Plucker's Formula

John Fleming

November 25, 2011

Basic Notions

For $f \in \mathbb{C}[x, y]$ we define a curve $\mathbb{C} \supset C_{0}:=\{(x, y) \mid f(x, y)=0\}$
$f(x, y)=f_{k}(x, y)+\ldots+f_{0}(x, y)$ with $f_{i}(x, y)$ homogenous.
$F(x, y, z):=f_{k}(x, y) z^{k-k}+\ldots+f_{0}(x, y) z^{k-0}$
is homogenous degree k.

$$
\mathbb{C P}^{2} \supset C:=\{[x: y: z] \mid F(x, y, z)=0\} \text { with } F(x, y, 1)=f(x, y)
$$

Plucker's Formula

A connected \mathbb{C} curve C is an \mathbb{R} surface.

The number of handles is the genus.
$\{f(x, y)=0\}=C_{0}(x, y) \in \mathbb{C}^{2}, \operatorname{deg}(C):=\operatorname{deg}(f)$.
Given smooth curve with genus g and degree d
Theorem Plucker's Formula: $g=\frac{(d-1)(d-2)}{2}$.

$f: C \longrightarrow C^{\prime}$ holomorphic

Suppose $p \in C$ then $f(z)=z^{m} h(z)$ for some $h(z)$ in local coor.

Define: $v_{p}(f):=m, \operatorname{deg}(f):=\sum_{p \in f^{-1}(q)} v_{p}(f) \forall q \in C^{\prime}$.
Note: $v_{p}(f)=v_{p}\left(f^{\prime}\right)+1 . v_{p}(f)>1$.
$f(p)$ is branch, p ramification.

For compact C there are finite ramification points.

Hurwitz Formula

Thm: $2 g-2=\operatorname{deg}(f)\left(2 g^{\prime}-2\right)+\sum_{p \in C}\left(v_{p}(f)-1\right)$.
Proof: Triangulate C^{\prime} s. th. branch points are vertices.
v^{\prime} vertices, e^{\prime} edges, t^{\prime} faces.
Lift triangulation via f to $C . e=\operatorname{deg}(f) e^{\prime}, t=\operatorname{deg}(f) t^{\prime}$.
$\left|f^{-1}(q)\right|=\operatorname{deg}(f)+\sum_{p \in f^{-1}(q)}\left(1-v_{p}(f)\right)$
$\Rightarrow v=\operatorname{deg}(f) \cdot v^{\prime}-\sum_{p \in C}\left(v_{p}(f)-1\right)$.

Hurwitz formula continued

Fact: $2-2 g=v+t-e$.

$\Rightarrow 2-2 g=v+t-e=\operatorname{deg}(f)\left(v^{\prime}+t^{\prime}-e^{\prime}\right)-\sum_{p \in C}\left(v_{p}(f)-1\right)$
$=\operatorname{deg}(f)\left(2-2 g^{\prime}\right)-\sum_{p \in C}\left(v_{p}(f)-1\right) \quad \square$

Description of Normalization

Local Normalization: Let f irreducible Weirstrass polynomial i.e.
$f(x, y)=y^{k}+a_{1}(x) y^{k-1}+\cdots+a_{k}(x)=\prod_{i}^{k}\left(y-y_{i}(x)\right), y_{i} \in \mathcal{O}$.
let $C=\{f(x, y)=0\}$ Then: $\exists V \subset \mathbb{C} U \subset C$ both nbh. of 0
and $\exists g: V \rightarrow \mathbb{C}^{2} g: t \rightarrow\left(t^{k}, y_{i}\left(t^{k}\right)\right)$ s. th. g is holomorphic
and g is biholomorphic on $V \backslash\{0\}$ onto $U \backslash\{0\}$.

Global Normalization

Given an algebraic Curve $C, \exists \tilde{C}$ with no singular points
and $\exists \sigma: \tilde{C} \rightarrow C$ holomorphic such that

1) $\sigma(\tilde{C})=C$, 2) $\sigma^{-1}(\operatorname{sing}(C))$ finite,
2) $\left.\sigma\right|_{\tilde{C} \backslash \sigma^{-1}(\operatorname{sing}(C))}$ is biholomorphic.

Can be done by essentially putting together local
normalizations for each singular point, and component.

Plucker's formula for C with no Singular pt.

$C_{0}:=\{f(x, y)=0\} f$ irreducible, $E_{0}:=\{g(x, y)=0\}$
$E_{0}, C_{0} \subset \mathbb{C}^{2},(0,0) \in E_{0} \cap C_{0}$
if h is a local normalization of f , i.e. $h: t \rightarrow\left(t^{k}, v\left(t^{k}\right)\right)$
$(C \cdot E)_{0}:=v_{0}(g \circ h),($ Intersection number at 0$)$
$(C \cdot E)_{p}:=(C \cdot E)_{0}$ translating p to 0
$(C \cdot E):=\sum_{p \in C \cap E}(C \cdot E)_{p}$ (Intersection number).

Proof of Plucker's Formula

Let $C_{0}:=\{f(x, y)=0\}, E_{0}:=\left\{\frac{\partial}{\partial y} f(x, y)=0\right\}$
Let $F(x, y, z)$ homog. of $f . \operatorname{deg}(F)=d \Rightarrow \operatorname{deg}\left(\frac{\partial}{\partial y} F\right)=d-1$
Calculate (C F E) in two ways;
First by Bezoit's Theorem $(C \cdot E)=d(d-1)$.
Second we can find coordinate in $\mathbb{C P}^{2}$ s. th. $\left|C \bigcap L_{\infty}\right|=d$.
Set $\pi: C \rightarrow \mathbb{C P}^{1}$ via $[x: y: z] \rightarrow[x: z], \operatorname{deg}(\pi)=d$.

Lemma 1: $p \in C \cap E \Rightarrow p$ is a ram. pt. of π

Also $(C \cdot E)_{p}=v_{p}(\pi)-1$.

Proof: $\frac{\partial}{\partial y} f=0 \Rightarrow \frac{\partial}{\partial x} f \neq 0$ (no sing. pts. on C)

By IFT $f(x(y), y)=0$ in a nbh. of p
$\Rightarrow \frac{\partial}{\partial x} f(x(y), y) x^{\prime}(y)+\frac{\partial}{\partial y} f(x(y), y)=0$
$\Rightarrow(C \cdot E)_{p}=\operatorname{ord}\left(\frac{\partial}{\partial y} f(x(y), y)\right)$
$=\operatorname{ord}\left(x^{\prime}(y)\right)=\operatorname{ord}(x(y))-1=v_{p}(\pi)-1 \quad \square$

Lemma 2: p is a ram. pt. of $\pi \Rightarrow p \in C \bigcap E$

Proof: Suppose $\left(\frac{\partial}{\partial y} f(p) \neq 0\right)$ then by IVF theorem $y=y(x) \square$
Combining the lemmas we have:
$(C \cdot E)=\sum_{p \in \operatorname{ram}(\pi)}(C \cdot E)_{p}=\sum_{p \in \operatorname{ram}(\pi)}\left(v_{p}(\pi)-1\right)=$
$\sum_{p \in C}\left(V_{p}(\pi)-1\right)$. By Hurwirtz $(C \cdot E)=2(g+d-1)$
Solving with Bezout $g=\frac{(d-1)(d-2)}{2} \square$

Plucker with double points

Suppose C has n ordinary double points.

Let \tilde{C} be normalization of $C, g:=$ genus of \tilde{C}
$g=\frac{(d-1)(d-2)}{2}-n$

Proof: WLOG $\left|\tilde{C} \bigcap L_{\infty}\right|=d$
and sing. pt. have non-vertical tangents.

Define new map $\gamma=\pi \circ \sigma, d e g \gamma=d$.

$(C \cdot E)_{p}$ for p singular

As before $p \in(E \cap C) \backslash \operatorname{Sing}(C) \Rightarrow(C \cdot E)_{p}=v_{p}(\gamma)-1$
$p \in \operatorname{Sing}(C)$ translate to $(0,0)$
$\Rightarrow f(x, y)=a x^{2}+2 b x y+c y^{2}+f_{3}(x, y)+\ldots$
and $\frac{\partial}{\partial y} f(x, y)=2 b x+2 c y$. No vert. tang. in Sing (C)
$\Rightarrow a c-b^{2} \neq 0, c \neq 0$. Using IFT on $\frac{\partial}{\partial y} f(x, y)=0$
$y=y(x)=-\frac{b}{c} x+\ldots$ (Taylor Expansion)

Conclusion

$f(x, y(x))=\frac{a c-b^{2}}{c} x^{2}+\ldots \Rightarrow(C \cdot E)_{p}=2$.
$(C \cdot E)=\sum_{p \in E \cap c}(C \cdot E)_{p}$
$=\sum_{p \in \operatorname{ram}(\pi) \backslash \operatorname{Sing}(C)}\left(V_{p}(\pi)-1\right)+\sum_{p \in \operatorname{Sing}(C)}(C \cdot E)_{p}$
$=\sum_{p \in C}\left(v_{p}(\pi)-1\right)+2 n$.
Plugging in Hurwitz and equating to Bezout
$g=\frac{(d-1)(d-2)}{2}-n$

