Chow's Theorem

Quentin Couix
University of Toronto

February 1, 2012

Definitions

$X \subset U$, open in \mathbb{C}^{n}, is analytic if it is closed and locally the set
of zeros of analytic functions f_{1}, \ldots, f_{k}.
$\operatorname{Reg}(X)=\{x \in X: X$ is a manifold around $x\}$, and
$\operatorname{Sing}(X)=X \backslash \operatorname{Reg}(X)$.
$X \subset U$, is *-analytic if : $X=X^{(r)} \cup X^{(r-1)} \cup \cdots \cup X^{(0)}$
with $X^{(i)}$ a complex submanifold of U of dimension i and
$\overline{X^{(i)}} \subset X^{(i)} \cup \cdots \cup X^{(0)}$.

Preliminary Facts:

Thm 1. X analytic $\Rightarrow \operatorname{Sing}(X)$ analytic and
$\operatorname{dim}(\operatorname{Sing}(X))<\operatorname{dim}(X)$.
Cor. X analytic $\Rightarrow X$ is ${ }^{*}$-analytic.

Main Results

Thm 2. X is ${ }^{*}$-analytic $\Rightarrow X$ is analytic.
Cor. $X \subset \mathbb{P}^{n}$ is ${ }^{*}$-analytic $\Rightarrow X$ is algebraic.

Proof. Let $\pi: \mathbb{C}^{n+1} \backslash\{0\} \rightarrow \mathbb{P}^{n}$ the canonical map. Then
$Z=\pi^{-1}(X) \cup\{0\}$ is *-analytic $\Rightarrow Z$ is analytic. Write near 0
$Z=V\left(f_{1}, \ldots, f_{k}\right)$. So $f_{i}=\sum_{r \geq 1} \sum_{|\alpha|=r} c_{\alpha}^{(i)} x^{\alpha}=\sum_{r} f_{i, r}=0$
$\Rightarrow f_{i}(\lambda x)=\sum_{r} \lambda^{r} f_{i, r}(x)=0, \forall|\lambda|<1 \Rightarrow X=V\left(\ldots, f_{i, r}, \ldots\right) . \square$
Note: From now on all U's and V 's are open in
Proof of Thm 2 via repeated

Inductive Step: Let $X=X^{(r)} \cup X^{\prime} \subset U \subset \mathbb{C}^{n}$ s.th. $X^{(r)}$ is an
r-manifold (r-dimensional manifold); $\overline{X^{(r)}} \subset X ; X^{\prime}$ analytic,
*-analytic and $\operatorname{dim}\left(X^{\prime}\right)<r \Rightarrow \overline{X^{(r)}}$ is analytic.
Proposition A. $p: \mathbb{C}^{n+k} \rightarrow \mathbb{C}^{n}$ linear projection. $X \subset U \subset \mathbb{C}^{n+k}$ analytic, $V \subset \mathbb{C}^{n}$ with $\left.p\right|_{X}: X \rightarrow V$ proper $\Rightarrow p(X)$ is analytic in
V and $\left.p\right|_{X}$ is finite-to-one.
Proof. Reduce to $\mathrm{k}=1$. Factor p :

$$
\mathbb{C}^{n+k} \xrightarrow{p_{1}} \mathbb{C}^{n+k-1} \xrightarrow{p_{2}} \mathbb{C}^{n}
$$

Then $\left.p\right|_{X}$ proper $\left.\Rightarrow p_{1}\right|_{X}: X \rightarrow U_{1}:=p_{1}(U)$ is proper
$\Rightarrow X_{1}=p_{1}(X)$ is analytic in $U_{1} \ldots$
For $\mathrm{k}=1$: Let $y \in V$ then $X \cap p^{-1}(y)$ compact and analytic in
$U \cap p^{-1}(y) \Rightarrow X \cap p^{-1}(y)=\left\{x_{1}, \ldots, x_{l}\right\} \Rightarrow \exists U_{1}, \ldots, U_{k}$ open,
disjoint, with $x_{j} \in U_{j}$ and $W \subset V$ open s.th.
$X \cap p^{-1}(W) \subset U_{1} \cup \cdots \cup U_{k}$.
It suffices to show that $p\left(X \cap p^{-1}(W) \cap U_{i}\right)$ is analytic. We may
assume WLOG that $y=0$ and $p^{-1}(0)=\{0\}$.

Let $X=V\left(f_{1}, \ldots, f_{k}\right)$ near 0 . By Weierstrass Prep. Thm we
may assume : $f_{1}=z_{n+1}^{d}+a_{1} z_{n+1}^{d-1}+\cdots+a_{d}$,
$f_{i}=b_{1, i} z_{n+1}^{d-1}+\cdots+b_{d, i}$, for $i \geq 2$.
With $a_{j}, b_{j, i} \in \mathbb{C}\left\{z_{1}, \ldots, z_{n}\right\}, a_{j}(0)=0$.
$\operatorname{Res}\left(f_{1}, t_{2} f_{2}+\cdots+t_{k} f_{k}\right)=: \sum_{|\alpha|=d} t^{\alpha} R_{\alpha}$ with $R_{\alpha} \in \mathbb{C}\left\{z_{1}, \ldots, z_{n}\right\}$.
Claim. $p(X)=V\left(\left\{R_{\alpha}\right\}\right)$.
$\left(z_{1}, \ldots, z_{n}\right) \in p(X) \Rightarrow \sum_{|\alpha|=d} t^{\alpha} R_{\alpha}\left(z_{1}, \ldots, z_{n}\right)=0, \forall t \in \mathbb{C}^{k-1}$
$\Rightarrow R_{\alpha}\left(z_{1}, \ldots, z_{n}\right)=0, \forall \alpha$.

$$
\begin{aligned}
& \left(z_{1}, \ldots, z_{n}\right) \in V\left(\left\{R_{\alpha}\right\}\right) \Rightarrow W_{1} \cup \cdots \cup W_{d}=\mathbb{C}^{k-1}, \text { where } \\
& W_{j}:=\left\{t \in \mathbb{C}^{k-1}, \sum t_{i} f_{i}\left(z_{1}, \ldots, z_{n}, A_{j}\right)=0\right\}, \text { provided }\left\{A_{j}\right\} \text { is a }
\end{aligned}
$$

$$
\text { root of } f_{1}\left(z_{1}, \ldots, z_{n}, z\right) \Rightarrow \exists j_{0}, W_{j_{0}}=\mathbb{C}^{k-1}
$$

$$
\Rightarrow\left(z_{1}, \ldots, z_{n}, A_{j_{0}}\right) \in X . \square
$$

Our case: $X_{0} \cup X_{1} \subset U \subset \mathbb{C}^{n}, X_{1}$ analytic in U and X_{0} analytic in $U \backslash X_{1}$. We may assume $X_{0} \cup X_{1} \neq U$ and $0 \in X_{1}$.

Lemma We may shrink U so that $\exists L \subset \mathbb{C}^{n}$ a line with $0 \in L$ s.th.
(i) $X_{1} \cap L=\{0\}$.
(ii) $X_{0} \cap L$ is a set of discrete points with only possible limit point 0 .

Cor 1. $\left(X_{0} \cup X_{1}\right) \cap L$ is compact
Cor 2. We may shrink U so that the projection $\left.p\right|_{X_{0} \cup X_{1}}$ along L
is proper (Mumford's Lemma).

Proof.

(i) $X_{1} \cap L$ is analytic in $U \cap L$, so 0 is isolated in $U \cap L$.

Remains to shrink U.
(ii) $X_{0} \cap L$ is analytic in $\left(U \backslash X_{1}\right) \cap L$, so similarly it suffices to
shrink U.

Proposition A + Induction \Rightarrow we can find a projection
$p: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{m}$ s.th. $V:=p\left(X_{0} \cup X_{1}\right)$ is an open nbhd of 0,
$\left.p\right|_{X_{0} \cup X_{1}}$ is proper and $\left.p\right|_{X_{0} \backslash p^{-1}\left(p\left(X_{1}\right)\right)}$ is finite-to-one.

Then $m=\operatorname{dim}\left(X_{0}\right)$ using Sard's Lemma.

In notation of inductive step (page 4):
$X=X^{(r)} \cup X^{\prime}(m=r)$, and $Y:=p\left(X^{\prime}\right) \subset V:=p(X)$.

$$
\begin{array}{ccccc}
X^{(r)} \backslash p^{-1}(Y) & \subset & X & \supset & X^{\prime} \\
q \downarrow & & \downarrow p & & \downarrow \\
V \backslash Y & \subset & V & \supset & p\left(X^{\prime}\right)=Y
\end{array}
$$

Note that $V \backslash Y$ is open and dense in V and that if V is a ball then it is connected $\left(\right.$ since $\left.\operatorname{dim}_{\mathbb{C}}(Y)<\operatorname{dim}_{\mathbb{C}}(V)\right)$.

Similarly $X^{(r)} \backslash p^{-1}(Y)$ is open and dense in $X^{(r)}$.
$q:=\left.p\right|_{X^{(r)} \backslash p^{-1}(Y)}$ is proper and finite-to-one, between two
r-manifold.
Let J be the jacobian of q. Then $A=J^{-1}(0)$ is a closed analytic
subset of $X^{(r)} \backslash p^{-1}(Y)$
$\Rightarrow B:=q(A)$ is an analyitic subset of $V \backslash Y$, by proposition A.
By Sard's thm, $\tilde{V}:=V \backslash(B \cup Y)$ is open, dense in V. Also \tilde{V} is
connected $\left(\operatorname{dim}_{\mathbb{C}}(B \cup Y)<\operatorname{dim}_{\mathbb{C}}(V)\right)$.
Similarly $\tilde{X^{(r)}}=X^{(r)} \backslash p^{-1}(B \cup Y)$ is open and dense in $X^{(r)}$.

So $s:=\left.q\right|_{\chi^{(r)}}$ is a proper, finite-to-one local diffeomorphism onto a connected $\tilde{V} \subset \mathbb{C}^{n}$.

Definition of the functions:

(i) d the number of sheets of the covering s;
(ii) \mathcal{L} a linear function on \mathbb{C}^{n};

Let σ_{i} be the i-th symmetric function, so that for

$$
\lambda_{1}, \ldots, \lambda_{d} \in \mathbb{C} ;
$$

$$
\prod_{i}\left(z-\lambda_{i}\right)=z^{d}+\sum_{i} \sigma_{i}\left(\lambda_{1}, \ldots, \lambda_{d}\right) z^{d-i} .
$$

(iii) for $y \in \tilde{V}$, let $s^{-1}(y)=\left\{x_{1}, \ldots, x_{d}\right\}$ and define

$$
a_{i}(y):=\sigma_{i}\left(\mathcal{L}\left(x_{1}\right), \ldots, \mathcal{L}\left(x_{d}\right)\right) ;
$$

(iv) for $y \in V \exists$ a nbhd W s.th. a_{i} is bounded on $\tilde{V} \cap W$
\Rightarrow we may extend a_{i} as \mathbb{C}-anlytic functions on V,by

Riemann Extension Thm.

$$
\begin{aligned}
& \text { (v) } F_{\mathcal{L}}(x):=\mathcal{L}(x)^{d}+a_{1}(p(x)) \mathcal{L}(x)^{d-1}+\cdots+a_{d}(p(x)) \text { on } \\
& \\
& \quad p^{-1}(V)
\end{aligned}
$$

End of Proof of Thm 2.
Step 1. $F_{\mathcal{L}} \equiv 0$ on $\tilde{X^{(r)}} \Rightarrow F_{\mathcal{L}} \equiv 0$ on $\overline{X^{(r)}} \Rightarrow \overline{X^{(r)}} \subset \cap_{\mathcal{L}} V\left(F_{\mathcal{L}}\right)$.

Step 2. For $x \in p^{-1}(V) \backslash \overline{X^{(r)}} \subset \mathbb{C}^{n}$, let $y=p(x)$, and $y_{k} \in \tilde{V}$
s.th. $\lim y_{k}=y(\tilde{V}$ dense in $V)$.

Let $s^{-1}\left(y_{k}\right)=\left\{x_{k}^{1}, \ldots, x_{k}^{d}\right\}$. Since $p: \overline{X^{(r)}} \rightarrow V$ is proper we
may assume, by choosing a subsequence, that $x_{k}^{j} \rightarrow x^{j} \in \overline{X^{(r)}}$.
Since $x \notin \overline{X^{(r)}}, \exists \mathcal{L} \in\left(\mathbb{C}^{n}\right)^{*}$ s.th. $\forall j$ we have $\mathcal{L}(x) \neq \mathcal{L}\left(x^{j}\right)$
$\Rightarrow F_{\mathcal{L}}(x) \neq 0 \Rightarrow \overline{X^{(r)}}=\cap_{\mathcal{L}} V\left(F_{\mathcal{L}}\right) . \square$

Main Thm is proved.

Appendix

Resultant Let R be a ring. For $k \in \mathbb{N}$ let
$R_{k}[X]=\{P \in R[X], \operatorname{deg}(P) \leq k\}$.
Then for $P, Q \in R[X]$ with degrees p and q consider the map :

$$
\begin{array}{cccc}
\Phi_{P, Q}: & R_{q-1}[X] \times R_{p-1}[X] & \longrightarrow & R_{p+q-1}[X] \\
(S, T) & \mapsto & P S+Q T
\end{array}
$$

Then $\operatorname{Res}(P, Q):=\operatorname{det}\left(\phi_{P, Q}\right)$.
Claim. If $\operatorname{Res}(P, Q)=0$ then P and Q have a common root.

Hilbert Basis Theorem. If R is a noetherian ring then for
$n \geq 1, R\left[X_{1}, \ldots, X_{n}\right]$ is also noetherian.
Weierstrass Preparation Theorem. $f \in \mathbb{C}\left\{X_{1}, \ldots, X_{n}\right\}$ with
$f\left(0, \ldots, 0, X_{n}\right)=\alpha X_{n}^{d}+$ higher terms, $\alpha \neq 0$.
$\Rightarrow \exists!u \in \mathbb{C}\left\{X_{1}, \ldots, X_{n}\right\}, a_{i} \in \mathbb{C}\left\{X_{1}, \ldots, X_{n-1}\right\}$ s.t. :
$u(0) \neq 0, a_{i}(0)=0$ and $f=u\left(X_{n+1}^{d}+a_{1} X_{n+1}^{d-1}+\cdots+a_{d}\right)$.

Moreover $g \in \mathbb{C}\left\{X_{1}, \ldots, X_{n}\right\} \Rightarrow \exists!h \in \mathbb{C}\left\{X_{1}, \ldots, X_{n}\right\}, b_{i} \in$
$\mathbb{C}\left\{X_{1}, \ldots, X_{n-1}\right\}$ s.t. : $g=h f+\left(b_{1} X_{n}^{d-1}+\cdots+b_{d}\right)$.

Riemann Extension Theorem. $X \subset U \subset \mathbb{C}^{n}$ an analytic set
and f analytic on $U \backslash X$, bounded in a nbhd of $x, \forall x \in X$
$\Rightarrow f$ extends to an analytic function on U.
Mumford's Lemma. $f: X \rightarrow Y$ continuous between locally
compact top. spaces. $y \in Y$ s.t. $f^{-1}(Y)$ is compact.
$\Rightarrow \exists U$ and V open with $f(U) \subset V$ and $f: U \rightarrow V$ proper.

