Results from the talk on the Hasse-Minkowski Thm:

Prop. A: If $x \in V \backslash\{0\}$ is isotropic and $\operatorname{disc}(Q) \neq 0$.
$\Rightarrow \exists$ a subspace $U \subset V$, s.th. $x \in U$ and U is a hyperbolic plane.

Cor. A1: $\exists x \in V \backslash\{0\}$ isotropic and $\operatorname{disc}(Q) \neq 0 \Rightarrow Q(V)=k$.

Theorem 1. Every quad. module (V, Q) has an orthogonal basis.

Fact 1. Given two orthogonal bases $\left(e_{i}\right),\left(e_{i}^{\prime}\right)$ there is a finite
sequence of orthogonal bases starting with $\left(e_{i}\right)$ ending with $\left(e_{i}^{\prime}\right)$
s.th every two consecutive ones are contiguous.

Prop. B: g, h nondegen. of rank $\geq 1, f=g \dot{+}(-h) \Rightarrow \mathrm{TFAE}:$
(a) f represents 0 , i.e. $\exists x \in V \backslash\{0\}$ s.th. $f(x)=0$.
(b) $\exists a \in k^{*}$ represented by both g and h.
(c) $\exists a \in k^{*}$ such that $g \dot{+}\left(-a Z^{2}\right)$ and $h \dot{+}\left(-a Z^{2}\right)$ represent 0 .

Theorem 3. $\epsilon(\mathbf{e})$ does not depend on the choice of \mathbf{e}.

Fact 2. Forms f, g are equivalent iff $\operatorname{rank}(f)=\operatorname{rank}(g)$,
$\operatorname{disc}(f)=\operatorname{disc}(g), \epsilon(f)=\epsilon(g)$. (To be believed!)

Fact 2. Hilbert's Theorem: $a, b \in \mathbb{Q}^{*} \Rightarrow(a, b)_{v}=1$ for all
but finitely many v and $\prod_{v \in \mathcal{P}}(a, b)_{v}=1$. (Sadly, to be believed!)

Hasse-Minkowski Theorem:

$$
0 \in \operatorname{Im}(f) \Leftrightarrow 0 \in \operatorname{Im}\left(f_{v}\right) \forall v \in \mathcal{P} .
$$

Fact 3. Let $b_{1}, b_{2}, b_{3}, b_{4} \in \mathbb{Q}^{*}$ and $\left\{\epsilon_{i, v}\right\}_{i \in I, v \in V} \in\{ \pm 1\}$ with
(1) all but finitely many $\epsilon_{i, v}=1$;
(2) for all $i \in I$ we have $\prod_{v} \epsilon_{i, v}=1$;
(3) for all $v \in \mathcal{P} \exists a_{v} \in \mathbb{Q}_{v}^{*}$ s.th. $\left(b_{i}, a_{v}\right)_{v}=\epsilon_{i, v} \forall v \in \mathcal{P}$
then there exists $a \in \mathbb{Q}^{*}$ s.th $\left(b_{i}, a\right)_{v}=\epsilon_{i, v}$ for all $i \in I, v \in V$.

Fact 4.: $S \subset \mathcal{P},|S|<\infty \Rightarrow$ image of \mathbb{Q} in $\prod_{v \in S} \mathbb{Q}_{v}$ is dense.

Cor. B1: $a \in \mathbb{Q}$. Then f represents a in \mathbb{Q} iff it does in each \mathbb{Q}_{v}.

Cor. B2: (Meyer). A quadratic for of rank ≥ 5 represents 0 in \mathbb{Q}
iff it does so in \mathbb{R}. (In such case 0 is represented in all \mathbb{Q}_{v}.)

