Results from the talk on the Hasse-Minkowski Thm:

Prop. A: If $x \in V \setminus \{0\}$ is isotropic and $disc(Q) \neq 0$.

 $\Rightarrow \exists$ a subspace $U \subset V$, s.th. $x \in U$ and U is a hyperbolic plane.

Cor. A1: $\exists x \in V \setminus \{0\}$ isotropic and $disc(Q) \neq 0 \Rightarrow Q(V) = k$.

Theorem 1. Every quad. module (V, Q) has an orthogonal basis.

Fact 1. Given two orthogonal bases $(e_i), (e'_i)$ there is a finite

sequence of orthogonal bases starting with (e_i) ending with (e'_i)

s.th every two consecutive ones are contiguous.

Prop. B: g, h nondegen. of rank ≥ 1 , $f = g + (-h) \Rightarrow$ TFAE: (a) f represents 0, i.e. $\exists x \in V \setminus \{0\}$ s.th. f(x) = 0.

(b) $\exists a \in k^*$ represented by both g and h.

(c) $\exists a \in k^*$ such that $g + (-aZ^2)$ and $h + (-aZ^2)$ represent 0.

Theorem 3. $\epsilon(\mathbf{e})$ does not depend on the choice of \mathbf{e} .

Fact 2. Forms f, g are equivalent iff rank(f) = rank(g),

 $disc(f) = disc(g), \ \epsilon(f) = \epsilon(g).$ (To be believed!)

Fact 2. Hilbert's Theorem: $a, b \in \mathbb{Q}^* \Rightarrow (a, b)_v = 1$ for all

but finitely many v and $\prod_{v\in\mathcal{P}}(a,b)_v=1$. (Sadly, to be believed!)

Hasse-Minkowski Theorem:

 $0 \in Im(f) \Leftrightarrow 0 \in Im(f_v) \forall v \in \mathcal{P}.$

Fact 3. Let $b_1, b_2, b_3, b_4 \in \mathbb{Q}^*$ and $\{\epsilon_{i,v}\}_{i \in I, v \in V} \in \{\pm 1\}$ with

(1) all but finitely many $\epsilon_{i,v} = 1$;

(2) for all $i \in I$ we have $\prod_{v} \epsilon_{i,v} = 1$;

(3) for all $v \in \mathcal{P} \exists a_v \in \mathbb{Q}_v^*$ s.th. $(b_i, a_v)_v = \epsilon_{i,v} \ \forall v \in \mathcal{P}$

then there exists $a \in \mathbb{Q}^*$ s.th $(b_i, a)_v = \epsilon_{i,v}$ for all $i \in I, v \in V$.

Fact 4.: $S \subset \mathcal{P}$, $|S| < \infty \Rightarrow$ image of \mathbb{Q} in $\prod_{v \in S} \mathbb{Q}_v$ is dense.

Cor. B1: $a \in \mathbb{Q}$. Then f represents a in \mathbb{Q} iff it does in each \mathbb{Q}_{ν} .

Cor. B2: (Meyer). A quadratic for of rank \geq 5 represents 0 in \mathbb{Q}

iff it does so in \mathbb{R} . (In such case 0 is represented in all \mathbb{Q}_{ν} .)