Introductory Exercises II (MAT477 in 2009-2010) :

1 Bezout Theorem.

Let $\mathcal{P}_{n}:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, for any $a \in \mathbb{C}^{n}$ local ring $\mathcal{O}_{a}:=\left\{\frac{f}{g}: f, g \in \mathcal{P}_{n}, g(a) \neq 0\right\}$ contains \mathcal{P}_{n} (via $f \mapsto \frac{f}{1}$). For any ideal $I \subset \mathcal{P}_{n}$ similarly $\mathcal{O}_{a} / I \cdot \mathcal{O}_{a}$ contains \mathcal{P}_{n} / I. Denote $V(I):=\left\{a \in \mathbb{C}^{n}: f(a)=0 \quad \forall f \in I\right\}$. In the introductory lecture using Hilbert Nullstellensatz we proved by means of a version of the 'chinese remainder lemma'

Theorem 1.1. $\operatorname{dim}_{\mathbb{C}} \mathcal{P}_{n} / I<\infty$ iff $V(I)=\left\{a_{1}, \ldots, a_{m}\right\}$ is finite and then natural map

$$
\mathcal{P}_{n} / I \rightarrow \bigoplus_{j=1}^{m} \mathcal{O}_{a_{j}} / I \cdot \mathcal{O}_{a_{j}}
$$

is an isomorphism.
We will follow enumeration of exercises, notations and definitions of Introductory Exercises I (in particular below of the paragraph "Homogenization" of topic "Resultants").

Exercise 21. For a polynomial map $P: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ we define $\phi:\left(\mathbb{C}^{n+1}, 0\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ by formula

$$
\phi\left(x_{0}, x\right):=\left(x_{0}, H P_{1}\left(x_{0}, x\right), \ldots, H P_{n}\left(x_{0}, x\right)\right), \quad\left(x_{0}, x\right) \in \mathbb{C}^{n+1}
$$

Show that $V\left(\mathcal{L} P_{1}, \ldots, \mathcal{L} P_{n}\right)=\{0\}$ iff $\phi^{-1}(0)=\{0\}$ and imply that maps P, ϕ and $\mathcal{L} P: \mathbb{C}^{n} \ni x \mapsto\left(\mathcal{L} P_{1}(x), \ldots, \mathcal{L} P_{n}(x)\right) \in \mathbb{C}^{n}$ are proper maps (in particular, the latter two 'are proper near $0 \in \mathbb{C}^{n+1}$ ' as well).

Exercise 22. Assume that $P^{-1}(0)=\left\{a_{1}, \ldots, a_{m}\right\}$ and that P has no solutions at infinity, i.e. $V\left(\mathcal{L} P_{1}, \ldots, \mathcal{L} P_{n}\right)=\{0\}$. Show that the mapping degrees $\operatorname{deg}_{0}(\mathcal{L} P)$ and $d e g_{0}(\phi)$ of ϕ (at $0 \in \mathbb{C}^{n}$ and, respectively, at $0 \in \mathbb{C}^{n+1}$ are well defined and) coincide with the sum over $j=1, \ldots, m$ of the (well defined) mapping degrees $\operatorname{deg}_{a_{j}}(P)$ of P near $a_{j}, 1 \leq j \leq m$.

Exercise 23. $\phi^{-1}(0)=\{0\}$ (cf. exercise 21.) implies

$$
\mathcal{O}_{0} /(\phi) \cdot \mathcal{O}_{0} \cong \mathcal{O}_{0} /\left(\mathcal{L} P_{1}, \ldots, \mathcal{L} P_{n}\right) \cdot \mathcal{O}_{0} \cong \mathcal{P}_{n} /\left(\mathcal{L} P_{1}, \ldots, \mathcal{L} P_{n}\right) \cdot \mathcal{P}_{n}
$$

Key Theorem 1. (A possible topic to choose.) $\phi^{-1}(0)=0$ implies

$$
\operatorname{deg}_{0}(\phi)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\circ} /(\phi) \cdot \mathcal{O}_{0}<\infty
$$

Corollary 1.2. Applied to P near a_{j} instead of ϕ near 0 it follows that

$$
\operatorname{deg}_{a_{j}}(P)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\mathrm{a}_{\mathrm{j}}} /(\mathrm{P}) \cdot \mathcal{O}_{\mathrm{a}_{\mathrm{j}}}
$$

and is refered to as the multiplicity of P at a_{j}.

Key Theorem 2. (Another possible topic to choose.) With ϕ from Key Theorem 1, $A(x)$ an $(n+1) \times(n+1)$ matrix satisfying $\phi(x)=A(x) \cdot x$ and $\mu:=\operatorname{deg}_{0}(\phi)$ it follows

$$
\mu \cdot \operatorname{det} \mathrm{A}(\mathrm{x})=\operatorname{det} \frac{\partial \phi}{\partial \mathrm{x}}(\mathrm{x}) \neq 0 \text { in the } \operatorname{ring} \mathcal{O}_{0} /(\phi) \cdot \mathcal{O}_{0}
$$

Exercise 24. Applying the latter theorem to $\mathcal{L} P(x):=\left(\mathcal{L} P_{1}(x), \ldots, \mathcal{L} P_{n}(x)\right)$ show that $V\left(\mathcal{L} P_{1}, \ldots, \mathcal{L} P_{n}\right)=\{0\}$ implies that

$$
\operatorname{deg}_{0}(\mathcal{L} P)=\prod_{i=1}^{n} \operatorname{degree}\left(\mathrm{P}_{\mathrm{i}}\right)
$$

Corollary 1.3 (Bezout's Theorem). If $P^{-1}(0)$ has 'no solutions at infinity' (under inclusion $\mathbb{C}^{n} \hookrightarrow \mathbb{C P}^{n}$) then $\# P^{-1}(0)$ 'counted with multiplicities' (i.e. all points of $P^{-1}(0)$ are counted with the multiplicities of P at the respective points) is the product $\prod_{i=1}^{n}$ degree $\left(\mathrm{P}_{\mathrm{i}}\right)$ of the polynomial degrees of P_{i} 's.

Solution to Exercise 24. Set $h(s):=\mathcal{L} P(s \cdot x)$ for $s \in \mathbb{C}$. Then $h(1)-h(0)=$ $\int_{0}^{1} h^{\prime}(s) d s$ and implies $\mathcal{L} P(x)=A(x) \cdot x$, where

$$
A(x)=\left[\int_{0}^{1} \frac{\partial \mathcal{L} P_{i}}{\partial x_{j}}(s \cdot x) d s\right]_{1 \leq i, j \leq n}
$$

Homogeneities of $\mathcal{L} P_{i}$'s of degrees d_{i} imply $\frac{\partial \mathcal{L} P_{i}}{\partial x_{j}}(s \cdot x)=s^{d_{i}-1} \frac{\partial \mathcal{L} P_{i}}{\partial x_{j}}(x)$. Therefore

$$
A(x)=\left(\begin{array}{ccc}
\frac{1}{d_{1}} & 0 & \ldots \\
0 & \frac{1}{d_{2}} & \cdots \\
\vdots & \ddots & 0 \\
0 & \cdots & \frac{1}{d_{n}}
\end{array}\right) \cdot\left(\frac{\partial \mathcal{L} P}{\partial x}(x)\right)
$$

Consequently $\operatorname{det} A(x)=\frac{1}{\prod_{i=1}^{n} d_{i}} \cdot \operatorname{det} \frac{\partial \mathcal{L P}}{\partial \mathrm{x}}(\mathrm{x})$ and Key Theorem 2 implies $d_{1} \cdots d_{n}=$ $d e g_{0}(\mathcal{L} P)$, while each $d_{j}=\operatorname{degree}\left(\mathrm{P}_{\mathrm{j}}\right)$, as required.

Exercise 25. Introduce a 'weighted' version of Bezout's Theorem: set $\mathrm{wt}\left(\mathrm{x}_{\mathrm{j}}\right):=$ $\mathrm{w}_{\mathrm{j}} \in \mathbb{Z}_{+}$and $\mathrm{wt}\left(\mathrm{x}_{1}^{\alpha_{1}}, \ldots, \mathrm{x}_{\mathrm{n}}^{\alpha_{\mathrm{n}}}\right):=\sum_{\mathrm{j}=1}^{\mathrm{n}} \alpha_{\mathrm{j}} \mathrm{w}_{\mathrm{j}}$. For $s \in \mathbb{C}$ and $x \in \mathbb{C}^{n}$ let $s * x:=$ $\left(s^{w_{1}} x_{1}, \ldots, s^{w_{n}} x_{n}\right)$. For $P \in \mathcal{P}_{n}-\{0\}$ weighted degree wt.deg P is the largest weighted
degree of the monomials in its expansion. For any $P \in \mathcal{P}_{n}-\{0\}$ the 'weighted homogeneization' $H_{w t} P \in \mathcal{P}_{n+1}$ of P is $H_{w t} P\left(x_{0}, x\right):=x_{o}^{\mathrm{wt.deg} \mathrm{P}} \cdot P\left(x_{0}^{-1} * x\right)$ and the 'leading weighted homogeneous form' $\mathcal{L}_{w t} P \in \mathcal{P}_{n}$ of P is $\mathcal{L}_{w t} P(x):=H_{w t} P(0, x)$. Using the same Key Theorems 1 and 2 show that $V\left(\mathcal{L}_{w t} P_{1}, \ldots, \mathcal{L}_{w t} P_{n}\right)=\{0\}$ implies

$$
\prod_{j=1}^{n} \frac{\mathrm{wt} \cdot \operatorname{deg} \mathrm{P}_{\mathrm{j}}}{w_{j}}=\# P^{-1}(0) \quad \text { counted with multiplicities }
$$

Calculus part of solution to Exercise 25. (Fill in the remaining details needed for a complete solution of Exercise 25.) Let $h(s):=\psi(s * x)$ with $\psi_{i}(x):=\mathcal{L}_{w t} P_{i}(x)$ being the components of ψ. Then $h(1)-h(0)=\int_{0}^{1} h^{\prime}(s) d s$ and implies $\psi(x)=A(x) \cdot x$, where

$$
A(x)=\left[\int_{0}^{1} w_{j} \cdot s^{w_{j}-1} \cdot \frac{\partial \psi_{i}}{\partial x_{j}}(s * x) d s\right]_{1 \leq i, j \leq n}
$$

Weighted homogeneities of ψ_{i} 's of weighted degrees d_{i}, i.e. $\psi_{i}(s * x)=s^{d_{i}} \cdot \psi_{i}(x)$, imply $\frac{\partial \psi_{i}}{\partial x_{j}}(s * x)=s^{\left(d_{i}-w_{j}\right)} \cdot \frac{\partial \psi_{i}}{\partial x_{j}}(x)$. Therefore,

$$
A(x)=\left(\begin{array}{ccc}
\frac{1}{d_{1}} & 0 & \ldots \\
0 & \frac{1}{d_{2}} & \ldots \\
\vdots & \ddots & 0 \\
0 & \ldots & \frac{1}{d_{n}}
\end{array}\right) \cdot\left(\frac{\partial \psi}{\partial x}(x)\right) \cdot\left(\begin{array}{ccc}
w_{1} & 0 & \ldots \\
0 & w_{2} & \ldots \\
\vdots & \ddots & 0 \\
0 & \ldots & w_{n}
\end{array}\right)
$$

Consequently $\operatorname{det} \mathrm{A}(\mathrm{x})=\left(\prod_{\mathrm{i}=1}^{\mathrm{n}} \frac{\mathrm{w}_{\mathrm{i}}}{\mathrm{d}_{\mathrm{i}}}\right) \cdot \operatorname{det} \frac{\partial \psi}{\partial \mathrm{x}}(\mathrm{x})$, Key Theorem 2 and $d_{i}=\mathrm{wt} . \operatorname{deg} \mathrm{P}_{\mathrm{i}}$ imply

$$
\prod_{i=1}^{n} \frac{\mathrm{wt} \cdot \operatorname{deg} \mathrm{P}_{\mathrm{i}}}{w_{i}}=\# P^{-1}(0) \quad \text { counted with multiplicities }
$$

as required.

