Introductory Exercises I (MAT477 in 2009-2010):

1 DeRham Thm: $\mathbf{H}^{k}(M) \xrightarrow{\text { Int }} \mathbf{H}^{k}(\Sigma)$

Assume that M is a manifold, $d_{k}: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ is an exterior differential and that M is triangulated, i.e. $M=$ union of simplices $\bigcup_{\sigma \in \Sigma} \sigma$. Form a 'geometric complex' via simplex $\sigma \mapsto$ its boundary $\partial \sigma$ (for both taking into account the orientation as in Stokes formula) with oriented simplices of dimension k being (by definition) a basis of vector space Σ_{k},

$$
\partial_{k-1}: \Sigma_{k} \rightarrow \Sigma_{k-1} \quad, \quad \partial_{k-1}^{*}: \Sigma_{k-1}^{*} \rightarrow \Sigma_{k}^{*}
$$

Exercise 1. Stokes' formula $\int_{\partial D} \omega=\int_{D} \partial \omega \Rightarrow$ commutativity of

where $I n t_{k}$ is the integration against the simplices of dimension k.
Exercise 2. Show that

$$
\begin{array}{lll}
\quad \operatorname{ker} d_{k} & \xrightarrow{\text { Int } t_{k}} & \operatorname{ker} \partial_{k}^{*} \\
\underset{\operatorname{Int}}{k} \downarrow \\
\operatorname{ker} \partial_{k}^{*} / \operatorname{im} \partial_{k-1}^{*} & & \\
\hline
\end{array}
$$

is well-defined and that ker $\widetilde{\operatorname{Int}}_{k} \supseteq \operatorname{im} d_{k-1}$.
Corollary: $\widetilde{\operatorname{Int}}_{k}$ induces a (well-defined) map

$$
\mathbf{H}^{k}(M):={ }^{\operatorname{ker} d_{k}} / \operatorname{im} d_{k-1} \xrightarrow{\pi} \mathbf{H}^{k}(\Sigma):={ }^{\operatorname{ker} \partial_{k}^{*}} / \operatorname{im} \partial_{k-1}^{*}
$$

Elementary forms (a topic) provide an explicit right inverse of $I n t_{k}$. Exercise 3. Using elementary forms $\Rightarrow \pi$ is onto.

Acyclic (a topic): Subcomplex $\operatorname{ker}\left(\operatorname{Int}_{k}\right) \subseteq \Omega^{k}$ is acyclic.
Exercise 4. Using subtopic 'Acyclic' $\Rightarrow \pi$ is injective.

2 Resultants.

Let $P(y, a):=y^{p}+\sum_{i} a_{i} y^{p-i}$ and $Q(y, b)=y^{q}+\sum_{j} b_{j} y^{q-j}$. Consider $\left.F(y, c)\right|_{c=c(a, b)}:=y^{d}+\sum_{k} c_{k}(a, b) y^{d-k}:=P(y, a) \cdot Q(y, b)$, where $d:=$ $p+q$, and let resultant of $P(y, a)$ and $Q(y, b)$ (in y) be $\operatorname{res}_{P, Q}(a, b):=$ $\operatorname{det} \partial c / \partial(a, b)$.

Exercises 5.

(a) For $P(y, a(\lambda)):=\prod_{1 \leq s \leq p}\left(y-\lambda_{s}\right)$ and $Q(y, b(\mu)):=\prod_{1 \leq j \leq q}\left(y-\mu_{j}\right)$ show that $\operatorname{res}_{P, Q}(a(\lambda), b(\mu))=\prod_{\substack{1 \leq s \leq p \\ 1 \leq j \leq q}}\left(\lambda_{s}-\mu_{j}\right)$.
(b) Consider polynomials $a_{i}(\lambda)$ and $b_{j}(\mu)$ in λ and μ defined in (a) (called elementary symmetric polynomials). Show that $F \in \mathbb{k}\left[a_{1}, \ldots, a_{p}\right]$ and $F(a(\lambda)) \equiv 0$ implies $F \equiv 0$. Similarly $G(a, b) \in \mathbb{k}[a, b]$ and $G(a(\lambda), b(\mu)) \equiv 0$ implies $G(a, b) \equiv 0$.
(c) Using (b), show that for any $L(y, c)=y^{l}+\sum_{k=1}^{l} c_{k} y^{l-k}$,

$$
\operatorname{res}_{P \cdot Q, L}(a, b, c)=\operatorname{res}_{P, L}(a, c) \cdot \operatorname{res}_{Q, L}(b, c)
$$

(d) In the 3 exercises below when $\mathbb{k} \neq \mathbb{R}$ and $\mathbb{k} \neq \mathbb{C}$ but rather \mathbb{k} is any field of characteristic 0 replace the rings $\mathbb{k}\{\cdot\}$ of convergent power series by the rings $\mathbb{k}[[]]]$ of formal power series expansions (both with coefficients in $\mathbb{k})$. The exercise here is to detect in which of these 3 exercises it is essential to assume that field \mathbb{k} is of characteristic 0 .
(e) Using the definition of $\operatorname{res}_{P, Q}(a, b)$ show that if at $\tilde{c}:=c(\tilde{a}, \tilde{b}) \in \mathbb{k}^{d}$ $\operatorname{res}_{P, Q}(\tilde{a}, \tilde{b}) \neq 0$ then exist $a_{i}(c), b_{j}(c) \in \mathbb{k}\{(c-\tilde{c})\}, 1 \leq i \leq p, 1 \leq j \leq q$, such that $F(y, c)) \equiv P(y, a(c)) \cdot Q(y, b(c))$ in $\mathbb{k}\{(c-\tilde{c})\}[y]$.
(f) Using (d) above show for any $F(y, c(x)) \in \mathbb{k}\{x\}[y]$, where both x and y are single variables, such that $F(y, c(x))$ is monic in y with $c_{1} \equiv 0$ and some $\left.c_{k_{0}}(0) \neq 0\right)$, that whenever $\min _{1 \leq k \leq d}(1 / k) \cdot \operatorname{ord}_{x} c_{k}(x)$ is an integer expansion $F(y, c(x))$ is a product in $\mathbb{k}\{x\}[y]$ of $P(y, a(x))$ and $Q(y, b(x))$.
(g) Puiseux Expansion. Show for any $F(y, c(x)) \in \mathbb{k}\{x\}[y]$ that $F\left(y, c\left(t^{d!}\right)=\prod_{k=1}^{d}\left(y-f_{k}(t)\right)\right.$ in $\mathbb{k}\{t\}[y]$.

Homogenization: Consider $H P\left(x_{0}, \ldots, x_{n}\right):=P\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right) \cdot x_{0}^{p}$, where $p=\operatorname{deg} P$ and $P \in \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$. Then $H P$ and $\mathcal{L} P\left(x_{1}, \ldots, x_{n}\right):=$ $H P\left(0, x_{1}, \ldots, x_{n}\right)$ are homogenous polynomials of degree p. Consider map $j: \mathbb{k}^{n} \hookrightarrow \mathbb{k} \mathbb{P}^{n}:=\left\{\right.$ lines through 0 in $\left.\mathbb{k}^{n+1}\right\}$ defined by $j\left(x_{1}, \ldots, x_{n}\right):=$ $\left[1: x_{1}: \ldots: x_{n}\right] \in \mathbb{k} \mathbb{P}^{n}$. Then $P(x)=0$ iff $H P(j(x))=0$, while $\mathbb{k} \mathbb{P}^{n} \backslash j\left(\mathbb{k}^{n}\right)=\mathbb{k} \mathbb{P}^{n-1}=\left\{\left[x_{0}: x_{1}: \ldots: x_{n}\right] \in \mathbb{k}^{n}: x_{0}=0\right\}$.

Exercise 6. Assume $\operatorname{deg} P=\operatorname{deg}_{y} P$ and $\operatorname{deg} Q=\operatorname{deg}_{y} Q$. Then $\operatorname{deg}_{x} \operatorname{res}_{P, Q}(x)<\operatorname{deg} P \cdot \operatorname{deg} Q$ iff $\left\{(x, y) \in \mathbb{C}^{2}: \mathcal{L} P(x, y)=0=\mathcal{L} Q(x, y)\right\} \neq\{(0,0)\}$.

3 Rings $\mathbb{k}[X]_{a}, \mathbb{R}[[X]]$ and $\mathbb{k}\{X\}$.

Exercise 7. Let $\mathbb{k}\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ be the ring of formal power series expansions in $X=\left(X_{1}, \ldots, X_{n}\right)$ with coefficients in \mathbb{k} (for $F \in \mathbb{k}[[X]]$ we write $\left.F=\sum c_{\alpha} X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}}\right)$. When $\mathbb{k}=\mathbb{R}$ or \mathbb{C} consider also subring $\mathbb{k}\{X\}:=\{F \in \mathbb{k}[[X]]: F$ has a positive radii of convergence $\}$, i.e. the ring of analytic near $0 \in \mathbb{k}^{n}$ functions. Let $\mathbb{k}[X]_{a}$ denote the ring of quotients $\frac{P}{Q}$ of polynomials $P, Q \in \mathbb{k}[X]$ such that $Q(a) \neq 0$. Then for $\mathbb{k}=\mathbb{R}$ or \mathbb{C} there are inclusions $\mathbb{k}[X]_{0} \hookrightarrow \mathbb{k}\{X\} \hookrightarrow \mathbb{k}[[X]]$. Show that for any collection of polynomials P_{1}, \ldots, P_{s} vanishing at $a=0 \in \mathbb{k}^{n}$ it follows $\hat{I} \cap \mathbb{k}\{X\}=I^{\omega}$ and $\hat{I} \cap \mathbb{k}[X]_{0}=I$, where ideals $\hat{I}, \quad I^{\omega}$ and I are generated by these polynomials in rings $\mathbb{k}[[X]], \mathbb{k}\{X\}$ and $\mathbb{k}[X]_{0}$ respectively. Conclude that

$$
\mathbb{k}[X]_{0} / I \hookrightarrow \mathbb{k}\{X\} / I^{\omega} \hookrightarrow \mathbb{k}[[X]] / \hat{I}
$$

are inclusions.
Advice: Consult with theorems on early pages of the book "Algebraic Geometry. I Complex Projective Varieties" by D. Mumford (a possible topic).

Exercise 8. Let $z=\left(z_{1}, \ldots, z_{n}\right)$ and $\mathbb{N}:=\{0,1,2, \ldots\}$. Prove that $\hat{\mathcal{O}}_{n}:=\mathbb{C}[[z]]=\hat{I} \oplus \hat{\mathcal{O}}_{n}{ }^{\mathcal{N}}$ and $\mathcal{O}_{n}^{\omega}:=\mathbb{C}\{z\}=I^{\omega} \oplus\left(\mathcal{O}_{n}^{\omega}\right)^{\mathcal{N}}$, where $\mathcal{N} \subset \mathbb{N}^{n}$ is the diagram (means subset satisfying $\alpha \in \mathcal{N}$ and $\beta \in \mathbb{N}^{n}$ implies $(\alpha+\beta) \in \mathcal{N})$ of the initial exponents $\left(\alpha \in \mathbb{N}^{n}\right)$ of the expansions in \hat{I} (or, equivalently, in I^{ω}) and, by definition, $\hat{\mathcal{O}}_{n}{ }^{\mathcal{N}} \subset \hat{\mathcal{O}}_{n}$ consists of all expansions $F \in \hat{\mathcal{O}}_{n}$ with $F=\sum c_{\alpha} z^{\alpha}$, where all $c_{\alpha}=0$ for $\alpha \in \mathcal{N}$, and
$\left(\mathcal{O}_{n}^{\omega}\right)^{\mathcal{N}}:=\hat{O}_{n}{ }^{\mathcal{N}} \cap \mathbb{C}\{z\}$. Conclude that $\hat{\mathcal{O}}_{n}$ and \mathcal{O}_{n}^{ω} are Noetherian rings.

Exercise 9. Using exercise 8 derive Weierstrass Division Theorem: Let $x=\left(x_{1}, \ldots, x_{n}\right)$, but y be a single variable. If $P(y, a(x))=y^{d}+\sum_{j=1}^{d} a_{j}(x) y^{d-j}$ with $a_{j} \in \mathbb{C}[[x]]$ (respectively $a_{j} \in \mathbb{C}\{x\}$) then $\forall F \in \mathbb{C}[[x, y]]$ (respectively $\forall F \in \mathbb{C}\{x, y\})$ there exists a unique $R(x, y)=\sum_{j=1}^{d} r_{j}(x) y^{d-j} \in \mathbb{C}[[x, y]]$ such that $F=Q \cdot P+R$ and $Q \in \mathbb{C}[[x, y]]$ (respectively R and $Q \in \mathbb{C}\{x, y\})$. As a consequence prove Weierstrass Preparation Theorem: Every $f \in \mathbb{C}[[x, y]]$ (respectively in $\mathbb{C}\{x\}$) with $\operatorname{ord}_{y} f(0, y)=d \neq 0$ coincides (up to an invertible factor in the respective ring) with some $P(y, a(x))$.

Exercise 10. Show using Weierstrass Preparation and Division Theorems that rings $\mathbb{C}[[z]]$ and $\mathbb{C}\{z\}$ are unique factorization domains.

4 Bezout Theorem.

Exercise 11. (a) Using previous 3 exercises show that for any ideal I^{ω} in $\mathbb{C}\{z\}$ such that $I^{\omega} \cap \mathbb{C}\left\{z_{1}, \ldots, z_{m}\right\}=\{0\}, 0<m<n$, it follows that $0 \in \mathbb{C}^{n}$ is not an isolated point of the set of common zeroes of $f \in I^{\omega}$.
(b) Let $\left\{P_{j}\right\}_{j \leq n} \subset \mathbb{C}[z]$ and assume that $0 \in \mathbb{C}^{n}$ is an isolated point of $\left\{z \in \mathbb{C}^{n}: P_{1}(z)=\ldots=P_{n}(z)=0\right\}$. Show that then $\operatorname{dim}_{\mathbb{C}} \mathbb{C}\{z\} / I^{\omega}<\infty$ and that $\mathbb{C}\{z\} / I^{\omega} \hookrightarrow \mathbb{C}[[z]] / \hat{I}$ is an isomorphism, where I^{ω} and \hat{I} are the ideals generated by P_{j} 's in $\mathbb{C}\{z\}$ and $\mathbb{C}[[z]]$ respectively.
Hint. Use previous 3 exercises and (a).
(c) $\forall f \in \mathbb{C}[[z]]$ let $\left(i n_{0} f\right)(z):=\left.\left[t^{-\operatorname{ord}_{0} f} \cdot f(t \cdot z)\right]\right|_{t=0}$. For $\left\{P_{j}\right\}_{j \leq 2}$ from (b) and coordinates $z=\left(z_{1}, z_{2}\right)$ such that $\left(i n_{0} P_{j}\right)\left(z_{1}, 0\right) \neq 0, j=1,2$, let $\operatorname{res}_{P_{1}, P_{2}}\left(z_{2}\right):=\operatorname{res}_{\tilde{P}_{1}, \tilde{P}_{2}}\left(z_{2}\right)$, where monic $\tilde{P}_{j} \in \mathbb{C}\left\{z_{2}\right\}\left[z_{1}\right]$ are provided by Weirstrass Preparation Theorem (with $\operatorname{deg}_{z_{1}} \tilde{P}_{j}=\operatorname{ord}_{0} P_{j}$ and the same ideals generated in $\mathbb{C}\{z\}$ by \tilde{P}_{j} and $\left.P_{j}, j=1,2\right)$. Show that

$$
\operatorname{dim}_{\mathbb{C}} \mathbb{C}\left\{z_{1}, z_{2}\right\} /\left(P_{1}, P_{2}\right)=\operatorname{ord}_{0} \operatorname{res}_{P_{1}, P_{2}}\left(z_{2}\right)
$$

Advice: Consult regarding the properties of $\operatorname{dim}_{\mathbb{C}} \mathbb{C}^{\left\{z_{1}, z_{2}\right\}}{ }_{\left(P_{1}, P_{2}\right)}$ with theorems in the book on "Algebraic curves" by W. Fulton (a possible topic).

Exercise 12. Prove Bezout's Theorem in $\operatorname{dim}=2$: Assume $\#\left\{(x, y) \in \mathbb{C}^{2}: P(x, y)=Q(x, y)=0\right\}<\infty$. Show that

$$
\sum_{(a, b) \in V(P, Q)} \operatorname{mult}_{(a, b)}(P, Q) \leq \operatorname{deg} P \cdot \operatorname{deg} Q
$$

where $\operatorname{mult}_{(a, b)}(P, Q):=\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y]_{(a, b)} /(P, Q)$ and, moreover, $\sum_{(a, b) \in V(P, Q)} \operatorname{mult}_{(a, b)}(P, Q)=\operatorname{deg} P \cdot \operatorname{deg} Q$ iff there are no roots at ∞, i.e. $(\mathcal{L} P)(x, y)=0=(\mathcal{L} Q)(x, y) \Rightarrow(x, y)=(0,0)$.

5 Sard Theorem and applications.

Exercise 13. \forall closed $X \subset \mathbb{R}^{n} \exists f \in C^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ such that $f(x) \geq 0 \forall x$ and $X=\{x: f(x)=0\}$.

Exercise 14. Assume open $U \subset \mathbb{R}^{n}, \phi \in C^{\infty}\left(U, \mathbb{R}^{m}\right)$ and closed in U $Z_{\phi}:=\{x \in U: \operatorname{rank} D \phi(x)<m\}$. Let $b \in \phi(U) \backslash \phi\left(Z_{\phi}\right)$. Then $\phi^{-1}(b)$ is a C^{∞}-submanifold of U of dimension $m-n$. If $a \in \phi^{-1}(b)$ then there are C^{∞}-coordinate changes in \mathbb{R}^{n} near a and in \mathbb{R}^{m} near b such that ϕ is a linear map near a.

Exercise 15. Let M^{m} be a C^{2}-submanifold in \mathbb{R}^{n} and $f \in$ $C^{2}\left(M^{m}, \mathbb{R}\right)$. Let $a \in M$ and choose coordinates $\left(x_{1}, \ldots, x_{m}\right)$ on M near a. Show that the following two properties do not depend on the choice of coordinates:

- $\nabla f(a) \neq 0$.
- $\nabla f(a)=0$ and $\operatorname{det} \operatorname{Hess}_{f}(a) \neq 0$.

Exercise 16. Assume $M=\operatorname{graph} \psi$, where open $U \subset \mathbb{R}^{m}, \psi: U \rightarrow$ \mathbb{R}^{n-m} and $f_{c, \theta}(x, y)=\sum_{j=1}^{m} c_{j} x_{j}+\sum_{j=1}^{n-m} \theta_{j} y_{j}$ and $g_{c, \theta}=f_{c, \theta}(x, \psi(x))$. Let $\operatorname{map} \phi: U \times \mathbb{R}^{n-m} \rightarrow \mathbb{R}^{n}$ be defined by $\phi:(x, \theta) \mapsto\left(\sum_{j=1}^{n-m} \theta_{j} \nabla \psi_{j}(x),-\theta\right)$. Then $\left(\nabla g_{c, \theta}\right)(a)=0$ iff $-(c, \theta)=\phi(a, \theta)$ and $\operatorname{det}\left|\operatorname{Hess}_{g_{c, \theta}}(a)\right| \neq 0 \quad$ iff $|D \phi(a, \theta)| \neq 0$.

Exercise 17. Using Sard's theorem, and solution of exercises 15 and 16, show that for any C^{2}-submanifold M of \mathbb{R}^{n} and for "almost all" choices
of $c \in \mathbb{R}^{n}$ the restriction to M of function $f:=\sum_{j=1}^{n} c_{j} x_{j}$ is a Morse function, i.e. for every critical point $a \in M$ of $f,\left|\operatorname{Hess}_{f}(a)\right| \neq 0$.

Exercise 18. Let M^{m} be a compact C^{2}-manifold (i.e. covered by finitely many coordinate charts with C^{2}-transition functions). Assume that $h: M \rightarrow \mathbb{R}^{n}$ is a C^{2}-map with $\operatorname{rank} D h(a)=m$ for all $a \in M$. Show that for "almost all" choices of $c \in \mathbb{R}^{n}$ function $f_{c}(x):=\sum_{j=1}^{n} c_{j} h_{j}(x)$ is a Morse function.

Exercise 19. By definition $\mathbb{R P}^{n}$ and $\mathbb{C P}^{n}$ are real and complex projective spaces of dimension n, i.e. all \mathbb{k}-lines passing through 0 in \mathbb{k}^{n+1}, where $\mathbb{k}=\mathbb{R}$ or \mathbb{C} respectively, with homogenous coordinates $\left[z_{0}: z_{1}: \ldots: z_{n}\right]$. Every nondegenerate linear map $L: \mathbb{k}^{n+1} \rightarrow \mathbb{k}^{n+1}$ induces a coordinate change $[w]=h([z])$. Show that collection of functions (on $\mathbb{C P}^{n}$) $\operatorname{Re} \frac{z_{j} \bar{z}_{k}}{\sum_{0 \leq s \leq n}\left|z_{s}\right|^{2}}$ and $\operatorname{Im} \frac{z_{j} \bar{z}_{k}}{\sum_{0 \leq s \leq n}\left|z_{s}\right|^{2}}, 0 \leq j, k \leq n$, satisfies the assumption in exercise 18.

Exercise 20. Using exercise 19, show that for any (real) C^{2}-submanifold $M \subset \mathbb{C P}^{n}$ there exists a choice of \mathbb{C}-homogenous coordinates $\left[z_{0}: \ldots: z_{n}\right]$ on $\mathbb{C P}^{n}$ and numbers $c_{j} \in \mathbb{R}$ such that the restriction $f: M \rightarrow \mathbb{R}$ of function $f(x)=\sum_{0 \leq j \leq n} c_{j} \frac{\left|z_{j}\right|^{2}}{\left.\left.\sum_{0 \leq s \leq n}\right|_{s}\right|^{2}}$ to M is a Morse function.

