Chow's Theorem For Ideals

Quentin Couix
University of Toronto

March 31, 2012

Note. In the following U, V, W always denote open sets.

Definitions

Let X be a topological space. A presheaf \mathcal{S} on X satisfies:
(i) For U open in $X, \mathcal{S}(U)$ is a commutative ring.
(ii) To each inclusion $V \subset U$, there correponds a morphism

$$
\operatorname{res}_{V, U}: \mathcal{S}(U) \rightarrow \mathcal{S}(V)
$$

(iii) $\operatorname{res}_{U, U}=i d_{\mathcal{S}(U)}$.
(iv) $W \subset V \subset U \Rightarrow r e s_{W, V} \circ r e s_{V, U}=r e s_{W, U}$.

Moreover \mathcal{S} is a sheaf and (X, \mathcal{S}) a ringed space if: Let $\left(U_{i}\right)_{i \in I}$
be an open covering of U and let $U_{i, j}:=U_{i} \cap U_{j}$ for $i, j \in I$, then
(i) (Local identity) For $s, t \in \mathcal{S}(U)$, sections of \mathcal{S} over U, if

$$
s\left|u_{i}=t\right| u_{i} \forall i \in I, \text { then } s=t .
$$

(ii) (Gluing) If $\left(s_{i}\right) \in \prod U_{i}$ is such that $s_{i}\left|U_{i, j}=s_{j}\right| U_{i, j}$ for all

$$
i, j \in I \text {, then } \exists s \in \mathcal{S}(U) \text { s. th. }\left.s\right|_{U_{i}}=s_{i} \text {. }
$$

Given a ringed space $\left(X, \mathcal{O}_{X}\right)$ a sheaf of modules
(\mathcal{O}_{X}-modules), \mathcal{S}, is a sheaf s.th. $\mathcal{S}(U)$ is a module of $\mathcal{O}_{X}(U)$ and for $V \subset U, r e s_{V, U}$ is a morphism of modules.

For $x \in X$ we define the stalk at x, \mathcal{S}_{x}, as:

$$
\mathcal{S}_{x}:=\{(s, U), x \in U, s \in \mathcal{S}(U)\} / \sim
$$

where $(s, U) \sim(t, V)$ if $\exists W \subset U \cap V$ s. th. $x \in W$ and
$\left.s\right|_{w}=\left.t\right|_{w} . \mathcal{S}_{X}$ comes with a natural module structure.
\mathcal{S} is of finite type if for any $x \in X, \exists U \ni x$ s.th. $\exists s_{1}, \ldots, s_{r}$
sections of \mathcal{S} over U s.th. for all $y \in U, \mathcal{S}_{y}$ is generated by
$s_{1 y}, \ldots, s_{r y}$.
\mathcal{S} is of relation finite type if for any $U \subset X, n \in \mathbb{N}$ and any
morphism $\psi:\left.\left.\mathcal{O}_{X}^{n}\right|_{U} \rightarrow \mathcal{S}\right|_{U}$, ker ψ is of finite type.
\mathcal{S} is coherent if it is of finite type and relation finite type.

We will have particular interest in sheaf of ideals.

Setting for complex spaces.

For a complex space M, \mathcal{O}_{M} is defined for an open set U as the ring of holomorphic functions on U. It is a coherent sheaf.

Let $f: M \rightarrow N$ be a holomorphic map between complex spaces,
and \mathcal{S} a sheaf on M. The direct image sheaf $f_{*} \mathcal{S}$ on N is given
by $f_{*} \mathcal{S}(U):=\mathcal{S}\left(f^{-1}(U)\right)$. It is a sheaf of \mathcal{O}_{N}-modules.

Fact 1. Direct Image Thm: f proper, \mathcal{S} coherent $\Rightarrow f_{*} \mathcal{S}$
coherent.

Fact 2. If \mathcal{S} is a sheaf on N, then there are a sheaf of ring $f^{\prime} \mathcal{O}_{N}$ on M and a sheaf of $f^{\prime} \mathcal{O}_{N}$-modules $f^{\prime} \mathcal{S}$ with stalks
$f^{\prime} \mathcal{O}_{N, m}=\mathcal{O}_{N, f(m)}$ and $f^{\prime} \mathcal{S}_{m}=\mathcal{S}_{f(m)}$, for $m \in M$.
Then the pullback $f^{*} \mathcal{S}:=f^{\prime} \mathcal{S} \otimes_{f^{\prime} \mathcal{O}_{N}} \mathcal{O}_{M}$ is a sheaf of
$\mathcal{O}_{M \text {-modules. }}$. Note that $f^{*} \mathcal{O}_{N}=f^{\prime} \mathcal{O}_{N} \otimes_{f^{\prime} \mathcal{O}_{N}} \mathcal{O}_{M} \cong \mathcal{O}_{M}$.
If \mathcal{I} is a sheaf of ideals on N then there is an induced injection
$f^{*} \mathcal{I} \rightarrow f^{*} \mathcal{O}_{N}=\mathcal{O}_{M}$ and the image, $f^{-1} \mathcal{I}$, is a sheaf of ideals.
Fact 3. If \mathcal{I} is coherent, then so is $f^{-1} \mathcal{I}$.

Blow-up of \mathbb{C}^{n+1} at the origin.

Let $\left(y_{0}, \ldots, y_{n}\right)$ be coordinates on \mathbb{C}^{n+1} and $\left[\xi_{0}: \cdots: \xi_{n}\right]$
homogenous coordinates on \mathbb{P}^{n} then the blow-up of \mathbb{C}^{n+1} at 0 is
the subset $\tilde{\mathbb{C}}^{n+1} \subset \mathbb{C}^{n+1} \times \mathbb{P}^{n}$ satisfying equations $y_{i} \xi_{j}=y_{j} \xi_{j}$.
$\pi_{1}: \tilde{\mathbb{C}}^{n+1} \rightarrow \mathbb{C}^{n+1}$ and $\pi_{2}: \tilde{\mathbb{C}}^{n+1} \rightarrow \mathbb{P}^{n}$ are the holomorphic
maps induced by projections.
Fact 4. If \mathcal{I} is a sheaf of ideals on $\tilde{\mathbb{C}}^{n+1}$ then $\pi_{1 *} \mathcal{I}$ is a sheaf of ideals on \mathbb{C}^{n+1}.

Chow's theorem for ideals.

Main Thm. Let U be an open nbhd of 0 in \mathbb{C}^{r}, X an analytic
subset of $U \times \mathbb{P}^{n}, \mathcal{I}$ a coherent sheaf of \mathcal{O}_{X}-ideals on X. Then
\mathcal{I} is relatively algebraic, i.e. \mathcal{I} is generated (after shrinking U
if necessary) by a finite number of homogeneous polynomials
in homogeneous \mathbb{P}^{n}-coordinates, with analytic coefficients in

U-coordinates.

Rem 1. \mathcal{I} may be considered as a coherent sheaf on $U \times \mathbb{P}^{n}$.

Fact 5. Oka coherence thm: The sheaf
$\mathcal{I}_{X}(V)=\left\{f \in \mathcal{O}(V),\left.f\right|_{X \cap V} \equiv 0\right\}$ on an anlytic set X is coherent.

Rem 2. With Oka coherence thm the main thm (for U of dim=0) implies Chow's thm.

Notations. Let $\sigma_{1}:=i d_{U} \times \pi_{1}: U \times \tilde{\mathbb{C}}^{n+1} \rightarrow U \times \mathbb{C}^{n+1}$ and
$\sigma_{2}:=i d_{U} \times \pi_{2}: U \times \tilde{\mathbb{C}}^{n+1} \rightarrow U \times \mathbb{P}^{n}$.
Then $\mathcal{J}:=\sigma_{1 *}\left(\sigma_{2}^{-1} \mathcal{I}\right)$ is a coherent ideal sheaf on $U \times \mathbb{C}^{n+1}$.

Let $\tilde{\mathcal{I}}:=\sigma_{2}^{-1} \mathcal{I}$ and $\tilde{\mathcal{J}}:=\sigma_{1}^{-1} \mathcal{J}$, and note that $\tilde{\mathcal{J}} \subset \tilde{\mathcal{I}}$ in general.
Since σ_{1} is biholomorhic off $\sigma_{1}^{-1}(U \times\{0\}), \tilde{\mathcal{J}}=\tilde{\mathcal{I}}$ in this domain.

Let $x=\left(x_{1}, \ldots, x_{r}\right)$ and $y=\left(y_{0}, \ldots, y_{n}\right)$ be coordinates on U
and \mathbb{C}^{n+1}. If $F(x, y)$ is a holomorphic function in a nbhd of
$(0,0)$ in $U \times \mathbb{C}^{n+1}$ and $\lambda \in \mathbb{C}^{*}$, let $F^{(\lambda)}(x, y):=F(x, \lambda y)$.
Lemma 1. $F \in \mathcal{J}_{(0,0)} \Longrightarrow F^{(\lambda)} \in \mathcal{J}_{(0,0)}, \forall \lambda \in \mathbb{C}^{*}$.

Proof. Let H be holomorphic in a nbhd of $(0,0)$, then $H \in \mathcal{J}_{(0,0)}$
iff $\sigma_{1}^{*} H$ is a section of $\tilde{\mathcal{I}}$ over some nbhd of $\sigma_{1}^{-1}(0,0) \cong\{0\} \times \mathbb{P}^{n}$
iff $\sigma_{1}^{*} H \in\left(\sigma_{2}^{-1} \mathcal{I}\right)_{p}, \forall p \in \sigma_{1}^{-1}(0,0)$ (using properties of sheaves).
Let $p \in \sigma_{1}^{-1}(0,0), q:=\sigma_{2}(p)$ and $\left[\xi_{0}: \cdots: \xi_{n}\right]$ homogeneous
coordinates on \mathbb{P}^{n} s.th. $q=(0,[1: 0: \cdots: 0])$.
Let $W:=\left\{\xi_{0} \neq 0\right\}$, then $w_{i}:=\xi_{i} / \xi_{0}$ are nonhomogeneous
coordinates on $W . \sigma_{2}^{-1}(U \times W) \cong U \times \mathbb{C} \times W$ is a nbhd of p in
$U \times \tilde{\mathbb{C}}^{n+1}$ with coordinates $\left(x, y_{0}, w\right)$.

We have: $\sigma_{1}\left(x, y_{0}, w\right)=\left(x, y_{0}, y_{0} w\right)$ and $\sigma_{2}\left(x, y_{0}, w\right)=(x, w)$.
\mathcal{I} is coherent $\Rightarrow \exists G_{1}, \ldots, G_{s}$ generating \mathcal{I} over a nbhd of q
$\Rightarrow \sigma_{2}^{*} G_{1}, \ldots, \sigma_{2}^{*} G_{s}$ generate $\tilde{\mathcal{I}}$ over a nbhd of $p=(0,0,0)$.
Since $\sigma_{1}^{*} F \in \tilde{\mathcal{J}} \subset \tilde{\mathcal{I}}, \exists A_{1}, \ldots, A_{s}$, holomorphic on a nbhd of p
s. th. $\sigma_{1}^{*} F\left(x, y_{0}, w\right)=\sum_{i} A_{i}\left(x, y_{0}, w\right) \sigma_{2}^{*} G_{i}\left(x, y_{0}, w\right)$.

Fix $\lambda \in \mathbb{C}^{*}$, then for y_{0} small enough

$$
\begin{aligned}
\sigma_{1}^{*} F^{(\lambda)}\left(x, y_{0}, w\right) & =\sum_{i} A_{i}\left(x, \lambda y_{0}, w\right) \sigma_{2}^{*} G_{i}\left(x, \lambda y_{0}, w\right) \\
& =\sum_{i} A_{i}\left(x, \lambda y_{0}, w\right) \sigma_{2}^{*} G_{i}\left(x, y_{0}, w\right)
\end{aligned}
$$

So $\sigma_{1}^{*} F^{(\lambda)} \in(\tilde{\mathcal{I}})_{p}, \forall p \in \sigma_{1}^{-1}(0,0)$ and $F^{(\lambda)} \in \mathcal{J}_{(0,0)} . \square$
For F holomorphic on a nbhd of $(0,0)$ in $U \times \mathbb{C}^{n+1}$ write:
$F(x, y)=: \sum_{k} \sum_{|\alpha|=k} a_{\alpha}(x) y^{\alpha}=: \sum_{k} F_{k}(x, y)$.
Lemma 2. $F^{(\lambda)} \in \mathcal{J}_{(0,0)}, \forall \lambda \in \mathbb{C}^{*} \Rightarrow F_{k} \in \mathcal{J}_{(0,0)}, \forall k \in \mathbb{N}$.
Proof. Let $A:=\mathcal{O}_{U \times \mathbb{C}^{n+1},(0,0)}$. It is a Noetherian local ring. Let
$(y):=\left(y_{0}, \ldots, y_{n}\right)$ and $J:=\mathcal{J}_{(0,0)}$ two ideals of A. For $\lambda \in \mathbb{C}^{*}$ let

$$
\operatorname{Jet}_{m}\left(F^{(\lambda)}\right):=\sum_{k=0}^{m} \lambda^{k} F_{k}
$$

and note that $F^{(\lambda)}-\operatorname{Jet}_{m}\left(F^{(\lambda)}\right) \in(y)^{m+1}$.

Note. $J=\cap_{m \geq m_{0}}\left(J+(y)^{m}\right), \forall m_{0} \geq 0$ by a corollary of Krull's

Theorem.

Since $\operatorname{Jet}_{m}\left(F^{(\lambda)}\right) \in J+(y)^{m+1}$ for all $\lambda \in \mathbb{C}^{*}$, by taking $m+1$
different values for λ we get $F_{k} \in J+(y)^{m+1}$ for $k \leq m$.
Fix $k \in \mathbb{N}$, then $F_{k} \in \cap_{m \geq k+1}\left(J+(y)^{m}\right)=J . \square$
Consequently $\mathcal{J}_{(0,0)}$ is generated by elements of A
homogeneous in y. Since A is Noetherian, $\mathcal{J}_{(0,0)}$ is generated
by a finite number of these polynomials.

Due to the coherence of \mathcal{J} they generate \mathcal{J} over a nbhd of
$(0,0)$. So we're left to prove:
Lemma 3. If F_{1}, \ldots, F_{s} are homogeneous in y and generate \mathcal{J}
over a nbhd of $(0,0)$, they generate \mathcal{I} over a nbhd of $\{0\} \times \mathbb{P}^{n}$.

Proof. It is enough to verify that F_{1}, \ldots, F_{s} generate \mathcal{I} on a nbhd of $q, \forall q \in\{0\} \times \mathbb{P}^{n}$ (by properties of sheaves).

Let $q \in\{0\} \times \mathbb{P}^{n}$ and ξ homogneneous coordinates on \mathbb{P}^{n} s.th.

$q=(0,[1: 0, \ldots, 0])$. Let w be the associated nonhomogeneous coordinates on $W:=\left\{\xi_{0} \neq 0\right\}$.

We have local coordinates $\left(x, y_{0}, w\right)$ on $\sigma_{2}^{-1}(U \times W)$ and:
$\sigma_{1}\left(x, y_{0}, w\right)=\left(x, y_{0}, y_{0} w\right), \sigma_{2}\left(x, y_{0}, w\right)=(x, w)$.
Let $G \in \mathcal{I}_{q}$, then $\sigma_{2}^{*} G$ is a section of $\sigma_{2}^{-1} \mathcal{I}$ on a nbhd of
$\sigma_{2}^{-1}(q)=\left\{\left(0, y_{0}, 0\right), y_{0} \in \mathbb{C}\right\}$.
F_{1}, \ldots, F_{s} generate \mathcal{J} on a nbhd of $(0,0) \Rightarrow \sigma_{1}^{*} F_{1}, \ldots, \sigma_{1}^{*} F_{s}$
generate $\tilde{\mathcal{J}}$ on a nbhd $V \subset U \times \tilde{\mathbb{C}}^{n+1}$ of $\sigma_{1}^{-1}(0,0)$.
This means that they generate $\tilde{\mathcal{I}}$ on $V \backslash \sigma_{1}^{-1}(U \times\{0\})$.
Pick $\tilde{y}_{0} \neq 0$ s.th. $p:=\left(0, \tilde{y}_{0}, 0\right) \in V$. Then $\sigma_{2}^{*} G \in \tilde{\mathcal{I}}_{p}=\tilde{\mathcal{J}}_{p}$, so \exists
A_{1}, \ldots, A_{s} holomorphic on a nbhd of $p \mathrm{~s}$. th.

$$
\sigma_{2}^{*} G\left(x, y_{0}, w\right)=\sum_{i=1}^{s} A_{i}\left(x, y_{0}, w\right) \sigma_{1}^{*} F_{i}\left(x, y_{0}, w\right)
$$

But $\sigma_{2}^{*} G\left(x, y_{0}, w\right)=G(x, w)$ and
$\sigma_{1}^{*} F_{i}\left(x, y_{0}, w\right)=F_{i}\left(x, y_{0}, y_{0} w\right)=y_{0}^{d_{i}} F_{i}(x, 1, w)$ since F_{i} are
homogeneous.

So let $a_{i}(x, w):=\tilde{y}_{0}^{d_{i}} A_{i}\left(x, \tilde{y}_{0}, w\right)$. Then

$$
G(x, w)=\sum_{i=1}^{s} a_{i}(x, w) F_{i}(x, 1, w)
$$

and $F_{1}(x, \xi), \ldots, F_{s}(x, \xi)$ generate \mathcal{I} on a nbhd of q. \square

