
Introductory Exercises I (MAT477 in 2009 - 2010):

1 DeRham Thm: Hk(M)
Intk−→ Hk(Σ)

Assume that M is a manifold, dk : Ωk(M) → Ωk+1(M) is an exterior dif-
ferential and that M is triangulated, i.e. M = union of simplices

⋃
σ∈Σ σ .

Form a ‘geometric complex’ via simplex σ 7→ its boundary ∂σ (for both
taking into account the orientation as in Stokes formula) with oriented sim-
plices of dimension k being (by definition) a basis of vector space Σk ,

∂k−1 : Σk → Σk−1 , ∂∗k−1 : Σ∗
k−1 → Σ∗

k

Exercise 1. Stokes’ formula
∫

∂D
ω =

∫
D
∂ω ⇒ commutativity of

Ωk(M)
dk−→ Ωk+1(M)yIntk−1

yIntk

Σ∗
k

∂∗
k−→ Σ∗

k+1

where Intk is the integration against the simplices of dimension k .

Exercise 2. Show that

ker dk
Intk−→ ker ∂∗k

gIntk

y ւ
ker ∂∗

k/im ∂∗
k−1

is well-defined and that ker Ĩntk ⊇ im dk−1.

Corollary: Ĩntk induces a (well-defined) map

Hk(M) :=ker dk /im dk−1

π
−→ Hk(Σ) :=ker ∂∗

k /im ∂∗
k−1

Elementary forms (a topic) provide an explicit right inverse of Intk .
Exercise 3. Using elementary forms ⇒ π is onto.

Acyclic (a topic): Subcomplex ker(Intk) ⊆ Ωk is acyclic.
Exercise 4. Using subtopic ‘Acyclic’ ⇒ π is injective.
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2 Resultants.

Let P (y, a) := yp +
∑

i aiy
p−i and Q(y, b) = yq +

∑
j bjy

q−j . Consider

F (y, c)|c=c(a,b) := yd +
∑

k ck(a, b)y
d−k := P (y, a) · Q(y, b) , where d :=

p + q , and let resultant of P (y, a) and Q(y, b) (in y) be resP,Q(a, b) :=
det ∂c/∂(a, b) .

Exercises 5.

(a) For P (y, a(λ)) :=
∏

1≤s≤p(y−λs) and Q(y, b(µ)) :=
∏

1≤j≤q(y−µj)
show that resP,Q(a(λ), b(µ)) =

∏
1≤s≤p
1≤j≤q

(λs − µj) .

(b) Consider polynomials ai(λ) and bj(µ) in λ and µ defined in
(a) (called elementary symmetric polynomials). Show that F ∈ k[a1, . . . , ap]
and F (a(λ)) ≡ 0 implies F ≡ 0 . Similarly G(a, b) ∈ k[a, b] and
G(a(λ), b(µ)) ≡ 0 implies G(a, b) ≡ 0 .

(c) Using (b), show that for any L(y, c) = yl +
∑l

k=1 cky
l−k,

resP ·Q,L(a, b, c) = resP,L(a, c) · resQ,L(b, c)

(d) In the 3 exercises below when k 6= R and k 6= C but rather k is any
field of characteristic 0 replace the rings k{·} of convergent power series by
the rings k[[·]] of formal power series expansions (both with coefficients ink ). The exercise here is to detect in which of these 3 exercises it is essential
to assume that field k is of characteristic 0 .

(e) Using the definition of resP,Q(a, b) show that if at c̃ := c(ã , b̃) ∈ kd

resP,Q(ã , b̃) 6= 0 then exist ai(c) , bj(c) ∈ k{(c−c̃)} , 1 ≤ i ≤ p , 1 ≤ j ≤ q ,
such that F (y, c)) ≡ P (y, a(c)) ·Q(y, b(c)) in k{(c− c̃)}[y] .

(f) Using (d) above show for any F (y, c(x)) ∈ k{x}[y] , where both x
and y are single variables, such that F (y, c(x)) is monic in y with c1 ≡ 0
and some ck0

(0) 6= 0 ), that whenever min1≤k≤d(1/k)·ordx ck(x) is an integer
expansion F (y, c(x)) is a product in k{x}[y] of P (y, a(x)) and Q(y, b(x)) .

(g) Puiseux Expansion. Show for any F (y, c(x)) ∈ k{x}[y] that
F (y, c(td!) =

∏d

k=1(y − fk(t)) in k{t}[y] .
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Homogenization: Consider HP (x0, . . . , xn) := P (x1

x0

, . . . , xn

x0

) · xp
0 ,

where p = degP and P ∈ k[x1, . . . , xn] . Then HP and LP (x1, . . . , xn) :=
HP (0, x1, . . . , xn) are homogenous polynomials of degree p . Consider map
j : kn →֒ kPn := {lines through 0 in kn+1} defined by j(x1, . . . , xn) :=
[1 : x1 : . . . : xn] ∈ kPn . Then P (x) = 0 iff HP (j(x)) = 0 , whilekPn \ j(kn) = kPn−1 = {[x0 : x1 : . . . : xn] ∈ kPn : x0 = 0} .

Exercise 6. Assume degP = degy P and degQ = degy Q . Then
degx resP,Q(x) < degP · degQ iff
{(x, y) ∈ C2 : LP (x, y) = 0 = LQ(x, y)} 6= {(0, 0)} .

3 Rings k[X ]a , k[[X ]] and k{X} .

Exercise 7. Let k[[X1, . . . , Xn]] be the ring of formal power series expan-
sions in X = (X1, . . . , Xn) with coefficients in k (for F ∈ k[[X]] we write
F =

∑
cαX

α1

1 · · ·Xαn
n ). When k = R or C consider also subringk{X} := {F ∈ k[[X]] : F has a positive radii of convergence } , i.e. the ring

of analytic near 0 ∈ kn functions. Let k[X]a denote the ring of quotients
P
Q

of polynomials P,Q ∈ k[X] such that Q(a) 6= 0 . Then for k = R or C
there are inclusions k[X]0 →֒ k{X} →֒ k[[X]] . Show that for any collection
of polynomials P1, . . . , Ps vanishing at a = 0 ∈ kn it follows Î∩k{X} = Iω

and Î ∩ k[X]0 = I , where ideals Î , Iω and I are generated by these
polynomials in rings k[[X]] , k{X} and k[X]0 respectively. Conclude thatk[X]0/I →֒ k{X}/Iω →֒ k[[X]]/Î

are inclusions.
Advice: Consult with theorems on early pages of the book “Algebraic Ge-
ometry. I Complex Projective Varieties” by D. Mumford (a possible topic).

Exercise 8. Let z = (z1, . . . , zn) and N := {0, 1, 2, . . .} . Prove
that Ôn := C[[z]] = Î ⊕ Ô N

n and Oω
n := C{z} = Iω ⊕ (Oω

n)N , where
N ⊂ Nn is the diagram (means subset satisfying α ∈ N and β ∈ Nn

implies (α + β) ∈ N ) of the initial exponents (α ∈ Nn) of the expansions
in Î (or, equivalently, in Iω) and, by definition, Ô N

n ⊂ Ôn consists of all
expansions F ∈ Ôn with F =

∑
cαz

α , where all cα = 0 for α ∈ N , and
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(Oω
n)N := Ôn

N ∩ C{z} . Conclude that Ôn and Oω
n are Noetherian rings.

Exercise 9. Using exercise 8 derive Weierstrass Division Theorem: Let
x = (x1, . . . , xn) , but y be a single variable. If P (y, a(x)) = yd+

∑d

j=1 aj(x)y
d−j

with aj ∈ C[[x]] (respectively aj ∈ C{x}) then ∀F ∈ C[[x, y]] (respectively

∀F ∈ C{x, y}) there exists a unique R(x, y) =
∑d

j=1 rj(x)y
d−j ∈ C[[x, y]]

such that F = Q · P + R and Q ∈ C[[x, y]] (respectively R and
Q ∈ C{x, y}). As a consequence prove Weierstrass Preparation Theorem:
Every f ∈ C[[x, y]] (respectively in C{x}) with ordy f(0, y) = d 6= 0 coin-
cides (up to an invertible factor in the respective ring) with some P (y, a(x)) .

Exercise 10. Show using Weierstrass Preparation and Division Theo-
rems that rings C[[z]] and C{z} are unique factorization domains.

4 Bezout Theorem.

Exercise 11. (a) Using previous 3 exercises show that for any ideal Iω inC{z} such that Iω ∩ C{z1, . . . , zm} = {0} , 0 < m < n , it follows that
0 ∈ Cn is not an isolated point of the set of common zeroes of f ∈ Iω .

(b) Let {Pj}j≤n ⊂ C[z] and assume that 0 ∈ Cn is an isolated point of
{z ∈ Cn : P1(z) = . . . = Pn(z) = 0} . Show that then dimC C{z}/Iω < ∞
and that C{z}/Iω →֒ C[[z]]/Î is an isomorphism, where Iω and Î are the
ideals generated by Pj’s in C{z} and C[[z]] respectively.
Hint. Use previous 3 exercises and (a).

(c) ∀ f ∈ C[[z]] let (in0f)(z) := [t− ord0 f ·f(t ·z)]|t=0 . For {Pj}j≤2 from
(b) and coordinates z = (z1, z2) such that (in0Pj)(z1, 0) 6= 0 , j = 1, 2 ,
let resP1,P2

(z2) := resP̃1,P̃2
(z2) , where monic P̃j ∈ C{z2}[z1] are provided

by Weirstrass Preparation Theorem (with degz1
P̃j = ord0 Pj and the same

ideals generated in C{z} by P̃j and Pj , j = 1, 2 ). Show that

dimC C{z1,z2}/(P1,P2) = ord0 resP1,P2
(z2)

Advice: Consult regarding the properties of dimC C{z1,z2}/(P1,P2) with theo-
rems in the book on “Algebraic curves” by W. Fulton (a possible topic).
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Exercise 12. Prove Bezout’s Theorem in dim = 2 : Assume
#{(x, y) ∈ C2 : P (x, y) = Q(x, y) = 0} <∞ . Show that

∑

(a,b)∈V (P,Q)

mult(a,b)(P,Q) ≤ degP · degQ ,

where mult(a,b)(P,Q) := dimC C[x, y](a,b)/(P,Q) and, moreover,∑
(a,b)∈V (P,Q) mult(a,b)(P,Q) = deg P · degQ iff there are no roots at ∞, i.e.

(LP )(x, y) = 0 = (LQ)(x, y) ⇒ (x, y) = (0, 0).

5 Sard Theorem and applications.

Exercise 13. ∀ closed X ⊂ Rn ∃ f ∈ C∞(Rn , R) such that f(x) ≥ 0 ∀x
and X = {x : f(x) = 0} .

Exercise 14. Assume open U ⊂ Rn , φ ∈ C∞(U,Rm) and closed in U
Zφ := {x ∈ U : rankDφ(x) < m} . Let b ∈ φ(U) \ φ(Zφ) . Then φ−1(b) is
a C∞-submanifold of U of dimension m − n . If a ∈ φ−1(b) then there
are C∞-coordinate changes in Rn near a and in Rm near b such that
φ is a linear map near a .

Exercise 15. Let Mm be a C2-submanifold in Rn and f ∈
C2(Mm , R) . Let a ∈ M and choose coordinates (x1, . . . , xm) on M
near a . Show that the following two properties do not depend on the choice
of coordinates:

• ∇f(a) 6= 0 .

• ∇f(a) = 0 and det Hessf(a) 6= 0 .

Exercise 16. Assume M = graph ψ, where open U ⊂ Rm , ψ : U →Rn−m and fc,θ(x, y) =
∑m

j=1 cjxj +
∑n−m

j=1 θjyj and gc,θ = fc,θ(x, ψ(x)) . Let

map φ : U×Rn−m → Rn be defined by φ : (x, θ) 7→ (
∑n−m

j=1 θj∇ψj(x) , −θ) .
Then (∇gc,θ)(a) = 0 iff −(c, θ) = φ(a, θ) and det|Hessgc,θ

(a)| 6= 0 iff
|Dφ(a, θ)| 6= 0 .

Exercise 17. Using Sard’s theorem, and solution of exercises 15 and 16,
show that for any C2-submanifold M of Rn and for ”almost all” choices
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of c ∈ Rn the restriction to M of function f :=
∑n

j=1 cjxj is a Morse
function, i.e. for every critical point a ∈M of f , |Hessf(a)| 6= 0 .

Exercise 18. Let Mm be a compact C2-manifold (i.e. covered by
finitely many coordinate charts with C2-transition functions). Assume that
h : M → Rn is a C2-map with rankDh(a) = m for all a ∈ M . Show
that for ”almost all” choices of c ∈ Rn function fc(x) :=

∑n

j=1 cjhj(x) is
a Morse function.

Exercise 19. By definition RPn and CPn are real and complex
projective spaces of dimension n , i.e. all k-lines passing through 0 inkn+1 , where k = R or C respectively, with homogenous coordinates
[z0 : z1 : . . . : zn] . Every nondegenerate linear map L : kn+1 → kn+1

induces a coordinate change [w] = h([z]) . Show that collection of functions
(on CPn ) Re

zj z̄kP
0≤s≤n|zs|2

and Im
zj z̄kP

0≤s≤n|zs|2
, 0 ≤ j, k ≤ n , satisfies the

assumption in exercise 18.

Exercise 20. Using exercise 19, show that for any (real) C2-submanifold
M ⊂ CPn there exists a choice of C-homogenous coordinates [z0 : . . . : zn]
on CPn and numbers cj ∈ R such that the restriction f : M → R of

function f(x) =
∑

0≤j≤n cj
|zj |2P

0≤s≤n|zs|2
to M is a Morse function.
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