p-Adic Fields and the Isomorphism
 $$
\mathbb{Q}_{p}^{*} \simeq \mathbb{Z} \times \mathbb{Z} /(p-1) \mathbb{Z} \times \mathbb{Z}_{p} \text { for } p \neq 2
$$

Juraj Milcak
University of Toronto
MAT477
Instructor: Prof. Milman

January 26, 2012

The ring of p-adic integers \mathbb{Z}_{p}, for a prime p :
$\forall n \in \mathbb{N}, A_{n}:=\mathbb{Z} / p^{n} \mathbb{Z}$ and $\phi_{n}: A_{n} \rightarrow A_{n-1}$ with $\operatorname{ker}\left(\phi_{n}\right)=p^{n-1} A_{n}$.
Def. $\mathbb{Z}_{p}:=\lim _{\leftarrow}\left(A_{n}, \phi_{n}\right)$ is the 'projective limit' of the system

$$
\cdots \rightarrow A_{n} \rightarrow A_{n-1} \rightarrow \cdots \rightarrow A_{1} .
$$

The story of \mathbb{Q}_{p}, the field of p -adic numbers

Also, write $x \in \mathbb{Q}$ as $x=p^{n} \frac{a}{b}, n \in \mathbb{Z}, p \nmid a b$. Define a norm on \mathbb{Q}
by $|x|_{p}:=p^{-n} . \mathbb{Q}_{p}$ is a completion of \mathbb{Q} with respect to $|\cdot|_{p}$.

Any p-adic number α can be written in the form $\sum_{k=d}^{N} a_{k} p^{k}$, and $\alpha \in \mathbb{Z}_{p}$ iff $d \geq 0$ and $\alpha \in \mathbb{Q}$ iff $N<\infty$.

Can view $\mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}:|x|_{p} \leq 1\right\}, \mathbb{Q}_{p}=\left(\mathbb{Z}_{p}\right)$.

The remarkable Ostrowski's theorem (1916):

The only norms on \mathbb{Q} are the absolute value and p-adic norms.

Thus \mathbb{R} and \mathbb{Q}_{p} for p a prime are the only completions of \mathbb{Q}
in which \mathbb{Q} is locally compact.

Prop. 1: Sequences $0 \rightarrow \mathbb{Z}_{p} \xrightarrow{p^{n}} \mathbb{Z}_{p} \xrightarrow{\pi_{n}} A_{n} \rightarrow 0$ are exact.

Pf. Multiplication by p is injective in \mathbb{Z}_{p}; clearly $p^{n} \mathbb{Z}_{p} \subset \operatorname{ker}\left(\pi_{n}\right)$,
to show $p^{n} \mathbb{Z}_{p}=\operatorname{ker}\left(\pi_{n}\right)$: if $x \in \operatorname{ker}\left(\pi_{n}\right)$, construct y s.th. $x=p^{n} y$.

Thus we can make the identification $\mathbb{Z}_{p} / p^{n} \mathbb{Z}_{p} \simeq \mathbb{Z} / p^{n} \mathbb{Z}$.

Prop. 2: $x \in U:=\mathbb{Z}_{p}^{*} \Leftrightarrow p \nmid x$.

Remark $A: \forall x \in U \exists!x=p^{n} u$ for $u \in U, n \in \mathbb{Z}^{+}$.

Pf. of P2: Enough to show for $x_{n} \in A_{n}$: if $x_{n} \notin p A_{n}$, the image
of x_{n} in $A_{1}=\mathbb{F}_{p}$ is $\neq 0$, so x_{n} is invertible $\Rightarrow \exists y, z \in A_{n}$ s.th.
$x y=1-p z \Rightarrow x y\left(1+p z+\cdots+p^{n-1} z^{n-1}\right)=1$, so $x \in U . \square$

Remark B : Define $v_{p}(x):=n$, clearly $v_{p}($.$) is a valuation:$
$v_{p}(x y)=v_{p}(x)+v_{p}(y), v_{p}(x+y) \geq \min \left\{v_{p}(x), v_{p}(y)\right\} ;$
put $v_{p}(0)=\infty \Rightarrow \mathbb{Z}_{p}$ is an integral domain.

The field $\mathbb{Q}_{p}=\mathbb{Z}_{p}\left[p^{-1}\right]$

Write $x \in \mathbb{Q}_{p}^{\times}$uniquely as $p^{n} u$ with $u \in U \& v_{p}(x) \geq 0$ iff $x \in \mathbb{Z}_{p}$.

Define a topology on \mathbb{Q}_{p} by $d(x, y)=e^{-v_{p}(x-y)}$.

The metric d is ultrametric: $d(x, z) \leq \max \{d(x, y), d(y, z)\}$.

A bit more about projective limits:

Lemma 1: Let $D:=\lim _{\leftarrow}\left[D_{n} \rightarrow D_{n-1}\right]_{n \geq 2}$, where D_{i} are sets.

If each D_{n} is finite and non-empty, then $D \neq \emptyset$.

Remark C. If each $D_{n} \rightarrow D_{n-1}$ is surjective $\Rightarrow D \neq \emptyset$ is direct.

Proof: Let $D_{n, k}$ be the image of D_{n+k} in $D_{n} \Rightarrow D_{n, k}$ is independent of k for k large. Let $E_{n}=\lim _{k} D_{n, k}$.
$\Rightarrow D_{n} \rightarrow D_{n-1}$ maps E_{n} onto E_{n-1},
$\Rightarrow \lim _{\leftarrow} E_{n} \neq \emptyset \Rightarrow \lim _{\leftarrow} D_{n} \neq \emptyset$, by the remark. \square

p-Adic equations: equivalence of solutions in A_{n}^{m} and \mathbb{Z}_{p}^{m}

If $f \in \mathbb{Z}_{p}[\vec{x}]$, let $[f]_{n} \in A_{n}[\vec{x}]$ denote the reduction $\bmod p^{n}$ of f.

Prop. 3: Let $f_{i} \in \mathbb{Z}_{p}[\vec{x}] \Rightarrow f_{i}$ have a common zero in \mathbb{Z}_{p}^{m} iff
for all integers $n \geq 1,\left[f_{i}\right]_{n}$ have a common zero in A_{n}^{m}.

Pf. Let D and D_{n} be the set of common zeroes of the f_{i} and $\left[f_{i}\right]_{n}$
$\Rightarrow D_{n}$ are finite and we have $D=\lim _{\leftarrow} D_{n} \stackrel{\text { Lemma }}{\Rightarrow} D \neq \emptyset$ iff $D_{n} \neq \emptyset$.

Lemma 2: $0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0$, exact seq. of comm.
groups; $|A|=a,|B|=b,(a, b)=1$. Let $B^{\prime}=\{x \in E: b x=0\}$.

Then $E=A \oplus B^{\prime}$ and $B^{\prime} \simeq B$ is the only such subgroup of E.

Pf. $(a, b)=1 \Rightarrow \exists r, s \in \mathbb{Z}$ s.th. $a r+b s=1$. Let $x \in A \cap B^{\prime} \Rightarrow$
$a x=b x=0 \Rightarrow(a r+b s) x=x=0 \Rightarrow A \cap B^{\prime}=0$.

For $x \in E$ write $x=a r x+b s x . b B^{\prime}=0 \Rightarrow b E \subset A \Rightarrow b s x \in A$
$a b E=0 \Rightarrow a r x \in B^{\prime} \Rightarrow E=A \oplus B^{\prime}$ and $E \rightarrow B \Rightarrow B^{\prime} \simeq B . \square$

The group $U:=\mathbb{Z}_{p}^{*}$:

For $n \geq 1$, put $U_{n}=1+p^{n} \mathbb{Z}_{p}=\operatorname{ker}\left(\pi_{n}: U \rightarrow A_{n}^{*}\right)$.

The map $\left(1+p^{n} x\right) \rightarrow x(\bmod p)$ is an isom. $U_{n} / U_{n+1} \rightarrow \mathbb{Z} / p \mathbb{Z}$
(follows from $\left.\left(1+p^{n} x\right)\left(1+p^{n} y\right) \equiv 1+p^{n}(x+y)\left(\bmod p^{n+1}\right)\right)$.

Then by induction on n, one can show that U_{1} / U_{n} has order p^{n-1}.

Prop. 3: $U=V \times U_{1}$ where $V=\left\{x \in U \mid x^{p-1}=1\right\}$

Proof. We apply the lemma to the exact sequences:

$$
1 \rightarrow U_{1} / U_{n} \rightarrow U / U_{n} \rightarrow \mathbb{F}_{p}^{*} \rightarrow 1
$$

$\Rightarrow U / U_{n}$ contains a unique subgroup V_{n} isomorphic to \mathbb{F}_{p}^{*}.

The projection $U / U_{n} \rightarrow U / U_{n-1}$ takes V_{n} to V_{n-1}.

By passing to the limit, \exists ! subgroup $V \in U$ s.th $V \simeq \mathbb{F}_{p}^{*} . \square$

Corollary. The field \mathbb{Q}_{p} contains the $(p-1)$-th roots of unity.

Lemma 3: $x \in U_{n}-U_{n+1} \Rightarrow x^{p} \in U_{n+1}-U_{n+2}$.

$$
\begin{aligned}
& \text { Let } x=1+k p^{n} \text { with } k \not \equiv 0(\bmod p) \xrightarrow{\text { Binomial formula }} \\
& \qquad x^{p}=1+\binom{p}{0} k p^{n}+\cdots+k^{p} p^{n p} .
\end{aligned}
$$

The exponents in the not written terms are $\geq 2 n+1$, thus $\geq n+2$.

$$
\Rightarrow x^{p} \equiv 1+k p^{n+1}\left(\bmod p^{n+2}\right) \Rightarrow x^{p} \in U_{n+1}-U_{n+2} . \square
$$

Remark D. The proof works for $p=2$ as long as $n \geq 2$, in what follows the the case $p=2$ requires a slight modification.

Prop. 4: $p \neq 2 \Rightarrow U_{1} \simeq \mathbb{Z}_{p}$.

Let $\alpha \in U_{1}-U_{2} \stackrel{\text { Lemma }}{\Rightarrow} \alpha^{p^{i}} \in U_{i+1}-U_{i+2}$.
Let α_{n} be the image of α in $U_{1} / U_{n} \Rightarrow\left(\alpha_{n}\right)^{p^{n-2}} \neq 1,\left(\alpha_{n}\right)^{p^{n-1}}=1$.
Since $\left|U_{1} / U_{n}\right|=p^{n-1}$, it is cyclic $\Rightarrow\left\langle\alpha_{n}\right\rangle=U_{1} / U_{n}$.
Define $\theta_{n, \alpha}: \mathbb{Z} / p^{n-1} \mathbb{Z} \rightarrow U_{1} / U_{n}$ by $z \mapsto \alpha_{n}^{z}$. The diagram:

is commutative. The $\theta_{n, \alpha}$ define an isomorphism $\theta: \mathbb{Z}_{p} \xrightarrow{\sim} U_{1} . \square$

Finally, as a result of Prop. 3 and Prop. 4 we get:

Theorem. $\mathbb{Q}_{p}^{*} \simeq \mathbb{Z} \times \mathbb{Z} /(p-1) \mathbb{Z} \times \mathbb{Z}_{p}$ for $p \neq 2$.

Any $x \in \mathbb{Q}_{p}^{*}$ can be written as $x=p^{n} u$ with $n \in \mathbb{Z}, u \in U$.
$\Rightarrow \mathbb{Q}_{p}^{*} \simeq \mathbb{Z} \times U \stackrel{\text { Prop. } 3}{\Rightarrow} U \simeq V \times U_{1}$ where V is cyclic of order $p-1$.

By Prop. 4, $U_{1} \simeq \mathbb{Z}_{p}$, and the theorem follows. \square

