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The ring of p-adic integers Zp, for a prime p:

∀n ∈ N, An := Z/pnZ and φn : An → An−1with ker(φn) = pn−1An.

Def. Zp := lim
←

(An, φn) is the ’projective limit’ of the system

· · · → An → An−1 → · · · → A1 .

The story of Qp, the field of p-adic numbers

Also, write x ∈ Q as x = pn a
b , n ∈ Z, p - ab . Define a norm on Q

by |x |p := p−n. Qp is a completion of Q with respect to |.|p .
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Any p-adic number α can be written in the form
∑N

k=d akp
k ,

and α ∈ Zp iff d ≥ 0 and α ∈ Q iff N <∞ .

Can view Zp = {x ∈ Qp : |x |p ≤ 1}, Qp = (Zp).

The remarkable Ostrowski’s theorem (1916):

The only norms on Q are the absolute value and p-adic norms.

Thus R and Qp for p a prime are the only completions of Q

in which Q is locally compact.
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Prop. 1: Sequences 0→ Zp
pn→ Zp

πn→ An → 0 are exact.

Pf. Multiplication by p is injective in Zp; clearly pnZp ⊂ ker(πn),

to show pnZp = ker(πn): if x ∈ ker(πn), construct y s.th. x = pny .

Thus we can make the identification Zp/p
nZp ' Z/pnZ.

Prop. 2: x ∈ U := Z∗p ⇔ p - x .

Remark A: ∀x ∈ U ∃! x = pnu for u ∈ U, n ∈ Z+.
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Pf. of P2: Enough to show for xn ∈ An: if xn 6∈ pAn , the image

of xn in A1 = Fp is 6= 0, so xn is invertible ⇒ ∃ y , z ∈ An s.th.

xy = 1− pz ⇒ xy(1 + pz + · · ·+ pn−1zn−1) = 1 , so x ∈ U. �

Remark B: Define vp(x) := n, clearly vp(.) is a valuation:

vp(xy) = vp(x) + vp(y), vp(x + y) ≥ min{vp(x), vp(y)};

put vp(0) =∞ ⇒ Zp is an integral domain.
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The field Qp = Zp[p−1]

Write x ∈ Q×p uniquely as pnu with u ∈ U & vp(x) ≥ 0 iff x ∈ Zp .

Define a topology on Qp by d(x , y) = e−vp(x−y).

The metric d is ultrametric: d(x , z) ≤ max{d(x , y), d(y , z)}.

A bit more about projective limits:

Lemma 1: Let D := lim
←

[Dn → Dn−1]n≥2, where Di are sets.

If each Dn is finite and non-empty, then D 6= ∅ .
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Remark C. If each Dn → Dn−1 is surjective ⇒ D 6= ∅ is direct.

Proof: Let Dn,k be the image of Dn+k in Dn ⇒ Dn,k is

independent of k for k large. Let En = limk Dn,k .

⇒ Dn → Dn−1 maps En onto En−1,

⇒ lim
←

En 6= ∅ ⇒ lim
←

Dn 6= ∅, by the remark. �

7 / 14



p-Adic equations: equivalence of solutions in Am
n and Zm

p

If f ∈ Zp[
→
x ], let [f ]n ∈ An[

→
x ] denote the reduction mod pn of f .

Prop. 3: Let fi ∈ Zp[
→
x ] ⇒ fi have a common zero in Zm

p iff

for all integers n ≥ 1, [fi ]n have a common zero in Am
n .

Pf. Let D and Dn be the set of common zeroes of the fi and [fi ]n

⇒ Dn are finite and we have D = lim
←

Dn
Lemma⇒ D 6= ∅ iff Dn 6= ∅ .
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Lemma 2: 0→ A→ E → B → 0, exact seq. of comm.

groups; |A| = a, |B| = b, (a, b) = 1. Let B ′ = {x ∈ E : bx = 0}.

Then E = A⊕ B ′ and B ′ ' B is the only such subgroup of E .

Pf. (a, b) = 1 ⇒ ∃r , s ∈ Z s.th. ar + bs = 1. Let x ∈ A ∩ B ′ ⇒

ax = bx = 0 ⇒ (ar + bs)x = x = 0 ⇒ A ∩ B ′ = 0.

For x ∈ E write x = arx + bsx . bB ′ = 0 ⇒ bE ⊂ A ⇒ bsx ∈ A

abE = 0 ⇒ arx ∈ B ′ ⇒ E = A⊕ B ′ and E → B ⇒ B ′ ' B. �
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The group U := Z∗p:

For n ≥ 1, put Un = 1 + pnZp = ker(πn : U → A∗n).

The map (1 + pnx)→ x (mod p) is an isom. Un/Un+1 → Z/pZ

(follows from (1 + pnx)(1 + pny) ≡ 1 + pn(x + y) (mod pn+1)).

Then by induction on n, one can show that U1/Un has order pn−1.

Prop. 3: U = V ×U1 where V = {x ∈ U |xp−1 = 1}
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Proof. We apply the lemma to the exact sequences:

1→ U1/Un → U/Un → F∗p → 1 .

⇒ U/Un contains a unique subgroup Vn isomorphic to F∗p .

The projection U/Un → U/Un−1 takes Vn to Vn−1.

By passing to the limit, ∃! subgroup V ∈ U s.th V ' F∗p . �

Corollary. The field Qp contains the (p − 1)-th roots of unity.
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Lemma 3: x ∈ Un − Un+1 ⇒ xp ∈ Un+1 − Un+2 .

Let x = 1 + kpn with k 6≡ 0 (mod p)
Binomial formula
−−−−−−−−−→

xp = 1 +

(
p

0

)
kpn + · · ·+ kppnp.

The exponents in the not written terms are ≥ 2n+ 1, thus ≥ n+ 2.

⇒ xp ≡ 1 + kpn+1 (mod pn+2) ⇒ xp ∈ Un+1 − Un+2 . �

Remark D. The proof works for p = 2 as long as n ≥ 2 , in what

follows the the case p = 2 requires a slight modification.
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Prop. 4: p 6= 2 ⇒ U1 ' Zp .

Let α ∈ U1 − U2
Lemma⇒ αpi ∈ Ui+1 − Ui+2 .

Let αn be the image of α in U1/Un ⇒ (αn)p
n−2 6= 1, (αn)p

n−1
= 1 .

Since |U1/Un| = pn−1, it is cyclic ⇒ 〈αn〉 = U1/Un .

Define θn,α : Z/pn−1Z→ U1/Un by z 7→ αz
n . The diagram:

Z/pnZ
θn+1,α //

��

U1/Un+1

��
Z/pn−1Z

θn,α // U1/Un

is commutative. The θn,α define an isomorphism θ : Zp
∼−→ U1 . �
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Finally, as a result of Prop. 3 and Prop. 4 we get:

Theorem. Q∗p ' Z× Z/(p − 1)Z× Zp for p 6= 2.

Any x ∈ Q∗p can be written as x = pnu with n ∈ Z, u ∈ U.

⇒ Q∗p ' Z×U
Prop.3⇒ U ' V ×U1 where V is cyclic of order p− 1.

By Prop. 4, U1 ' Zp, and the theorem follows. �
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