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The ring of p-adic integers Z,, for a prime p:

VneN, A, :=7/p"Z and ¢, : A — A,_1with ker(¢,) = p" LA,

Def. Zp := IiLn (An, ¢n) is the 'projective limit’ of the system
= Ap > Ay — - = Ar

The story of Qp, the field of p-adic numbers

Also, write x € Q as x = p”%, n€Z,ptab. Define a normon Q

by |x|p := p~". Qp is a completion of Q with respect to |.|, .
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Any p-adic number o can be written in the form ELV:d akpX,
and v € Zpy iff d >0and a € Q iff N < o0 .

Can view Zp = {x € Qp : |x|p < 1}, Qp = (Zp).

The remarkable Ostrowski's theorem (1916):

The only norms on Q are the absolute value and p-adic norms.

Thus R and Q, for p a prime are the only completions of Q

in which Q is locally compact.
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Prop. 1: Sequences 0 — Z, L Ly ™ A, — 0 are exact.

Pf. Multiplication by p is injective in Zp; clearly p"Z, C ker(mp),
to show p"Z, = ker(m,): if x € ker(m,), construct y s.th. x = p"y.

Thus we can make the identification Z,/p"Z, ~ Z/p"Z.

Prop. 22 x e U:=Z, < pfx.

Remark A:Vx € U3 x =p"uforuec U,neZ™.
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Pf. of P2: Enough to show for x, € A,: if x, € pA, , the image
of x, in Ay =T, is # 0, so x, is invertible = 3 y,z € A, s.th.

xy=1—pz=xy(l4+pz+--+p" 12" 1)=1,s0xc U. O

Remark B: Define v,(x) := n, clearly v,(.) is a valuation:

Vp(xy) = vp(X) + vp(y), vo(x +y) = min{vy(x), vp(y)};

put vp(0) = 00 = Z,, is an integral domain.
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The field Q, = Z,[p"]
Write x € Q uniquely as p"u with u € U & v,(x) > 0iff x € Z), .
Define a topology on @, by d(x,y) = e »(=¥).

The metric d is ultrametric: d(x,z) < max{d(x,y),d(y,z)}.

A bit more about projective limits:

Lemma 1: Let D :=lim [D, — Dj_1]n>2, where D; are sets.
(_ >

If each D, is finite and non-empty, then D # () .
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Remark C. If each D, — D,_1 is surjective = D # () is direct.

Proof: Let D, be the image of D,y in D, = Dy is
independent of k for k large. Let E, = limy D, x.
= D, — D,_1 maps E, onto E,_1,

= limE, # 0 = lim D, # 0, by the remark. (J
“— —
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p-Adic equations: equivalence of solutions in A" and Z

If fe Zp[?], let [f]n € A,,[?] denote the reduction mod p” of f.

Prop. 3: Let f; € Zp[?] = f; have a common zero in Z7' iff

for all integers n > 1, [f;], have a common zero in A .

Pf. Let D and D, be the set of common zeroes of the f; and [fi],

= D, are finite and we have D = lim D, "™ D + () iff D, # 0 .
F



Lemma 2: 0 - A— E — B — 0, exact seq. of comm.

groups; |A| = a,|B| = b, (a,b) =1. Let B’ = {x € E : bx = 0}.

Then E = A® B’ and B’ ~ B is the only such subgroup of E.

Pf. (a,b)=1= 3r,s€Zsth. ar+bs=1 Letxe ANB =
ax=bx=0= (ar+bs)x=x=0=ANB =0.
For x € E write x = arx + bsx. bB' =0 = bE C A= bsx € A

abE=0=arxeB = E=A®B and E—+B =B ~B. [
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The group U = Z;;

For n > 1, put U, =1+ p"Z, = ker(m, : U — Ay).
The map (1+ p"x) — x (mod p) is an isom. U,/Upt1 — Z/pZ
(follows from (1 + p"x)(1 + p"y) =1+ p"(x +y) (mod p"*1)).

Then by induction on n, one can show that Ui /U, has order p"~1.

Prop. 3: U=V x U; where V = {x € U|x"~! =1}
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Proof. We apply the lemma to the exact sequences:

1= U/Uy = U/U, =T, — 1.
= U/ U, contains a unique subgroup V), isomorphic to I}, .
The projection U/U, — U/U,_1 takes V,, to V,_1.

By passing to the limit, 3! subgroup V' € Us.th V ~F, . [

Corollary. The field Q, contains the (p — 1)-th roots of unity.
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Lemma 3: xe U, — U,y 1 = xP e U1 — Upyn .

Binomial formula

Let x =1+ kp” with k #0 (mod p) ————

xP =1+ (g)kp”_k..._{_kppnp'

The exponents in the not written terms are > 2n+1, thus > n+2.

= xP =1+ kp"t1 (mod p”+2) = xP e Uy — Uy . O

Remark D. The proof works for p =2 as long as n > 2, in what

follows the the case p = 2 requires a slight modification.
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Prop. 4: p#2 = U ~Z, .
Lemma i
letaec U — U, =" af € U;+1—U,'+2.
Let «, be the image of a in Uy /U, = (oz,,)”"i2 #1, (Ogn)erl =1.

Since |U1/U,| = p"~1, it is cyclic = (a,) = U /U, .

Define 04 : Z/p"Z — U1/ U, by z — oZ . The diagram:

Onit.a
Z/p"Z = U1/ Ups1
¢ i
7./p" 7 ’ Ui/ U,

is commutative. The 6, define an isomorphism 6 : Z, — U; . O
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Finally, as a result of Prop. 3 and Prop. 4 we get:

Theorem. Qy ~Z x Z/(p — 1)Z x Zy, for p # 2.

Any x € Qj, can be written as x = p"u with n € Z,u € U.

Prop.

= Qi ~ZxU ‘U~ Vx U; where V is cyclic of order p — 1.

By Prop. 4, Uy ~ Zp, and the theorem follows. [J
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