Chow's Theorem

Quentin Couix University of Toronto

February 1, 2012

<ロ> <四> <四> <四> <三</p>

1/19

Definitions

 $X \subset U$, open in \mathbb{C}^n , is **analytic** if it is closed and locally the set

of zeros of analytic functions f_1, \ldots, f_k .

 $Reg(X) = \{x \in X : X \text{ is a manifold around } x\}, \text{ and } x \in X \}$

 $Sing(X) = X \setminus Reg(X).$

 $X \subset U$, is *-analytic if : $X = X^{(r)} \cup X^{(r-1)} \cup \cdots \cup X^{(0)}$

with $X^{(i)}$ a complex submanifold of U of dimension i and

 $\overline{X^{(i)}} \subset X^{(i)} \cup \cdots \cup X^{(0)}.$

Preliminary Facts:

Thm 1. *X* analytic \Rightarrow *Sing*(*X*) analytic and

dim(Sing(X)) < dim(X).

Cor. *X* analytic \Rightarrow *X* is *-analytic.

Main Results

Thm 2. *X* is *-analytic \Rightarrow *X* is analytic.

Cor. $X \subset \mathbb{P}^n$ is *-analytic $\Rightarrow X$ is algebraic.

Proof. Let $\pi : \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{P}^n$ the canonical map. Then

 $Z = \pi^{-1}(X) \cup \{0\}$ is *-analytic $\Rightarrow Z$ is analytic. Write near 0

$$Z = V(f_1, ..., f_k)$$
. So $f_i = \sum_{r \ge 1} \sum_{|\alpha|=r} c_{\alpha}^{(i)} x^{\alpha} = \sum_r f_{i,r} = 0$

$$\Rightarrow f_i(\lambda x) = \sum_r \lambda^r f_{i,r}(x) = 0, \forall |\lambda| < 1 \Rightarrow X = V(\dots, f_{i,r}, \dots). \square$$

Note: From now on all U's and V's are open in

Proof of Thm 2 via repeated

Inductive Step: Let $X = X^{(r)} \cup X' \subset U \subset \mathbb{C}^n$ s.th. $X^{(r)}$ is an

r-manifold (r-dimensional manifold); $\overline{X^{(r)}} \subset X$; X' analytic,

*-analytic and $dim(X') < r \Rightarrow \overline{X^{(r)}}$ is analytic.

Proposition A. $p : \mathbb{C}^{n+k} \to \mathbb{C}^n$ linear projection. $X \subset U \subset \mathbb{C}^{n+k}$

analytic, $V \subset \mathbb{C}^n$ with $p|_X : X \to V$ proper $\Rightarrow p(X)$ is analytic in

V and $p|_X$ is finite-to-one.

Proof. Reduce to k=1. Factor p :

$$\mathbb{C}^{n+k} \xrightarrow{p_1} \mathbb{C}^{n+k-1} \xrightarrow{p_2} \mathbb{C}^n$$

Then $p|_X$ proper $\Rightarrow p_1|_X : X \to U_1 := p_1(U)$ is proper

 $\Rightarrow X_1 = p_1(X)$ is analytic in $U_1 \dots$

For k=1 : Let $y \in V$ then $X \cap p^{-1}(y)$ compact and analytic in

$$U \cap p^{-1}(y) \Rightarrow X \cap p^{-1}(y) = \{x_1, \dots, x_l\} \Rightarrow \exists U_1, \dots, U_k \text{ open,}$$

disjoint, with $x_j \in U_j$ and $W \subset V$ open s.th.

$$X \cap p^{-1}(W) \subset U_1 \cup \cdots \cup U_k.$$

It suffices to show that $p(X \cap p^{-1}(W) \cap U_i)$ is analytic. We may

assume WLOG that y = 0 and $p^{-1}(0) = \{0\}$.

Let $X = V(f_1, \ldots, f_k)$ near 0. By Weierstrass Prep. Thm we

may assume :
$$f_1 = z_{n+1}^d + a_1 z_{n+1}^{d-1} + \dots + a_d$$
,

$$f_i = b_{1,i} z_{n+1}^{d-1} + \dots + b_{d,i}$$
 , for $i \ge 2$.

With $a_j, b_{j,i} \in \mathbb{C}\{z_1, ..., z_n\}$, $a_j(0) = 0$.

$$\operatorname{Res}(f_1, t_2 f_2 + \dots + t_k f_k) =: \sum_{|\alpha|=d} t^{\alpha} R_{\alpha} \text{ with } R_{\alpha} \in \mathbb{C}\{z_1, \dots, z_n\}.$$

Claim. $p(X) = V(\{R_{\alpha}\}).$

$$(z_1,\ldots,z_n)\in p(X)\Rightarrow \sum_{|\alpha|=d}t^{\alpha}R_{\alpha}(z_1,\ldots,z_n)=0, \forall t\in\mathbb{C}^{k-1}$$

 $\Rightarrow R_{\alpha}(z_1,\ldots,z_n) = \mathbf{0} , \forall \alpha .$

$$(z_1, \ldots, z_n) \in V(\{R_{\alpha}\}) \Rightarrow W_1 \cup \cdots \cup W_d = \mathbb{C}^{k-1}$$
, where
 $W_j := \{t \in \mathbb{C}^{k-1}, \sum t_i f_i(z_1, \ldots, z_n, A_j) = 0\}$, provided $\{A_j\}$ is a root of $f_1(z_1, \ldots, z_n, z) \Rightarrow \exists j_0, W_{j_0} = \mathbb{C}^{k-1}$

$$\Rightarrow$$
 $(z_1,\ldots,z_n,A_{j_0})\in X$. \Box

Our case: $X_0 \cup X_1 \subset U \subset \mathbb{C}^n$, X_1 analytic in U and X_0 analytic

in $U \setminus X_1$. We may assume $X_0 \cup X_1 \neq U$ and $0 \in X_1$.

Lemma We may shrink *U* so that $\exists L \subset \mathbb{C}^n$ a line with $0 \in L$ s.th.

(i) $X_1 \cap L = \{0\}$.

(ii) $X_0 \cap L$ is a set of discrete points with only possible limit point 0.

Cor 1. $(X_0 \cup X_1) \cap L$ is compact

Cor 2. We may shrink *U* so that the projection $p|_{X_0 \cup X_1}$ along *L*

is proper (Mumford's Lemma).

Proof.

(i) $X_1 \cap L$ is analytic in $U \cap L$, so 0 is isolated in $U \cap L$.

Remains to shrink U.

(ii) $X_0 \cap L$ is analytic in $(U \setminus X_1) \cap L$, so similarly it suffices to

shrink U.

Proposition A + Induction \Rightarrow we can find a projection

 $p: \mathbb{C}^n \longrightarrow \mathbb{C}^m$ s.th. $V := p(X_0 \cup X_1)$ is an open nbhd of 0,

 $p|_{X_0 \cup X_1}$ is proper and $p|_{X_0 \setminus p^{-1}(p(X_1))}$ is finite-to-one.

Then $m = dim(X_0)$ using Sard's Lemma.

In notation of inductive step (page 4):

$$X = X^{(r)} \cup X' \ (m = r), \text{ and } Y := p(X') \subset V := p(X).$$

$$egin{array}{rcl} X^{(r)} ackslash p^{-1}(Y) &\subset X &\supset X' \ q \downarrow & \downarrow p & \downarrow \ V ackslash Y &\subset V &\supset p(X') = Y \end{array}$$

Note that $V \setminus Y$ is open and dense in V and that if V is a ball

then it is connected (since $dim_{\mathbb{C}}(Y) < dim_{\mathbb{C}}(V)$).

Similarly $X^{(r)} \setminus p^{-1}(Y)$ is open and dense in $X^{(r)}$.

 $q := \rho|_{X^{(r)} \setminus p^{-1}(Y)}$ is proper and finite-to-one, between two r-manifold.

Let *J* be the jacobian of *q*. Then $A = J^{-1}(0)$ is a closed analytic

subset of $X^{(r)} \setminus p^{-1}(Y)$

 \Rightarrow *B* := *q*(*A*) is an analytic subset of *V* \ *Y*, by proposition A.

By Sard's thm, $\tilde{V} := V \setminus (B \cup Y)$ is open, dense in V. Also \tilde{V} is

connected ($dim_{\mathbb{C}}(B \cup Y) < dim_{\mathbb{C}}(V)$).

Similarly $X^{(r)} = X^{(r)} \setminus p^{-1}(B \cup Y)$ is open and dense in $X^{(r)}$.

So $s := q|_{X^{\widetilde{(r)}}}$ is a proper, finite-to-one local diffeomorphism onto a connected $\tilde{V} \subset \mathbb{C}^n$.

Definition of the functions:

(i) *d* the number of sheets of the covering *s* ;

(ii) \mathcal{L} a linear function on \mathbb{C}^n ;

Let σ_i be the *i*-th symmetric function, so that for

$$\lambda_1,\ldots,\lambda_d\in\mathbb{C}$$
 ;

$$\prod_i (z - \lambda_i) = z^d + \sum_i \sigma_i(\lambda_1, \ldots, \lambda_d) z^{d-i}.$$

(iii) for $y\in \widetilde{V},$ let $s^{-1}(y)=\{x_1,\ldots,x_d\}$ and define

$$a_i(\mathbf{y}) := \sigma_i(\mathcal{L}(\mathbf{x}_1), \ldots, \mathcal{L}(\mathbf{x}_d));$$

<ロト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日</p>
<14/19</p>

(iv) for $y \in V \exists$ a nbhd *W* s.th. a_i is bounded on $\tilde{V} \cap W$

 \Rightarrow we may extend a_i as \mathbb{C} -anlytic functions on V,by

Riemann Extension Thm.

(v)
$$F_{\mathcal{L}}(x) := \mathcal{L}(x)^d + a_1(p(x))\mathcal{L}(x)^{d-1} + \dots + a_d(p(x))$$
 on
 $p^{-1}(V).$

End of Proof of Thm 2.

Step 1.
$$F_{\mathcal{L}} \equiv 0$$
 on $X^{\widetilde{(r)}} \Rightarrow F_{\mathcal{L}} \equiv 0$ on $\overline{X^{(r)}} \Rightarrow \overline{X^{(r)}} \subset \cap_{\mathcal{L}} V(F_{\mathcal{L}}).$

Step 2. For $x \in p^{-1}(V) \setminus \overline{X^{(r)}} \subset \mathbb{C}^n$, let y = p(x), and $y_k \in \tilde{V}$ s.th. $\lim y_k = y$ (\tilde{V} dense in V).

Let $s^{-1}(y_k) = \{x_k^1, \dots, x_k^d\}$. Since $p : \overline{X^{(r)}} \to V$ is proper we

may assume, by choosing a subsequence, that $x_k^j \to x^j \in \overline{X^{(r)}}$.

Since $x \notin \overline{X^{(r)}}$, $\exists \mathcal{L} \in (\mathbb{C}^n)^*$ s.th. $\forall j$ we have $\mathcal{L}(x) \neq \mathcal{L}(x^j)$

$$\Rightarrow F_{\mathcal{L}}(x) \neq 0 \Rightarrow \overline{X^{(r)}} = \cap_{\mathcal{L}} V(F_{\mathcal{L}}) \ . \ \Box$$

Main Thm is proved.

Appendix

Resultant Let *R* be a ring. For $k \in \mathbb{N}$ let

 $R_k[X] = \{P \in R[X], deg(P) \le k\}.$

Then for $P, Q \in R[X]$ with degrees p and q consider the map :

$$\begin{array}{rcccc} \Phi_{P,Q} : & R_{q-1}[X] \times R_{p-1}[X] & \longrightarrow & R_{p+q-1}[X] \\ & (S,T) & \mapsto & PS+QT \end{array}$$

Then $Res(P, Q) := det(\phi_{P,Q})$.

Claim. If Res(P, Q) = 0 then P and Q have a common root.

Hilbert Basis Theorem. If R is a noetherian ring then for

 $n \ge 1$, $R[X_1, \ldots, X_n]$ is also noetherian.

Weierstrass Preparation Theorem. $f \in \mathbb{C}\{X_1, \ldots, X_n\}$ with

 $f(0, \ldots, 0, X_n) = \alpha X_n^d + higher terms, \alpha \neq 0.$

 $\Rightarrow \exists ! \ u \in \mathbb{C}\{X_1, \dots, X_n\}, \ a_i \in \mathbb{C}\{X_1, \dots, X_{n-1}\} \text{ s.t. }:$

 $u(0) \neq 0, \ a_i(0) = 0 \text{ and } f = u(X_{n+1}^d + a_1 X_{n+1}^{d-1} + \cdots + a_d).$

Moreover $g \in \mathbb{C}\{X_1, \dots, X_n\} \Rightarrow \exists ! h \in \mathbb{C}\{X_1, \dots, X_n\}, b_i \in$

 $\mathbb{C}\{X_1,...,X_{n-1}\}$ s.t. : $g = hf + (b_1X_n^{d-1} + \cdots + b_d)$.

Riemann Extension Theorem. $X \subset U \subset \mathbb{C}^n$ an analytic set

and *f* analytic on $U \setminus X$, bounded in a nbhd of $x, \forall x \in X$

 \Rightarrow *f* extends to an analytic function on *U*.

Mumford's Lemma. $f: X \rightarrow Y$ continuous between locally

compact top. spaces. $y \in Y$ s.t. $f^{-1}(Y)$ is compact.

 $\Rightarrow \exists U \text{ and } V \text{ open with } f(U) \subset V \text{ and } f: U \rightarrow V \text{ proper.}$