p-Adic Fields and the Isomorphism  $\mathbb{Q}_p^* \simeq \mathbb{Z} \times \mathbb{Z}/(p-1)\mathbb{Z} \times \mathbb{Z}_p$  for  $p \neq 2$ .

Juraj Milcak University of Toronto MAT477 Instructor: Prof. Milman

January 26, 2012

## The ring of *p*-adic integers $\mathbb{Z}_p$ , for a prime *p*:

$$orall n \in \mathbb{N}$$
,  $A_n := \mathbb{Z}/p^n\mathbb{Z}$  and  $\phi_n : A_n o A_{n-1}$  with  $\ker(\phi_n) = p^{n-1}A_n$ .

*Def.*  $\mathbb{Z}_p := \lim_{\leftarrow} (A_n, \phi_n)$  is the 'projective limit' of the system

$$\cdots \to A_n \to A_{n-1} \to \cdots \to A_1$$
.

## The story of $\mathbb{Q}_p$ , the field of p-adic numbers

Also, write  $x \in \mathbb{Q}$  as  $x = p^n \frac{a}{b}$ ,  $n \in \mathbb{Z}$ ,  $p \nmid ab$ . Define a *norm* on  $\mathbb{Q}$ 

by  $|x|_p := p^{-n}$ .  $\mathbb{Q}_p$  is a *completion* of  $\mathbb{Q}$  with respect to  $|.|_p$ .

Any *p*-adic number  $\alpha$  can be written in the form  $\sum_{k=d}^{N} a_k p^k$ ,

and  $\alpha \in \mathbb{Z}_p$  iff  $d \geq 0$  and  $\alpha \in \mathbb{Q}$  iff  $N < \infty$ .

Can view  $\mathbb{Z}_p = \{x \in \mathbb{Q}_p : |x|_p \le 1\}, \ \mathbb{Q}_p = (\mathbb{Z}_p).$ 

The remarkable *Ostrowski's theorem* (1916):

The only norms on  $\mathbb{Q}$  are the absolute value and *p*-adic norms.

Thus  $\mathbb{R}$  and  $\mathbb{Q}_p$  for p a prime are the only completions of  $\mathbb{Q}$ 

in which  $\mathbb{Q}$  is locally compact.

*Prop.* 1: Sequences  $0 \to \mathbb{Z}_p \xrightarrow{p^n} \mathbb{Z}_p \xrightarrow{\pi_n} A_n \to 0$  are exact.

*Pf.* Multiplication by p is injective in  $\mathbb{Z}_p$ ; clearly  $p^n \mathbb{Z}_p \subset \ker(\pi_n)$ ,

to show  $p^n \mathbb{Z}_p = \ker(\pi_n)$ : if  $x \in \ker(\pi_n)$ , construct y s.th.  $x = p^n y$ .

Thus we can make the identification  $\mathbb{Z}_p/p^n\mathbb{Z}_p\simeq \mathbb{Z}/p^n\mathbb{Z}$ .

*Prop.* 2:  $x \in U := \mathbb{Z}_p^* \Leftrightarrow p \nmid x$ .

*Remark A:*  $\forall x \in U \exists ! x = p^n u$  for  $u \in U, n \in \mathbb{Z}^+$ .

*Pf. of P2:* Enough to show for  $x_n \in A_n$ : if  $x_n \notin pA_n$ , the image

of  $x_n$  in  $A_1 = \mathbb{F}_p$  is  $\neq 0$ , so  $x_n$  is invertible  $\Rightarrow \exists y, z \in A_n$  s.th.

$$xy=1-pz \Rightarrow xy(1+pz+\dots+p^{n-1}z^{n-1})=1$$
 , so  $x\in U.$   $\Box$ 

Remark B: Define  $v_p(x) := n$ , clearly  $v_p(.)$  is a valuation:

$$v_p(xy) = v_p(x) + v_p(y), v_p(x+y) \ge \min\{v_p(x), v_p(y)\};$$

put  $v_p(0) = \infty \Rightarrow \mathbb{Z}_p$  is an integral domain.

## The field $\mathbb{Q}_p = \mathbb{Z}_p[p^{-1}]$

Write  $x \in \mathbb{Q}_p^{\times}$  uniquely as  $p^n u$  with  $u \in U$  &  $v_p(x) \ge 0$  iff  $x \in \mathbb{Z}_p$ .

Define a topology on  $\mathbb{Q}_p$  by  $d(x, y) = e^{-v_p(x-y)}$ .

The metric d is ultrametric:  $d(x, z) \le max\{d(x, y), d(y, z)\}$ .

A bit more about projective limits:

Lemma 1: Let  $D := \lim_{\leftarrow} [D_n \to D_{n-1}]_{n \ge 2}$ , where  $D_i$  are sets.

If each  $D_n$  is finite and non-empty, then  $D \neq \emptyset$ .

*Remark C.* If each  $D_n \to D_{n-1}$  is surjective  $\Rightarrow D \neq \emptyset$  is direct.

*Proof:* Let  $D_{n,k}$  be the image of  $D_{n+k}$  in  $D_n \Rightarrow D_{n,k}$  is

independent of k for k large. Let  $E_n = \lim_k D_{n,k}$ .

$$\Rightarrow D_n \rightarrow D_{n-1}$$
 maps  $E_n$  onto  $E_{n-1}$ ,

 $\Rightarrow \lim_{\leftarrow} E_n \neq \emptyset \Rightarrow \lim_{\leftarrow} D_n \neq \emptyset, \text{ by the remark. } \Box$ 

p-Adic equations: equivalence of solutions in  $A_n^m$  and  $\mathbb{Z}_p^m$ 

If 
$$f \in \mathbb{Z}_p[\vec{x}]$$
, let  $[f]_n \in A_n[\vec{x}]$  denote the reduction mod  $p^n$  of  $f$ .

*Prop.* 3: Let  $f_i \in \mathbb{Z}_p[\overrightarrow{x}] \Rightarrow f_i$  have a common zero in  $\mathbb{Z}_p^m$  iff

for all integers  $n \ge 1$ ,  $[f_i]_n$  have a common zero in  $A_n^m$ .

*Pf.* Let D and  $D_n$  be the set of common zeroes of the  $f_i$  and  $[f_i]_n$ 

 $\Rightarrow D_n \text{ are finite and we have } D = \lim_{\leftarrow} D_n \stackrel{Lemma}{\Rightarrow} D \neq \emptyset \text{ iff } D_n \neq \emptyset \text{ .}$ 

*Lemma 2*:  $0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0$ , exact seq. of comm.

groups; 
$$|A| = a, |B| = b, (a, b) = 1$$
. Let  $B' = \{x \in E : bx = 0\}$ .

Then  $E = A \oplus B'$  and  $B' \simeq B$  is the only such subgroup of E.

$$Pf. (a,b) = 1 \Rightarrow \exists r, s \in \mathbb{Z} \text{ s.th. } ar + bs = 1. \text{ Let } x \in A \cap B' \Rightarrow$$

$$ax = bx = 0 \Rightarrow (ar + bs)x = x = 0 \Rightarrow A \cap B' = 0.$$

For  $x \in E$  write x = arx + bsx.  $bB' = 0 \Rightarrow bE \subset A \Rightarrow bsx \in A$ 

 $abE = 0 \Rightarrow arx \in B' \Rightarrow E = A \oplus B' \text{ and } E \to B \Rightarrow B' \simeq B.$ 

The group  $U := \mathbb{Z}_p^*$ :

For 
$$n \geq 1$$
, put  $U_n = 1 + p^n \mathbb{Z}_p = \ker(\pi_n : U \to A_n^*).$ 

The map  $(1 + p^n x) \to x \pmod{p}$  is an isom.  $U_n/U_{n+1} \to \mathbb{Z}/p\mathbb{Z}$ 

(follows from 
$$(1 + p^n x)(1 + p^n y) \equiv 1 + p^n(x + y) \pmod{p^{n+1}}$$
.

Then by induction on *n*, one can show that  $U_1/U_n$  has order  $p^{n-1}$ .

Prop. 3:  $U = V \times U_1$  where  $V = \{x \in U | x^{p-1} = 1\}$ 

*Proof.* We apply the lemma to the exact sequences:

$$1 \to U_1/U_n \to U/U_n \to \mathbb{F}_p^* \to 1$$
.

 $\Rightarrow U/U_n$  contains a unique subgroup  $V_n$  isomorphic to  $\mathbb{F}_p^*$ .

The projection  $U/U_n \rightarrow U/U_{n-1}$  takes  $V_n$  to  $V_{n-1}$ .

By passing to the limit,  $\exists !$  subgroup  $V \in U$  s.th  $V \simeq \mathbb{F}_p^*$ .  $\Box$ 

*Corollary.* The field  $\mathbb{Q}_p$  contains the (p-1)-th roots of unity.

Lemma 3:  $x \in U_n - U_{n+1} \Rightarrow x^p \in U_{n+1} - U_{n+2}$ .

Let  $x = 1 + kp^n$  with  $k \not\equiv 0 \pmod{p} \xrightarrow{Binomial formula}$ 

$$x^p = 1 + {p \choose 0} k p^n + \dots + k^p p^{np}.$$

The exponents in the not written terms are  $\geq 2n + 1$ , thus  $\geq n + 2$ .

$$\Rightarrow x^{p} \equiv 1 + kp^{n+1} \pmod{p^{n+2}} \Rightarrow x^{p} \in U_{n+1} - U_{n+2} . \square$$

*Remark D.* The proof works for p = 2 as long as  $n \ge 2$ , in what

follows the the case p = 2 requires a slight modification.

Prop. 4:  $p \neq 2 \Rightarrow U_1 \simeq \mathbb{Z}_p$ .

Let 
$$\alpha \in U_1 - U_2 \stackrel{\text{Lemma}}{\Rightarrow} \alpha^{p^i} \in U_{i+1} - U_{i+2}$$
.

Let  $\alpha_n$  be the image of  $\alpha$  in  $U_1/U_n \Rightarrow (\alpha_n)^{p^{n-2}} \neq 1$ ,  $(\alpha_n)^{p^{n-1}} = 1$ .

Since  $|U_1/U_n| = p^{n-1}$ , it is cyclic  $\Rightarrow \langle \alpha_n \rangle = U_1/U_n$ .

Define  $\theta_{n,\alpha}: \mathbb{Z}/p^{n-1}\mathbb{Z} \to U_1/U_n$  by  $z \mapsto \alpha_n^z$ . The diagram:



is commutative. The  $heta_{n,lpha}$  define an isomorphism  $heta:\mathbb{Z}_p\stackrel{\sim}{\longrightarrow} U_1$  .  $\Box$ 

Finally, as a result of Prop. 3 and Prop. 4 we get:

Theorem. 
$$\mathbb{Q}_p^* \simeq \mathbb{Z} \times \mathbb{Z}/(p-1)\mathbb{Z} \times \mathbb{Z}_p$$
 for  $p \neq 2$ .

Any  $x \in \mathbb{Q}_p^*$  can be written as  $x = p^n u$  with  $n \in \mathbb{Z}, u \in U$ .

$$\Rightarrow \mathbb{Q}_p^* \simeq \mathbb{Z} \times U \stackrel{\textit{Prop.3}}{\Rightarrow} U \simeq V \times U_1 \text{ where } V \text{ is cyclic of order } p-1.$$

By Prop. 4,  $U_1\simeq\mathbb{Z}_p$ , and the theorem follows.  $\Box$