Introductory Exercises II (MAT477 in 2009 - 2010) :

1 Bezout Theorem.

Let $\mathcal{P}_n := \mathbb{C}[x_1, \ldots, x_n]$, for any $a \in \mathbb{C}^n$ local ring $\mathcal{O}_a := \left\{ \frac{f}{g} : f, g \in \mathcal{P}_n, g(a) \neq 0 \right\}$ contains \mathcal{P}_n (via $f \mapsto \frac{f}{1}$). For any ideal $I \subset \mathcal{P}_n$ similarly $\mathcal{O}_a/I \cdot \mathcal{O}_a$ contains \mathcal{P}_n/I . Denote $V(I) := \left\{ a \in \mathbb{C}^n : f(a) = 0 \quad \forall f \in I \right\}$. In the introductory lecture using Hilbert Nullstellensatz we proved by means of a version of the 'chinese remainder lemma'

Theorem 1.1. dim_C $\mathcal{P}_n/I < \infty$ iff $V(I) = \{a_1, \ldots, a_m\}$ is finite and then natural map

$$\mathcal{P}_n/I o igoplus_{j=1}^m \mathcal{O}_{a_j}/I \cdot \mathcal{O}_{a_j}$$

is an isomorphism.

We will follow enumeration of exercises, notations and definitions of Introductory Exercises I (in particular below of the paragraph "Homogenization" of topic "Resultants").

Exercise 21. For a polynomial map $P : \mathbb{C}^n \to \mathbb{C}^n$ we define $\phi : (\mathbb{C}^{n+1}, 0) \to (\mathbb{C}^{n+1}, 0)$ by formula

$$\phi(x_0, x) := (x_0, HP_1(x_0, x), \dots, HP_n(x_0, x)), \quad (x_0, x) \in \mathbb{C}^{n+1}$$

Show that $V(\mathcal{L}P_1, \ldots, \mathcal{L}P_n) = \{0\}$ iff $\phi^{-1}(0) = \{0\}$ and imply that maps P, ϕ and $\mathcal{L}P : \mathbb{C}^n \ni x \mapsto (\mathcal{L}P_1(x), \ldots, \mathcal{L}P_n(x)) \in \mathbb{C}^n$ are proper maps (in particular, the latter two 'are proper near $0 \in \mathbb{C}^{n+1}$ ' as well).

Exercise 22. Assume that $P^{-1}(0) = \{a_1, \ldots, a_m\}$ and that P has no solutions at infinity, i.e. $V(\mathcal{L}P_1, \ldots, \mathcal{L}P_n) = \{0\}$. Show that the mapping degrees $deg_0(\mathcal{L}P)$ and $deg_0(\phi)$ of ϕ (at $0 \in \mathbb{C}^n$ and, respectively, at $0 \in \mathbb{C}^{n+1}$ are well defined and) coincide with the sum over $j = 1, \ldots, m$ of the (well defined) mapping degrees $deg_{a_j}(P)$ of P near a_j , $1 \leq j \leq m$.

Exercise 23. $\phi^{-1}(0) = \{0\}$ (cf. exercise 21.) implies

$$\mathcal{O}_0/(\phi) \cdot \mathcal{O}_0 \cong \mathcal{O}_0/(\mathcal{L}P_1, \dots, \mathcal{L}P_n) \cdot \mathcal{O}_0 \cong \mathcal{P}_n/(\mathcal{L}P_1, \dots, \mathcal{L}P_n) \cdot \mathcal{P}_n$$

Key Theorem 1. (A possible topic to choose.) $\phi^{-1}(0) = 0$ implies

$$deg_0(\phi) = \dim_{\mathbb{C}} \mathcal{O}_o/(\phi) \cdot \mathcal{O}_0 < \infty$$

Corollary 1.2. Applied to P near a_j instead of ϕ near 0 it follows that

$$deg_{a_i}(P) = \dim_{\mathbb{C}} \mathcal{O}_{a_i}/(P) \cdot \mathcal{O}_{a_i}$$

and is referred to as the multiplicity of P at a_j .

Key Theorem 2. (Another possible topic to choose.) With ϕ from Key Theorem 1, A(x)an $(n+1) \times (n+1)$ matrix satisfying $\phi(x) = A(x) \cdot x$ and $\mu := deg_0(\phi)$ it follows

$$\mu \cdot \det A(\mathbf{x}) = \det \frac{\partial \phi}{\partial \mathbf{x}}(\mathbf{x}) \neq 0 \text{ in the ring } \mathcal{O}_0/(\phi) \cdot \mathcal{O}_0$$

Exercise 24. Applying the latter theorem to $\mathcal{L}P(x) := (\mathcal{L}P_1(x), \ldots, \mathcal{L}P_n(x))$ show that $V(\mathcal{L}P_1, \ldots, \mathcal{L}P_n) = \{0\}$ implies that

$$deg_0 (\mathcal{L}P) = \prod_{i=1}^n degree(P_i)$$

Corollary 1.3 (Bezout's Theorem). If $P^{-1}(0)$ has 'no solutions at infinity' (under inclusion $\mathbb{C}^n \hookrightarrow \mathbb{CP}^n$) then $\#P^{-1}(0)$ 'counted with multiplicities' (i.e. all points of $P^{-1}(0)$ are counted with the multiplicities of P at the respective points) is the product $\prod_{i=1}^n \text{degree}(P_i)$ of the polynomial degrees of P_i 's.

Solution to Exercise 24. Set $h(s) := \mathcal{L}P(s \cdot x)$ for $s \in \mathbb{C}$. Then $h(1) - h(0) = \int_0^1 h'(s) ds$ and implies $\mathcal{L}P(x) = A(x) \cdot x$, where

$$A(x) = \left[\int_0^1 \frac{\partial \mathcal{L} P_i}{\partial x_j} (s \cdot x) \, ds\right]_{1 \le i,j \le n}$$

Homogeneities of $\mathcal{L}P_i$'s of degrees d_i imply $\frac{\partial \mathcal{L}P_i}{\partial x_j}(s \cdot x) = s^{d_i - 1} \frac{\partial \mathcal{L}P_i}{\partial x_j}(x)$. Therefore

$$A(x) = \begin{pmatrix} \frac{1}{d_1} & 0 & \dots \\ 0 & \frac{1}{d_2} & \dots \\ \vdots & \ddots & 0 \\ 0 & \dots & \frac{1}{d_n} \end{pmatrix} \cdot \left(\frac{\partial \mathcal{L}P}{\partial x}(x) \right)$$

Consequently det $A(x) = \frac{1}{\prod_{i=1}^{n} d_i} \cdot \det \frac{\partial \mathcal{LP}}{\partial \mathbf{x}}(\mathbf{x})$ and Key Theorem 2 implies $d_1 \cdots d_n = \deg_0 (\mathcal{LP})$, while each $d_j = \operatorname{degree}(\mathbf{P}_j)$, as required.

Exercise 25. Introduce a 'weighted' version of Bezout's Theorem: set $\operatorname{wt}(\mathbf{x}_j) := w_j \in \mathbb{Z}_+$ and $\operatorname{wt}(\mathbf{x}_1^{\alpha_1}, \ldots, \mathbf{x}_n^{\alpha_n}) := \sum_{j=1}^n \alpha_j w_j$. For $s \in \mathbb{C}$ and $x \in \mathbb{C}^n$ let $s * x := (s^{w_1}x_1, \ldots, s^{w_n}x_n)$. For $P \in \mathcal{P}_n - \{0\}$ weighted degree wt.deg P is the largest weighted

degree of the monomials in its expansion. For any $P \in \mathcal{P}_n - \{0\}$ the 'weighted homogeneization' $H_{wt}P \in \mathcal{P}_{n+1}$ of P is $H_{wt}P(x_0, x) := x_o^{\text{wt.deg P}} \cdot P(x_0^{-1} * x)$ and the 'leading weighted homogeneous form' $\mathcal{L}_{wt}P \in \mathcal{P}_n$ of P is $\mathcal{L}_{wt}P(x) := H_{wt}P(0, x)$. Using the same Key Theorems 1 and 2 show that $V(\mathcal{L}_{wt}P_1, \ldots, \mathcal{L}_{wt}P_n) = \{0\}$ implies

$$\prod_{j=1}^{n} \frac{\text{wt.deg P}_{j}}{w_{j}} = \#P^{-1}(0) \quad \text{counted with multiplicities}$$

Calculus part of solution to Exercise 25. (Fill in the remaining details needed for a complete solution of Exercise 25.) Let $h(s) := \psi(s * x)$ with $\psi_i(x) := \mathcal{L}_{wt} P_i(x)$ being the components of ψ . Then $h(1) - h(0) = \int_0^1 h'(s) ds$ and implies $\psi(x) = A(x) \cdot x$, where

$$A(x) = \left[\int_0^1 w_j \cdot s^{w_j - 1} \cdot \frac{\partial \psi_i}{\partial x_j} (s * x) \ ds\right]_{1 \le i,j \le n}$$

•

Weighted homogeneities of ψ_i 's of weighted degrees d_i , i.e. $\psi_i(s * x) = s^{d_i} \cdot \psi_i(x)$, imply $\frac{\partial \psi_i}{\partial x_j}(s * x) = s^{(d_i - w_j)} \cdot \frac{\partial \psi_i}{\partial x_j}(x)$. Therefore,

$$A(x) = \begin{pmatrix} \frac{1}{d_1} & 0 & \dots \\ 0 & \frac{1}{d_2} & \dots \\ \vdots & \ddots & 0 \\ 0 & \dots & \frac{1}{d_n} \end{pmatrix} \cdot \begin{pmatrix} \frac{\partial \psi}{\partial x}(x) \end{pmatrix} \cdot \begin{pmatrix} w_1 & 0 & \dots \\ 0 & w_2 & \dots \\ \vdots & \ddots & 0 \\ 0 & \dots & w_n \end{pmatrix}$$

Consequently det $A(x) = \left(\prod_{i=1}^{n} \frac{w_i}{d_i}\right) \cdot \det \frac{\partial \psi}{\partial x}(x)$, Key Theorem 2 and $d_i = wt. \deg P_i$ imply

$$\prod_{i=1}^{n} \frac{\text{wt.deg P}_{i}}{w_{i}} = \#P^{-1}(0) \quad \text{counted with multiplicities} ,$$

as required.