Plucker's Formula

John Fleming

November 25, 2011

Basic Notions

For $f \in \mathbb{C}[x, y]$ we define a curve $\mathbb{C} \supset C_0 := \{(x, y) | f(x, y) = 0\}$

 $f(x, y) = f_k(x, y) + \ldots + f_0(x, y)$ with $f_i(x, y)$ homogenous.

$$F(x, y, z) := f_k(x, y) z^{k-k} + ... + f_0(x, y) z^{k-0}$$

is homogenous degree k.

$$\mathbb{CP}^2 \supset C := \{ [x : y : z] | F(x, y, z) = 0 \}$$
 with $F(x, y, 1) = f(x, y)$.

Plucker's Formula

A connected \mathbb{C} curve *C* is an \mathbb{R} surface.

The number of handles is the genus.

$$\{f(x,y)=0\}=\mathcal{C}_0\;(x,y)\in\mathbb{C}^2\;,\, deg(\mathcal{C}):=deg(f)\;.$$

Given smooth curve with genus g and degree d

Theorem Plucker's Formula: $g = \frac{(d-1)(d-2)}{2}$.

$f: C \longrightarrow C'$ holomorphic

Suppose $p \in C$ then $f(z) = z^m h(z)$ for some h(z) in local coor.

Define:
$$v_{
ho}(f):=m \ , \ deg(f):=\sum_{
ho\in f^{-1}(q)}v_{
ho}(f) \ orall q\in C'$$
 .

Note:
$$v_{\rho}(f) = v_{\rho}(f') + 1$$
. $v_{\rho}(f) > 1$.

f(p) is branch, p ramification.

For compact *C* there are finite ramification points.

Hurwitz Formula

Thm:
$$2g - 2 = deg(f)(2g' - 2) + \sum_{
ho \in C} (v_
ho(f) - 1)$$
 .

Proof: Triangulate C' s. th. branch points are vertices.

v' vertices, e' edges, t' faces.

Lift triangulation via f to C. e = deg(f)e', t = deg(f)t'.

$$|f^{-1}(q)| = deg(f) + \sum_{p \in f^{-1}(q)} (1 - v_p(f))$$

$$\Rightarrow \mathbf{v} = deg(f) \cdot \mathbf{v}' - \sum_{p \in C} (\mathbf{v}_p(f) - 1)$$
.

Hurwitz formula continued

$$\Rightarrow 2 - 2g = v + t - e = deg(f)(v' + t' - e') - \sum_{\rho \in C} (v_{\rho}(f) - 1)$$

 $= deg(f)(2-2g') - \sum_{\rho \in C}(v_{\rho}(f)-1)$

Description of Normalization

Local Normalization: Let *f* irreducible Weirstrass polynomial i.e.

$$f(x,y) = y^k + a_1(x)y^{k-1} + \cdots + a_k(x) = \prod_i^k (y - y_i(x)), \ y_i \in \mathcal{O}.$$

let $C = \{f(x, y) = 0\}$ Then: $\exists V \subset \mathbb{C} U \subset C$ both nbh. of 0

and $\exists g : V \to \mathbb{C}^2 g : t \to (t^k, y_i(t^k))$ s. th. *g* is holomorphic

and g is biholomorphic on $V \setminus \{0\}$ onto $U \setminus \{0\}$.

Global Normalization

Given an algebraic Curve C, $\exists \tilde{C}$ with no singular points

and $\exists \sigma : \tilde{C} \rightarrow C$ holomorphic such that

1)
$$\sigma(ilde{\mathcal{C}})=\mathcal{C}$$
 , 2) $\sigma^{-1}(\textit{sing}(\mathcal{C}))$ finite,

3) $\sigma|_{\tilde{C}\setminus\sigma^{-1}(sing(C))}$ is biholomorphic.

Can be done by essentially putting together local

normalizations for each singular point, and component.

Plucker's formula for C with no Singular pt.

 $C_0 := \{f(x, y) = 0\}$ f irreducible, $E_0 := \{g(x, y) = 0\}$

 $E_0, C_0 \subset \mathbb{C}^2$, $(0,0) \in E_0 \bigcap C_0$

if *h* is a local normalization of f, i.e. $h: t \to (t^k, v(t^k))$

 $(C \cdot E)_0 := v_0(g \circ h)$, (Intersection number at 0)

 $(C \cdot E)_p := (C \cdot E)_0$ translating p to 0

 $(C \cdot E) := \sum_{p \in C \cap E} (C \cdot E)_p$ (Intersection number).

Proof of Plucker's Formula

Let
$$C_0 := \{f(x, y) = 0\}$$
, $E_0 := \{\frac{\partial}{\partial y}f(x, y) = 0\}$

Let F(x, y, z) homog. of f. $deg(F) = d \Rightarrow deg(\frac{\partial}{\partial y}F) = d - 1$

Calculate $(C \cdot E)$ in two ways;

First by Bezoit's Theorem $(C \cdot E) = d(d-1)$.

Second we can find coordinate in \mathbb{CP}^2 s. th. $|C \bigcap L_{\infty}| = d$.

Set $\pi: \mathcal{C} \to \mathbb{CP}^1$ via $[x: y: z] \to [x: z]$, $deg(\pi) = d$.

Lemma 1: $p \in C \cap E \Rightarrow p$ is a ram. pt. of π

Also $(C \cdot E)_{
ho} = v_{
ho}(\pi) - 1$.

Proof: $\frac{\partial}{\partial y} f = 0 \Rightarrow \frac{\partial}{\partial x} f \neq 0$ (no sing. pts. on *C*)

By IFT f(x(y), y) = 0 in a nbh. of p

$$\Rightarrow \frac{\partial}{\partial x} f(x(y), y) x'(y) + \frac{\partial}{\partial y} f(x(y), y) = 0$$

$$\Rightarrow (C \cdot E)_{p} = ord(\frac{\partial}{\partial y}f(x(y), y))$$

$$= ord(x'(y)) = ord(x(y)) - 1 = v_p(\pi) - 1 \quad \Box$$

Lemma 2: p is a ram. pt. of $\pi \Rightarrow p \in C \bigcap E$

Proof: Suppose $\left(\frac{\partial}{\partial y}f(p)\neq 0\right)$ then by IVF theorem y=y(x)

Combining the lemmas we have:

$$(C \cdot E) = \sum_{p \in ram(\pi)} (C \cdot E)_p = \sum_{p \in ram(\pi)} (v_p(\pi) - 1) =$$

 $\sum_{p \in C} (v_p(\pi) - 1)$. By Hurwirtz $(C \cdot E) = 2(g + d - 1)$

Solving with Bezout $g = \frac{(d-1)(d-2)}{2}$

Plucker with double points

Suppose *C* has *n* ordinary double points.

Let $ilde{C}$ be normalization of C , g:= genus of $ilde{C}$

$$g=\frac{(d-1)(d-2)}{2}-n$$

Proof: WLOG $|\tilde{C} \bigcap L_{\infty}| = d$

and sing. pt. have non-vertical tangents.

Define new map $\gamma = \pi \circ \sigma$, $deg\gamma = d$.

$(C \cdot E)_{\rho}$ for p singular

As before $p \in (E \cap C) \setminus Sing(C) \Rightarrow (C \cdot E)_p = v_p(\gamma) - 1$

 $p \in Sing(C)$ translate to (0, 0)

$$\Rightarrow f(x,y) = ax^2 + 2bxy + cy^2 + f_3(x,y) + \dots$$

and $\frac{\partial}{\partial y}f(x, y) = 2bx + 2cy$. No vert. tang. in Sing(C)

$$\Rightarrow$$
 $ac-b^2
eq 0$, $c
eq 0$. Using IFT on $rac{\partial}{\partial y}f(x,y)=0$

 $y = y(x) = -\frac{b}{c}x + ...$ (Taylor Expansion)

Conclusion

$$f(x,y(x)) = \frac{ac-b^2}{c}x^2 + ... \Rightarrow (C \cdot E)_p = 2.$$

$$(C \cdot E) = \sum_{p \in E \cap C} (C \cdot E)_p$$

$$=\sum_{p\in ram(\pi)\setminus Sing(C)}(v_p(\pi)-1)+\sum_{p\in Sing(C)}(C\cdot E)_p$$

$$=\sum_{p\in \mathcal{C}}(v_p(\pi)-1)+2n$$
.

Plugging in Hurwitz and equating to Bezout

$$g=rac{(d-1)(d-2)}{2}-n$$