Hilbert's 17th Problem for Real Closed Fields à la Artin

Aaron Crighton

MAT 477

February 4, 2014

Aaron Crighton (2013) Hilbert's 17th Problem for Real Closed Fi

Main Theorem: $f \in \mathbb{R}[x]$, $f(x) \ge 0$ imply $f = \sum_i f_i^2$, where $x = (x_0, \ldots, x_n)$, $\{f_i\}_i \subset \mathbb{R}(x)$, $\mathbb{R}[x]$ and $\mathbb{R}(x)$ are the ring of polynomials and the field of their fractions. We'll use fields and models. **Def 1:** Field \mathbb{F} is ordered with order $<_{\mathbb{F}}$ (or "<" if clear) when i) $\forall x, y, z \in \mathbb{F}, x < y \Longrightarrow x + z < y + z$ (implies $char(\mathbb{F}) = 0$); ii) $\forall x, y, z \in \mathbb{F}$, $(x < y \text{ and } 0 < z) \Longrightarrow xz < yz$ (implies $x^2 > 0$ for $x \neq 0$). **Def 2:** A real closed field is an ordered field $(\mathbb{F}, <_{\mathbb{F}})$ such that: i) Every positive element of \mathbb{F} has a square root in \mathbb{F} ; ii) Every odd degree polynomial of $\mathbb F$ has a root in $\mathbb F$.

Fact: Real closed fields admit quantifier elimination.

With p a prime number we'll also use the following

Easy Fact: Groups of size p^k have normal subgroups of index = p.

Lemma 1: If -1 and $b \in \mathbb{F}$ are not sums of squares in a field \mathbb{F}

then -1 is not a sum of squares (shortly ss) in $\mathbb{F}(\sqrt{-b})$.

Proof: Case $\sqrt{-b} \not\in \mathbb{F}$ suffices, equivalently $\dim_{\mathbb{F}} \mathbb{F}(\sqrt{-b}) = 2$. Then

$$-1 = \sum_{i=1}^{m} (x_i + y_i \sqrt{-b})^2 \implies b = \frac{1 + \sum_i x_i^2}{\sum_i y_i^2} = \sum_i w_i^2 \text{ since}$$

 $(\sum_i y_i^2)^{-1} = \sum_i (y_i / \sum_j y_j^2)^2$, contrary to the assumption. \Box

= 900

(日本 (雪本 (日本))

Question: Why $\mathbb{R}(x)$ and not $\mathbb{R}[x]$?

Proposition: The function $f(x, y) = x^4y^2 + x^2y^4 - x^2y^2 + 1$ is positive

but not a sum of squares in $\mathbb{R}[x, y]$.

Pf: Easy calculus \Rightarrow f is positive (min(f(x, y)) = 26/27). Suppose

 $f = \sum q_i^2$ with $q_i \in \mathbb{R}[x]$. Notice that $deg(q_i) \leq 2$ w.r.t both x and y.

Then q_i is of the form:

 $q_i = a_0^i + a_1^i x + a_2^i y + a_3^i xy + a_4^i x^2 + a_5^i y^2 + a_6^i x^2 y + a_7^i y^2 x + a_8^i x^2 y^2.$

Comparing coefficients of in the equation $f = \sum q_i^2$ shows $\sum (a_8^i)^2 = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Hence $a_i^9 = 0$ for each *i*. Similarly, $a_4^i = a_5^i = 0$ for each *i*. Then

coefficients with $a_9^i = a_4^i = a_5^i = 0$ show that $a_2^i = a_1^i = 0$ as well. Finally,

Looking at the coefficent of x^2y^2 in the new equation

$$x^{4}y^{2} + x^{2}y^{4} - x^{2}y^{2} + 1 = \sum (a_{0}^{i} + a_{3}^{i}xy + a_{6}^{i}x^{2}y + a_{7}^{i}y^{2}x)^{2}$$

we obtain $-1 = \sum (a_3^i)^2$, which is impossible. \Box

= 900

More Algebraic Results on Ordered Fields

Lemma 2: If \mathbb{F} is a field where -1 is not a ss and $b \in \mathbb{F}$ is not a ss then

 \mathbb{F} can be ordered so that b < 0.

Proof: Let $\mathbf{F} = \{ \text{fields } \mathbb{K} : \mathbb{F}(\sqrt{-b}) \subset \mathbb{K} \subset \overline{\mathbb{F}} \text{ and } -1 \text{ is not a ss in } \mathbb{K} \}$

By Zorn's Lemma, **F** has a maximal element \mathbb{K} . By Lemma 1, if c is not a ss in \mathbb{K} , then $\mathbb{K}(\sqrt{-c}) \in \mathbf{F}$. So, by maximality, $\sqrt{-c} \in \mathbb{K}$. Order \mathbb{K} as

follows: $x < y \iff y - x \neq 0$ and y - x is a square in \mathbb{K}

This is easily checked to be well-defined. Then both $\mathbb{F}(\sqrt{-b})$ and \mathbb{F}

・ロット 4 回 > 4 日 > ・ 日 ・ クタマ

inherit this order as subfields and $-b = (\sqrt{-b})^2 > 0$ so b < 0 . \Box

Corollary 1: A field \mathbb{F} can be ordered iff -1 is not a sum of squares in \mathbb{F}

Pf: Lemma 2 implies " \Leftarrow " . For " \Rightarrow " note $1 = 1^2 > 0 \iff -1 < 0$ \Box

Fund. Thm. Alg. If \mathbb{F} is a real closed field, then $\mathbb{F}(\sqrt{-1})$ is alg. closed.

Proof: If
$$a$$
 , $b \in \mathbb{F}$ then, $(\sqrt{rac{a+\sqrt{a^2+b^2}}{2}}\pm \sqrt{rac{-a+\sqrt{a^2+b^2}}{2}}\sqrt{-1})^2 =$

$$\frac{a+\sqrt{a^2+b^2}}{2} - \frac{-a+\sqrt{a^2+b^2}}{2} \pm 2\sqrt{\frac{a+\sqrt{a^2+b^2}}{2}} \frac{-a+\sqrt{a^2+b^2}}{2}\sqrt{-1} = a \pm |b|\sqrt{-1}$$
 ,

where $|b| := \max\{b; -b\}$, i.e. elements in $\mathbb{F}(\sqrt{-1})$ have square roots.

E 990

・ロト ・雪ト ・ヨト

Proof of Fund. Thm of Alg. for Real Closed Fields.

 $\mathbb{F}(\sqrt{-1})$ has no quadratic extensions, i.e. $P \in \mathbb{F}(\sqrt{-1})[x]$ of deg 2 factor.

For any finite Galois extension \mathbb{K} of $\mathbb{F}(\sqrt{-1})$ write $\dim_{\mathbb{F}}\mathbb{K} = 2^n m \ (m \text{ odd})$.

Sylow Thm: exists subgroup H of $G := Gal(\mathbb{K}/\mathbb{F})$ with $|H| = 2^n$.

Then [G:H] = m. Say β generates over \mathbb{F} the field \mathbb{L} fixed by H. Then

minimal degree $f(x) \in \mathbb{F}[x]$ with $f(\beta) = 0$ are irreducible and deg f = m,

but *m* being odd and \mathbb{F} a real closed field $\Rightarrow m = 1 \Rightarrow G$ is a *p*-group

with p = 2 , i.e. $|G| = 2^{k}$.

 $\mathbb{F}(\sqrt{-1})$ is Galois, so $J = Gal(\mathbb{F}(\sqrt{-1})/\mathbb{F}) \trianglelefteq G$, i.e. G/J is a group.

Basic Fact: $Gal(\mathbb{K}/\mathbb{F}(\sqrt{-1})) \cong G/J \Rightarrow |Gal(\mathbb{K}/\mathbb{F}(\sqrt{-1}))| = 2^{n-1}$.

If $n \neq 1$, "Easy Fact" imples $\exists N \trianglelefteq G/J$ such that [G/J : N] = 2

If $\mathbb M$ is the field fixed by N over $\mathbb F(\sqrt{-1})$ then $[\mathbb M:\mathbb F(\sqrt{-1})]=2$.

But $\mathbb{F}(\sqrt{-1})$ has no quadratic extensions. Hence n = 1 and $\mathbb{F}(\sqrt{-1})$ is

the algebraic closure of \mathbb{F} , as required. \Box

(ロ) (型) (注) (モ) (モ) (モ) (の)

Ordered Algebraic Extensions of Ordered Fields

Corollary 2: \mathbb{F} is real closed $\Longrightarrow \mathbb{F}$ has no ordered algebraic extensions.

Pf: The only algebraic extension of \mathbb{F} is $\mathbb{F}(\sqrt{-1})$ which

cannot be ordered since -1 is a sum of squares. \Box

Lemma 3: If $\mathbb F$ is an ordered field then $\mathbb F$ can be extended to an ordered

field \mathbb{K} with every positive element of \mathbb{F} being a square.

Pf: 'Our' field \mathbb{K} is generated by $\{\sqrt{c} : c \in \mathbb{F}, c > 0\}$. Indeed, -1 is not

a ss in this field. If not, then -1 is a ss in $\mathbb{F}' := \mathbb{F}(\sqrt{c_0}, ..., \sqrt{c_n})$ for some

・ロット 4 回 > 4 日 > ・ 日 ・ クタマ

 $c_0, ..., c_n \in \mathbb{F}$. All products of distinct $\sqrt{c_i}$ form an \mathbb{F} -basis for \mathbb{F}' .

Then
$$-1 = (\sum_{N \subset n} b_N(\prod_{i \in N} \sqrt{c_i}))^2 = \sum_{N \subset n} b_N^2(\prod_{i \in N} c_i) >_{\mathbb{F}} 0$$
,

but this is a contradiction. By Lemma 2, $\mathbb K$ can be ordered. \Box

Lemma 4: If \mathbb{F} is an ordered field and $f(x) \in \mathbb{F}[x]$ is irreducible of odd

degree then $\mathbb{F}[x]/(f(x))$ can be ordered in a compatbile way with \mathbb{F} .

Pf: Extend \mathbb{F} to \mathbb{K} from Lemma 3. Induction on $n = \frac{\deg(f)-1}{2}$ (n=0 clear).

If case "n-1" \Rightarrow case "n", let $f(\alpha) = 0$ and $\mathbb{K}(\alpha)$ cannot be ordered

$$\iff \exists g_0, ..., g_n \text{ such that } \sum_{i=0}^n g_i(\alpha)^2 = -1 \pmod{2}$$
 (Corollary 1).

◆□ → ◆□ → ◆臣 → ◆臣 → ○ ● ○ のへで

Equivalently
$$\exists q$$
 s.th $f(x)q(x) + \sum_{i=0}^{n} g_i(x)^2 = -1$ in $\mathbb{K}[x]$. WLOG we may

assume $deg(g_i) < deg(f) \Rightarrow deg(q) < (deg(f) - 2)$ and is odd.

Say
$$\beta \in \overline{\mathbb{K}}$$
 s.th. $q(\beta) = 0 \Rightarrow f(\beta)q(\beta) + \sum_{i=0}^n g_i(\beta)^2 = \sum_{i=0}^n g_i(\beta)^2 = -1$,

which contradicts the inductive assumption. Hence, $\mathbb{K}[x]/(f(x))$ can be

ordered and $\mathbb{F}[x]/(f(x))$ can be ordered by restriction. This extends $<_{\mathbb{F}}$. \Box

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Summarizing Corollary 2 and Lemmas 3, 4 we have:

Theorem 2: If \mathbb{F} is an ordered field then,

 ${\mathbb F}$ is real closed $\iff {\mathbb F}$ has no ordered algebraic extensions \Box

Corollary 3: Ordered fields admit algebraic real closed extensions.

Pf: Extend \mathbb{F} to \mathbb{K} from Lemma 3. By Zorn's Lemma, \mathbb{K} has a maximal

ordered algebraic extension. By theorem 2, this extension is real closed. \Box

Concepts from Model Theory with reminder (Alex's talk):

 $1^{\textit{st}}\text{-order}$ language has quantifiers " for all" $\equiv \forall$ and " there exists" $\equiv \exists$.

Def 3: The 1^{st} order language \mathbb{L}_{OR} contains the following symbols,

i) The binary functions +, - and \cdot

ii) A binary relation <

iii) The constant symbols 0 and 1

Appendix contains explicit expressions for the axioms (called RCF) of

real closed fields in this language.

Def 4: A **theory** for a language \mathbb{L} is a set of \mathbb{L} -sentences.

Def 5: An L-structure \mathbb{M} is called a model of a theory **T** if $\mathbb{M} \models \Phi$

for each $\Phi \in \mathbf{T}$. In this case we write $\mathbb{M} \models \mathbf{T}$.

Recall $|\mathbb{M}|$ stands for the underlying set of the model \mathbb{M} .

Def 6: \mathbb{M} and \mathbb{N} are \mathbb{L} -structures $\Rightarrow \mathbb{M}$ is a submodel of \mathbb{N} ($\mathbb{M} \subseteq \mathbb{N}$) if i) $|\mathbb{M}| \subseteq |\mathbb{N}|$

ii) For each n-ary function symbol $f \in \mathbb{L}$, $f^{\mathbb{N}}|_{|\mathbb{M}|} = f^{\mathbb{M}}$

iii) For each n-ary relation symbol $R\in\mathbb{L},\ R^{\mathbb{M}}=R^{\mathbb{N}}\cap|\mathbb{M}|^n$

= 900

イロト イポト イヨト イヨト

Recall that $\mathbb{M} \models \Phi[a_0, ..., a_n]$ means Φ is true of $a_0, ..., a_n$ in model \mathbb{M} .

Def 7: If \mathbb{M} and \mathbb{N} are \mathbb{L} -structures then \mathbb{M} is an elementary submodel

of \mathbb{N} (we write $\mathbb{M} \preceq \mathbb{N}$) provided:

i) $\mathbb{M} \subseteq \mathbb{N}$

ii) For each formula $\phi(v_0,...,v_n)$ and each $(a_0,...,a_n)\in |\mathbb{M}|^{n+1}$,

$$\mathbb{M} \models \Phi[a_0, ..., a_n] \iff \mathbb{N} \models \Phi[a_0, ..., a_n] .$$

Def 8: Theory **T** is model-complete when for all models $\mathbb{M}, \mathbb{N} \models \mathbf{T}$,

 $\mathbb{M} \subseteq \mathbb{N} \Longrightarrow \mathbb{M} \preceq \mathbb{N}$ (we say that all submodels are elementary).

Def 9: Theory **T** has quantifier elimination if for a formula $\Phi(v_0, ..., v_n)$

 $\mathbf{T} \models (\forall v_0 \cdots \forall v_n) (\Phi \leftrightarrow \Psi)$ with $\Psi(v_0, \dots, v_n)$ quantifier-free.

Fact: The theory RCF admits quantifer elimination.

Lemma 5: If T has quantifier elimination, then T is model complete.

Pf: It suffices to show that if $\Psi(v_0, \ldots, v_n)$ is quantifier free and $\mathbb{M} \subset \mathbb{N}$

$$\mathsf{then}\ \mathbb{M}\models \Psi[a_0,...,a_n] \iff \mathbb{N}\models \Psi[a_0,...,a_n] \text{ for all } a_0,\ldots,a_n\in |\mathbb{M}|.$$

This fact is proven by induction on complexity of Ψ (details attached). \Box

Corollary 4: **RCF** is model complete.

(ロ) (型) (注) (モ) (モ) (モ) (の)

Return to the Main Theorem (Hilbert's 17th Problem):

$$f \in \mathbb{R}[x]$$
 and $f(x) \ge 0$, $\forall x \in \mathbb{R}^{n+1} \Rightarrow \exists f_1, ..., f_m \in \mathbb{R}(x)$ s.th $f = \sum_{i=1}^m f_i^2$.

Pf: If not true, say $f(x) \ge 0$ and f is not a ss in $\mathbb{R}(x)$. Since -1 is not a ss

in the field $\mathbb{R}(x)$, there is a field ordering $<_{\mathbb{R}(x)}$ (shortly <) s.th f < 0

by Lemma 1. Every positive element of \mathbb{R} is a square in $\mathbb{R}(x) \Rightarrow$

ordering $<_{\mathbb{R}(x)}$ extends $<_{\mathbb{R}}$. Therefore \mathbb{R} and $\mathbb{R}(x)$ are \mathbb{L}_{OR} -models,

by interpreting the $+, \cdot$ and < symbols in the obvious way.

We can extend $\mathbb{R}(x)$ to a real closed field \mathbb{F} (see page 12, Cor. 3).

A (10) A (10)

We now have $\mathbb{R} \subset \mathbb{F}$ so by model completeness, we have $\mathbb{R} \preceq \mathbb{F}$.

Let m = deg(f). Since the coefficients of f also lie in \mathbb{F} , we can view it

as an element of $\mathbb F$ or as a degree m polynomial in $\mathbb F[t]$, $t=(t_0,\ldots,t_n)$.

There is a formula $\Phi(v_0, ..., v_k)$ (see appendix) s.th for a model K of **RCF**,

 $\mathbb{K} \models \Phi(v_0, ..., v_k)[a_0, ..., a_k]$ means that polynomial $g \in \mathbb{K}[t]$ of deg m

with coefficients $a_0, ..., a_k$ takes a negative value.

◆□▶ ◆□▶ ◆注▶ ◆注▶ ◆□ ● ○○○

Then letting $[a_0, ..., a_k]$ be the coefficients of f we have $\mathbb{F} \models \Phi[a_0, ..., a_k]$

since the elements $x_0, ..., x_n \in \mathbb{F}$ make f negative by construction.

By model completeness we can infer that

 $\mathbb{R} \models \Phi[a_0, ... a_k]$ which is to say that f takes a negative value

at a point $(p_0, ..., p_n) \in \mathbb{R}^{n+1}$, contradicting our assumption.

Then it must be the case that f is in fact a sum of squares in $\mathbb{R}(x)$

so we are done. \Box

Appendix

1) A formula $\Phi(v_0, ..., v_k)$ stating "The polynomial of degree m with

coefficients $v_0, ..., v_k$ is negative for some value" we write as:

$$\exists x_0 \cdots \exists x_n (v_0 + v_1 x_o + v_2 x_1 + \cdots + v_{n+1} x_n + \cdots + v_{k-n} x_0^m + \cdots + v_k x_n^m < 0)$$

2) Real Closed Field Axioms in \mathbb{L}_{ORF}

Total order: i) $(\forall x) \neg (x < x)$ ii) $(\forall x) (\forall y) \neg (x < y \land y < x)$

 $\mathsf{iii})(\forall x)(\forall y)(\forall z)((x < y \land y < z) \rightarrow (x < z))$

 $\mathsf{iv})(\forall x)(\forall y)((x < y \lor y < x \lor x = y))$

Field axioms:

v)
$$(\forall x)(\forall y)(\forall z)((x + y) + z = x + (y + z))$$

vi) $(\forall x)(x + 0 = x)$ vii) $(\forall x)(\exists y)(x + y = 0)$
viii) $(\forall x)(\forall y)(x + y = y + x)$
ix) $(\forall x)(\forall y)(\forall z)((x \cdot y) \cdot z = x \cdot (y \cdot z))$
x) $(\forall x)(\forall y)(\forall z)((x \cdot y) + z = x \cdot (y \cdot z))$
xi) $(\forall x)(x + 1 = 0)$
xi) $(\forall x)(x = 0 \lor (\exists y)(x \cdot y = 1))$
xii) $(\forall x)(\forall y)(x \cdot y = y \cdot x)$

イロン 不問と 不同と 不同と

Ordered Field:

xiii)
$$(\forall x)(\forall y)(\forall z)(x < y \rightarrow x + z < y + z)$$

$$\operatorname{xiv}) \ (\forall x)(\forall y)(\forall z)(0 < z \rightarrow (x < y \rightarrow x \cdot z < y \cdot z))$$

Real Closed Axioms:

For each odd $n \in \mathbb{N}$, 'polynomials of degree n have a root'

we write
$$(\forall x_0) \cdots (\forall x_n) (\exists v) (x_0 + x_1 \cdot v + \cdots + x_n \cdot v^n = 0)$$

And, 'positive elements have a square root'

we write
$$(\forall x)(\exists y)(0 < x \rightarrow (y \cdot y = x))$$

Quantifier-free formulas preserved under submodels Pf:

Case 1: Ψ is of the form $t_1 = t_2$ for terms t_1, t_2 . Then,

$$\mathbb{M}\models \Psi[\overline{a}] \iff t_1^{\mathbb{M}}[\overline{a}]=t_2^{\mathbb{M}}[\overline{a}] \iff t_1^{\mathbb{N}}[\overline{a}]=t_2^{\mathbb{N}}[\overline{a}] \iff \mathbb{N}\models \Psi[\overline{a}]$$

Case 2: Ψ is of the form $t_1 < t_2$ for terms t_1, t_2 . Then,

 $\mathbb{M} \models \Psi[\overline{a}] \iff t_1^{\mathbb{M}}[\overline{a}] <_{\mathbb{M}} t_2^{\mathbb{M}}[\overline{a}] \iff t_1^{\mathbb{N}}[\overline{a}] <_{\mathbb{N}} t_2^{\mathbb{N}}[\overline{a}] \iff \mathbb{N} \models \Psi[\overline{a}]$

Case 3: Ψ is of the form $\neg \Phi$ where the result holds for Φ . Then,

 $\mathbb{M} \models \Psi[\overline{a}] \iff \text{ not } \mathbb{M} \models \Phi[\overline{a}] \iff \text{ not } \mathbb{N} \models \Phi[\overline{a}] \iff \mathbb{N} \models \Psi[\overline{a}]$

Case 4: Ψ is of the form $\Phi \land \Theta$ where the result holds for Φ and Θ . Then,

$$\mathbb{M} \models \Psi[\overline{a}] \iff \mathbb{M} \models \Phi[\overline{a}] \text{ and } \mathbb{M} \models \Theta[\overline{a}] \iff$$

$$\mathbb{N} \models \Phi[\overline{a}] \text{ and } \mathbb{N} \models \Theta[\overline{a}] \iff \mathbb{N} \models \Psi[\overline{a}]$$

The cases of formulas built from \lor and \rightarrow follow by the equivalences,

i)
$$A \lor B \iff \neg(\neg A \land \neg B)$$

ii)
$$A \to B \iff \neg(\neg B \land A)$$