nabla \psi_j(x), -\theta)$. Then $(\nabla g_{c,\theta})(a) = 0$ iff $-(c,\theta) = \phi(a,\theta)$ and $\operatorname{det}|\operatorname{Hess}_{g_{c,\theta}}(a)| \neq 0$ iff $|D\phi(a,\theta)| \neq 0$.

Exercise 17. Using Sard's theorem, and solution of exercises 15 and 16, show that for any C^2 -submanifold M of \mathbb{R}^n and for "almost all" choices

of $c \in \mathbb{R}^n$ the restriction to M of function $f := \sum_{j=1}^n c_j x_j$ is a Morse function, i.e. for every critical point $a \in M$ of f, $|\text{Hess}_f(a)| \neq 0$.

Exercise 18. Let M^m be a compact C^2 -manifold (i.e. covered by finitely many coordinate charts with C^2 -transition functions). Assume that $h: M \to \mathbb{R}^n$ is a C^2 -map with rank Dh(a) = m for all $a \in M$. Show that for "almost all" choices of $c \in \mathbb{R}^n$ function $f_c(x) := \sum_{j=1}^n c_j h_j(x)$ is a Morse function.

Exercise 19. By definition \mathbb{RP}^n and \mathbb{CP}^n are real and complex projective spaces of dimension n, i.e. all k-lines passing through 0 in \mathbb{k}^{n+1} , where $\mathbb{k} = \mathbb{R}$ or \mathbb{C} respectively, with homogenous coordinates $[z_0 : z_1 : \ldots : z_n]$. Every nondegenerate linear map $L : \mathbb{k}^{n+1} \to \mathbb{k}^{n+1}$ induces a coordinate change [w] = h([z]). Show that collection of functions (on \mathbb{CP}^n) Re $\frac{z_j \bar{z}_k}{\sum_{0 \le s \le n} |z_s|^2}$ and Im $\frac{z_j \bar{z}_k}{\sum_{0 \le s \le n} |z_s|^2}$, $0 \le j, k \le n$, satisfies the assumption in exercise 18.

Exercise 20. Using exercise 19, show that for any (real) C^2 -submanifold $M \subset \mathbb{CP}^n$ there exists a choice of \mathbb{C} -homogenous coordinates $[z_0 : \ldots : z_n]$ on \mathbb{CP}^n and numbers $c_j \in \mathbb{R}$ such that the restriction $f : M \to \mathbb{R}$ of function $f(x) = \sum_{0 \le j \le n} c_j \frac{|z_j|^2}{\sum_{0 \le s \le n} |z_s|^2}$ to M is a Morse function.