Chow's Theorem For Ideals

Quentin Couix University of Toronto

March 31, 2012

<ロ> <四> <四> <四> <三</p>

1/19

Note. In the following U, V, W always denote open sets.

Definitions

Let X be a topological space. A **presheaf** S on X satisfies:

(i) For U open in X, S(U) is a commutative ring.

(ii) To each inclusion $V \subset U$, there correponds a morphism

 $\operatorname{res}_{V,U}:\mathcal{S}(U)\to\mathcal{S}(V).$

(iii) $res_{U,U} = id_{\mathcal{S}(U)}$.

(iv) $W \subset V \subset U \Rightarrow res_{W,V} \circ res_{V,U} = res_{W,U}$.

Moreover S is a **sheaf** and (X, S) a **ringed space** if: Let $(U_i)_{i \in I}$

be an open covering of U and let $U_{i,j} := U_i \cap U_j$ for $i, j \in I$, then

(i) (Local identity) For $s, t \in S(U)$, sections of S over U, if

 $s|_{U_i} = t|_{U_i} \forall i \in I$, then s = t.

(ii) (Gluing) If $(s_i) \in \prod U_i$ is such that $s_i|_{U_{i,j}} = s_j|_{U_{i,j}}$ for all

(ロ) (部) (注) (注) (三) (の)

3/19

 $i, j \in I$, then $\exists s \in \mathcal{S}(U)$ s. th. $s|_{U_i} = s_i$.

Given a ringed space (X, \mathcal{O}_X) a sheaf of modules

(\mathcal{O}_X -modules), \mathcal{S} , is a sheaf s.th. $\mathcal{S}(U)$ is a module of $\mathcal{O}_X(U)$

and for $V \subset U$, $res_{V,U}$ is a morphism of modules.

For $x \in X$ we define the **stalk** at x, S_x , as:

$$\mathcal{S}_{x} := \{(s, U), x \in U, s \in \mathcal{S}(U)\} / \sim$$

where $(s, U) \sim (t, V)$ if $\exists W \subset U \cap V$ s. th. $x \in W$ and

 $s|_W = t|_W$. S_x comes with a natural module structure.

S is of **finite type** if for any $x \in X$, $\exists U \ni x$ s.th. $\exists s_1, \ldots, s_r$

sections of S over U s.th. for all $y \in U$, S_y is generated by

 s_{1y}, \ldots, s_{ry} .

S is of **relation finite type** if for any $U \subset X$, $n \in \mathbb{N}$ and any

morphism $\psi : \mathcal{O}_X^n |_U \to \mathcal{S}|_U$, ker ψ is of finite type.

S is **coherent** if it is of finite type and relation finite type.

We will have particular interest in **sheaf of ideals**.

Setting for complex spaces.

For a complex space M, \mathcal{O}_M is defined for an open set U as the

ring of holomorphic functions on U. It is a coherent sheaf.

Let $f: M \to N$ be a holomorphic map between complex spaces,

and S a sheaf on M. The **direct image** sheaf f_*S on N is given

by $f_*S(U) := S(f^{-1}(U))$. It is a sheaf of \mathcal{O}_N -modules.

Fact 1. Direct Image Thm: *f* proper, S coherent \Rightarrow *f*_{*}S

coherent.

Fact 2. If S is a sheaf on N, then there are a sheaf of ring $f'\mathcal{O}_N$

on *M* and a sheaf of $f'\mathcal{O}_N$ -modules $f'\mathcal{S}$ with stalks

$$f'\mathcal{O}_{N,m} = \mathcal{O}_{N,f(m)}$$
 and $f'\mathcal{S}_m = \mathcal{S}_{f(m)}$, for $m \in M$.

Then the **pullback** $f^*S := f'S \otimes_{f'\mathcal{O}_N} \mathcal{O}_M$ is a sheaf of

 \mathcal{O}_M -modules. Note that $f^*\mathcal{O}_N = f'\mathcal{O}_N \otimes_{f'\mathcal{O}_N} \mathcal{O}_M \cong \mathcal{O}_M$.

If \mathcal{I} is a sheaf of ideals on N then there is an induced injection

 $f^*\mathcal{I} \to f^*\mathcal{O}_N = \mathcal{O}_M$ and the image, $f^{-1}\mathcal{I}$, is a sheaf of ideals.

Fact 3. If \mathcal{I} is coherent, then so is $f^{-1}\mathcal{I}$.

Blow-up of \mathbb{C}^{n+1} at the origin.

Let (y_0, \ldots, y_n) be coordinates on \mathbb{C}^{n+1} and $[\xi_0 : \cdots : \xi_n]$

homogenous coordinates on \mathbb{P}^n then the blow-up of \mathbb{C}^{n+1} at 0 is

the subset $\tilde{\mathbb{C}}^{n+1} \subset \mathbb{C}^{n+1} \times \mathbb{P}^n$ satisfying equations $y_i \xi_j = y_j \xi_j$.

$$\pi_1: \tilde{\mathbb{C}}^{n+1} \to \mathbb{C}^{n+1}$$
 and $\pi_2: \tilde{\mathbb{C}}^{n+1} \to \mathbb{P}^n$ are the holomorphic

maps induced by projections.

Fact 4. If \mathcal{I} is a sheaf of ideals on $\tilde{\mathbb{C}}^{n+1}$ then $\pi_{1*}\mathcal{I}$ is a sheaf of

ideals on \mathbb{C}^{n+1} .

Chow's theorem for ideals.

Main Thm. Let *U* be an open nbhd of 0 in \mathbb{C}^r , *X* an analytic

subset of $U \times \mathbb{P}^n$, \mathcal{I} a coherent sheaf of \mathcal{O}_X -ideals on X. Then

 \mathcal{I} is **relatively algebraic**, i.e. \mathcal{I} is generated (after shrinking U

if necessary) by a finite number of homogeneous polynomials

in homogeneous \mathbb{P}^n -coordinates, with analytic coefficients in

U-coordinates.

Rem 1. \mathcal{I} may be considered as a coherent sheaf on $U \times \mathbb{P}^n$.

Fact 5. Oka coherence thm: The sheaf

 $\mathcal{I}_X(V) = \{ f \in \mathcal{O}(V), f |_{X \cap V} \equiv 0 \}$ on an anlytic set X is coherent.

Rem 2. With Oka coherence thm the main thm (for *U* of dim=0) implies Chow's thm.

Notations. Let $\sigma_1 := id_U \times \pi_1 : U \times \tilde{\mathbb{C}}^{n+1} \to U \times \mathbb{C}^{n+1}$ and

 $\sigma_2 := id_U \times \pi_2 : U \times \tilde{\mathbb{C}}^{n+1} \to U \times \mathbb{P}^n.$

Then $\mathcal{J} := \sigma_{1*}(\sigma_2^{-1}\mathcal{I})$ is a coherent ideal sheaf on $U \times \mathbb{C}^{n+1}$.

Let $\tilde{\mathcal{I}} := \sigma_2^{-1} \mathcal{I}$ and $\tilde{\mathcal{J}} := \sigma_1^{-1} \mathcal{J}$, and note that $\tilde{\mathcal{J}} \subset \tilde{\mathcal{I}}$ in general.

Since σ_1 is biholomorphic off $\sigma_1^{-1}(U \times \{0\}), \tilde{\mathcal{J}} = \tilde{\mathcal{I}}$ in this

domain.

Let $x = (x_1, \ldots, x_r)$ and $y = (y_0, \ldots, y_n)$ be coordinates on U

and \mathbb{C}^{n+1} . If F(x, y) is a holomorphic function in a nbhd of

(0,0) in $U \times \mathbb{C}^{n+1}$ and $\lambda \in \mathbb{C}^*$, let $F^{(\lambda)}(x,y) := F(x,\lambda y)$.

Lemma 1. $F \in \mathcal{J}_{(0,0)} \Longrightarrow F^{(\lambda)} \in \mathcal{J}_{(0,0)}, \forall \lambda \in \mathbb{C}^*.$

Proof. Let H be holomorphic in a nbhd of (0, 0), then $H \in \mathcal{J}_{(0,0)}$ iff $\sigma_1^* H$ is a section of $\tilde{\mathcal{I}}$ over some nbhd of $\sigma_1^{-1}(0,0) \cong \{0\} \times \mathbb{P}^n$ iff $\sigma_1^* H \in (\sigma_2^{-1} \mathcal{I})_p, \forall p \in \sigma_1^{-1}(0,0)$ (using properties of sheaves). Let $p \in \sigma_1^{-1}(0,0)$, $q := \sigma_2(p)$ and $[\xi_0 : \cdots : \xi_n]$ homogeneous coordinates on \mathbb{P}^n s.th. $q = (0, [1 : 0 : \cdots : 0])$. Let $W := \{\xi_0 \neq 0\}$, then $w_i := \xi_i / \xi_0$ are nonhomogeneous

coordinates on *W*. $\sigma_2^{-1}(U \times W) \cong U \times \mathbb{C} \times W$ is a nbhd of *p* in

 $U \times \tilde{\mathbb{C}}^{n+1}$ with coordinates (x, y_0, w) .

We have: $\sigma_1(x, y_0, w) = (x, y_0, y_0 w)$ and $\sigma_2(x, y_0, w) = (x, w)$.

 \mathcal{I} is coherent $\Rightarrow \exists G_1, \ldots, G_s$ generating \mathcal{I} over a nbhd of q

 $\Rightarrow \sigma_2^* G_1, \dots, \sigma_2^* G_s$ generate $\tilde{\mathcal{I}}$ over a nbhd of p = (0, 0, 0).

Since $\sigma_1^* F \in \tilde{\mathcal{J}} \subset \tilde{\mathcal{I}}, \exists A_1, \dots, A_s$, holomorphic on a nbhd of p

s. th.
$$\sigma_1^* F(x, y_0, w) = \sum_i A_i(x, y_0, w) \sigma_2^* G_i(x, y_0, w)$$
.

Fix $\lambda \in \mathbb{C}^*$, then for y_0 small enough

$$\sigma_1^* F^{(\lambda)}(x, y_0, w) = \sum_i A_i(x, \lambda y_0, w) \sigma_2^* G_i(x, \lambda y_0, w)$$
$$= \sum_i A_i(x, \lambda y_0, w) \sigma_2^* G_i(x, y_0, w)$$

So
$$\sigma_1^* F^{(\lambda)} \in (\tilde{\mathcal{I}})_p, \forall p \in \sigma_1^{-1}(0,0) \text{ and } F^{(\lambda)} \in \mathcal{J}_{(0,0)}.$$

For *F* holomorphic on a nbhd of (0, 0) in $U \times \mathbb{C}^{n+1}$ write:

$$F(x,y) =: \sum_{k} \sum_{|\alpha|=k} a_{\alpha}(x)y^{\alpha} =: \sum_{k} F_{k}(x,y).$$

Lemma 2. $F^{(\lambda)} \in \mathcal{J}_{(0,0)}, \forall \lambda \in \mathbb{C}^* \Rightarrow F_k \in \mathcal{J}_{(0,0)}, \forall k \in \mathbb{N}.$

Proof. Let $A := \mathcal{O}_{U \times \mathbb{C}^{n+1}, (0,0)}$. It is a Noetherian local ring. Let

 $(y):=(y_0,\ldots,y_n)$ and $J:=\mathcal{J}_{(0,0)}$ two ideals of A. For $\lambda\in\mathbb{C}^*$ let

$$Jet_m(F^{(\lambda)}) := \sum_{k=0}^m \lambda^k F_k$$

and note that $F^{(\lambda)} - Jet_m(F^{(\lambda)}) \in (y)^{m+1}$.

(ロ)、(部)、(言)、(言)、(言)、(で)、(の)、(1/10)

Note. $J = \cap_{m \geq m_0} (J + (y)^m), \forall m_0 \geq 0$ by a corollary of Krull's

Theorem.

Since $Jet_m(F^{(\lambda)}) \in J + (y)^{m+1}$ for all $\lambda \in \mathbb{C}^*$, by taking m + 1

different values for λ we get $F_k \in J + (y)^{m+1}$ for $k \leq m$.

Fix
$$k \in \mathbb{N}$$
, then $F_k \in \bigcap_{m \ge k+1} (J + (y)^m) = J$. \Box

Consequently $\mathcal{J}_{(0,0)}$ is generated by elements of A

homogeneous in y. Since A is Noetherian, $\mathcal{J}_{(0,0)}$ is generated

by a finite number of these polynomials.

Due to the coherence of \mathcal{J} they generate \mathcal{J} over a nbhd of

(0,0). So we're left to prove:

Lemma 3. If F_1, \ldots, F_s are homogeneous in *y* and generate \mathcal{J}

over a nbhd of (0, 0), they generate \mathcal{I} over a nbhd of $\{0\} \times \mathbb{P}^n$.

Proof. It is enough to verify that F_1, \ldots, F_s generate \mathcal{I} on a

nbhd of $q, \forall q \in \{0\} \times \mathbb{P}^n$ (by properties of sheaves).

Let $q \in \{0\} \times \mathbb{P}^n$ and ξ homogneneous coordinates on \mathbb{P}^n s.th.

q = (0, [1 : 0, ..., 0]). Let *w* be the associated

nonhomogeneous coordinates on $W := \{\xi_0 \neq 0\}$.

We have local coordinates (x, y_0, w) on $\sigma_2^{-1}(U \times W)$ and:

$$\sigma_1(\mathbf{x}, \mathbf{y}_0, \mathbf{w}) = (\mathbf{x}, \mathbf{y}_0, \mathbf{y}_0 \mathbf{w}), \, \sigma_2(\mathbf{x}, \mathbf{y}_0, \mathbf{w}) = (\mathbf{x}, \mathbf{w}).$$

Let $G \in \mathcal{I}_q$, then $\sigma_2^* G$ is a section of $\sigma_2^{-1} \mathcal{I}$ on a nbhd of

$$\sigma_2^{-1}(q) = \{(0, y_0, 0), y_0 \in \mathbb{C}\}.$$

 F_1, \ldots, F_s generate \mathcal{J} on a nbhd of $(0, 0) \Rightarrow \sigma_1^* F_1, \ldots, \sigma_1^* F_s$ generate $\tilde{\mathcal{J}}$ on a nbhd $V \subset U \times \tilde{\mathbb{C}}^{n+1}$ of $\sigma_1^{-1}(0, 0)$. This means that they generate $\tilde{\mathcal{I}}$ on $V \setminus \sigma_1^{-1}(U \times \{0\})$. Pick $\tilde{y}_0 \neq 0$ s.th. $p := (0, \tilde{y}_0, 0) \in V$. Then $\sigma_2^* G \in \tilde{\mathcal{I}}_p = \tilde{\mathcal{J}}_p$, so \exists

 A_1, \ldots, A_s holomorphic on a nbhd of p s. th.

$$\sigma_2^*G(x,y_0,w) = \sum_{i=1}^s A_i(x,y_0,w)\sigma_1^*F_i(x,y_0,w)$$

But
$$\sigma_2^* G(x, y_0, w) = G(x, w)$$
 and
 $\sigma_1^* F_i(x, y_0, w) = F_i(x, y_0, y_0 w) = y_0^{d_i} F_i(x, 1, w)$ since F_i are

homogeneous.

So let $a_i(x, w) := \tilde{y}_0^{d_i} A_i(x, \tilde{y}_0, w)$. Then

$$G(x,w) = \sum_{i=1}^{s} a_i(x,w) F_i(x,1,w)$$

and $F_1(x,\xi), \ldots, F_s(x,\xi)$ generate \mathcal{I} on a nbhd of q. \Box