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Main Theorem: f ∈ R[x ] , f (x) ≥ 0 imply f =
∑

i f
2
i ,

where x = (x0, . . . , xn) , {fj}j ⊂ R(x) , R[x ] and R(x) are the ring of

polynomials and the field of their fractions. We’ll use fields and models.

Def 1: Field F is ordered with order <F (or ”< ” if clear) when

i) ∀x , y , z ∈ F, x < y =⇒ x + z < y + z (implies char(F) = 0 );

ii) ∀x , y , z ∈ F, (x < y and 0 < z) =⇒ xz < yz (implies x2 > 0 for x 6= 0).

Def 2: A real closed field is an ordered field (F, <F) such that:

i) Every positive element of F has a square root in F ;

ii) Every odd degree polynomial of F has a root in F .
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Fact: Real closed fields admit quantifier elimination.

With p a prime number we’ll also use the following

Easy Fact: Groups of size pk have normal subgroups of index = p .

Lemma 1: If −1 and b ∈ F are not sums of squares in a field F

then −1 is not a sum of squares (shortly ss) in F(
√
−b) .

Proof: Case
√
−b 6∈ F suffices, equivalently dimF F(

√
−b) = 2 . Then

−1 =
m∑
i=1

(xi + yi
√
−b)2 ⇒ b =

1+
∑

i xi
2∑

i yi
2 =

∑
i wi

2 since

(
∑

i yi
2)−1 =

∑
i (yi/

∑
j yj

2)2 , contrary to the assumption. �
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Question: Why R(x) and not R[x ]?

Proposition: The function f (x , y) = x4y2 + x2y4 − x2y2 + 1 is positive

but not a sum of squares in R[x , y ].

Pf: Easy calculus ⇒ f is positive (min(f (x , y)) = 26/27). Suppose

f =
∑

q2
i with qi ∈ R[x ]. Notice that deg(qi ) ≤ 2 w.r.t both x and y .

Then qi is of the form:

qi = ai0 + ai1x + ai2y + ai3xy + ai4x
2 + ai5y

2 + ai6x
2y + ai7y

2x + ai8x
2y2.

Comparing coefficients of in the equation f =
∑

q2
i shows

∑
(ai8)2 = 0
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Hence a9
i = 0 for each i . Similarly, ai4 = ai5 = 0 for each i. Then

coefficients with ai9 = ai4 = ai5 = 0 show that ai2 = ai1 = 0 as well. Finally,

Looking at the coefficent of x2y2 in the new equation

x4y2 + x2y4 − x2y2 + 1 =
∑

(ai0 + +ai3xy + ai6x
2y + ai7y

2x)2

we obtain −1 =
∑

(ai3)2, which is impossible. �
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More Algebraic Results on Ordered Fields

Lemma 2: If F is a field where -1 is not a ss and b ∈ F is not a ss then

F can be ordered so that b < 0.

Proof: Let F = {fields K : F(
√
−b) ⊂ K ⊂ F and -1 is not a ss in K}

By Zorn’s Lemma, F has a maximal element K. By Lemma 1, if c is not a

ss in K, then K(
√
−c) ∈ F . So, by maximality,

√
−c ∈ K . Order K as

follows: x < y ⇐⇒ y − x 6= 0 and y − x is a square in K

This is easily checked to be well-defined. Then both F(
√
−b) and F
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inherit this order as subfields and −b = (
√
−b)2 > 0 so b < 0 . �

Corollary 1: A field F can be ordered iff −1 is not a sum of squares in F

Pf: Lemma 2 implies ”⇐=” . For ”⇒” note 1 = 12 > 0 ⇐⇒ −1 < 0 �

Fund. Thm. Alg. If F is a real closed field, then F(
√
−1) is alg. closed.

Proof: If a , b ∈ F then, (

√
a+
√
a2+b2

2 ±
√
−a+

√
a2+b2

2

√
−1)2 =

a+
√
a2+b2

2 − −a+
√
a2+b2

2 ± 2

√
a+
√
a2+b2

2
−a+

√
a2+b2

2

√
−1 = a± |b|

√
−1 ,

where |b| := max{b;−b} , i.e. elements in F(
√
−1) have square roots.
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Proof of Fund. Thm of Alg. for Real Closed Fields.

F(
√
−1) has no quadratic extensions, i.e. P ∈ F(

√
−1)[x ] of deg 2 factor.

For any finite Galois extension K of F(
√
−1) write dimFK = 2nm (m odd).

Sylow Thm: exists subgroup H of G := Gal(K/F) with |H| = 2n .

Then [G : H] = m . Say β generates over F the field L fixed by H . Then

minimal degree f (x) ∈ F[x ] with f (β) = 0 are irreducible and deg f = m ,

but m being odd and F a real closed field ⇒ m = 1 ⇒ G is a p-group

with p = 2 , i.e. |G | = 2k .
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F(
√
−1) is Galois, so J = Gal(F(

√
−1)/F)E G , i.e. G/J is a group.

Basic Fact: Gal(K/F(
√
−1)) ∼= G/J ⇒ |Gal(K/F(

√
−1))| = 2n−1 .

If n 6= 1, ”Easy Fact” imples ∃ N E G/J such that [G/J : N] = 2

If M is the field fixed by N over F(
√
−1) then [M : F(

√
−1)] = 2 .

But F(
√
−1) has no quadratic extensions. Hence n = 1 and F(

√
−1) is

the algebraic closure of F, as required. �
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Ordered Algebraic Extensions of Ordered Fields

Corollary 2: F is real closed =⇒ F has no ordered algebraic extensions.

Pf: The only algebraic extension of F is F(
√
−1) which

cannot be ordered since −1 is a sum of squares. �

Lemma 3: If F is an ordered field then F can be extended to an ordered

field K with every positive element of F being a square.

Pf: ’Our’ field K is generated by {
√
c : c ∈ F, c > 0}. Indeed, -1 is not

a ss in this field. If not, then −1 is a ss in F′ := F(
√
c0, ...,

√
cn) for some
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c0, ..., cn ∈ F. All products of distinct
√
ci form an F-basis for F′.

Then −1 = (
∑
N⊂n

bN(
∏
i∈N

√
ci ))2 =

∑
N⊂n

b2
N(

∏
i∈N

ci ) >F 0 ,

but this is a contradiction. By Lemma 2, K can be ordered. �

Lemma 4: If F is an ordered field and f (x) ∈ F[x ] is irreducible of odd

degree then F[x ]/(f (x)) can be ordered in a compatbile way with F.

Pf: Extend F to K from Lemma 3. Induction on n = deg(f )−1
2 (n=0 clear).

If case ”n-1” ; case ”n”, let f (α) = 0 and K(α) cannot be ordered

⇐⇒ ∃ g0, ..., gn such that
n∑

i=0
gi (α)2 = −1 (Corollary 1).
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Equivalently ∃ q s.th f (x)q(x) +
n∑

i=0
gi (x)2 = −1 in K[x ]. WLOG we may

assume deg(gi ) < deg(f )⇒ deg(q) < (deg(f )− 2) and is odd.

Say β ∈ K s.th. q(β) = 0 ⇒ f (β)q(β) +
n∑

i=0
gi (β)2 =

n∑
i=0

gi (β)2 = −1 ,

which contradicts the inductive assumption. Hence, K[x ]/(f (x)) can be

ordered and F[x ]/(f (x)) can be ordered by restriction. This extends <F. �
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Summarizing Corollary 2 and Lemmas 3, 4 we have:

Theorem 2: If F is an ordered field then,

F is real closed ⇐⇒ F has no ordered algebraic extensions �

Corollary 3: Ordered fields admit algebraic real closed extensions.

Pf: Extend F to K from Lemma 3. By Zorn’s Lemma, K has a maximal

ordered algebraic extension. By theorem 2, this extension is real closed. �
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Concepts from Model Theory with reminder (Alex’s talk):

1st-order language has quantifiers ”for all” ≡ ∀ and ”there exists” ≡ ∃ .

Def 3: The 1st order language LOR contains the following symbols,

i) The binary functions +, − and ·

ii) A binary relation <

iii) The constant symbols 0 and 1

Appendix contains explicit expressions for the axioms (called RCF) of

real closed fields in this language.
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Def 4: A theory for a language L is a set of L-sentences.

Def 5: An L-structure M is called a model of a theory T if M |= Φ

for each Φ ∈ T. In this case we write M |= T.

Recall |M| stands for the underlying set of the model M .

Def 6: M and N are L-structures ⇒ M is a submodel of N (M ⊆ N) if

i) |M| ⊆ |N|

ii) For each n-ary function symbol f ∈ L, f N||M| = f M

iii) For each n-ary relation symbol R ∈ L, RM = RN⋂
|M|n
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Recall that M |= Φ[a0, ..., an] means Φ is true of a0, ..., an in model M.

Def 7: If M and N are L-structures then M is an elementary submodel

of N (we write M � N) provided:

i) M ⊆ N

ii) For each formula φ(v0, ..., vn) and each (a0, ..., an) ∈ |M|n+1,

M |= Φ[a0, ..., an] ⇐⇒ N |= Φ[a0, ..., an] .

Def 8: Theory T is model-complete when for all models M,N |= T,

M ⊆ N =⇒M � N (we say that all submodels are elementary).
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Def 9: Theory T has quantifier elimination if for a formula Φ(v0, ..., vn)

T |= (∀v0 · · · ∀vn)(Φ↔ Ψ) with Ψ(v0, . . . , vn) quantifier-free.

Fact: The theory RCF admits quantifer elimination.

Lemma 5: If T has quantifier elimination, then T is model complete.

Pf: It suffices to show that if Ψ(v0, . . . , vn) is quantifier free and M ⊂ N

then M |= Ψ[a0, ..., an] ⇐⇒ N |= Ψ[a0, ..., an] for all a0, . . . , an ∈ |M|.

This fact is proven by induction on complexity of Ψ (details attached). �

Corollary 4: RCF is model complete.
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Return to the Main Theorem (Hilbert’s 17th Problem):

f ∈ R[x ] and f (x) ≥ 0, ∀x ∈ Rn+1 ⇒ ∃ f1, ..., fm ∈ R(x) s.th f =
m∑
i=1

f 2
i .

Pf: If not true, say f (x) ≥ 0 and f is not a ss in R(x). Since −1 is not a ss

in the field R(x), there is a field ordering <R(x) (shortly < ) s.th f < 0

by Lemma 1. Every positive element of R is a square in R(x) ⇒

ordering <R(x) extends <R. Therefore R and R(x) are LOR -models,

by interpreting the +, · and < symbols in the obvious way.

We can extend R(x) to a real closed field F (see page 12, Cor. 3).
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We now have R ⊂ F so by model completeness, we have R � F.

Let m = deg(f ). Since the coefficients of f also lie in F, we can view it

as an element of F or as a degree m polynomial in F[t] , t = (t0, . . . , tn) .

There is a formula Φ(v0, ..., vk) (see appendix) s.th for a model K of RCF,

K |= Φ(v0, ..., vk)[a0, ..., ak ] means that polynomial g ∈ K[t] of deg m

with coefficients a0, ..., ak takes a negative value.
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Then letting [a0, ..., ak ] be the coefficients of f we have F |= Φ[a0, ..., ak ]

since the elements x0, ..., xn ∈ F make f negative by construction.

By model completeness we can infer that

R |= Φ[a0, ...ak ] which is to say that f takes a negative value

at a point (p0, ..., pn) ∈ Rn+1, contradicting our assumption.

Then it must be the case that f is in fact a sum of squares in R(x)

so we are done. �
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Appendix

1) A formula Φ(v0, ..., vk) stating ”The polynomial of degree m with

coefficients v0, ..., vk is negative for some value” we write as:

∃x0 · · · ∃xn(v0 +v1xo +v2x1 + · · ·+vn+1xn + · · ·+vk−nx
m
0 + · · ·+vkx

m
n < 0)

2) Real Closed Field Axioms in LORF

Total order: i)(∀x)¬(x < x) ii)(∀x)(∀y)¬(x < y ∧ y < x)

iii)(∀x)(∀y)(∀z)((x < y ∧ y < z)→ (x < z)

iv)(∀x)(∀y)((x < y ∨ y < x ∨ x = y)
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Field axioms:

v) (∀x)(∀y)(∀z)((x + y) + z = x + (y + z))

vi) (∀x)(x + 0 = x) vii)(∀x)(∃y)(x + y = 0)

viii) (∀x)(∀y)(x + y = y + x)

ix) (∀x)(∀y)(∀z)((x · y) · z = x · (y · z))

x) (∀x)(x · 1 = 0)

xi) (∀x)(x = 0 ∨ (∃y)(x · y = 1))

xii) (∀x)(∀y)(x · y = y · x)
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Ordered Field:

xiii) (∀x)(∀y)(∀z)(x < y → x + z < y + z)

xiv) (∀x)(∀y)(∀z)(0 < z → (x < y → x · z < y · z))

Real Closed Axioms:

For each odd n ∈ N, ’polynomials of degree n have a root’

we write (∀x0) · · · (∀xn)(∃v)(x0 + x1 · v + · · ·+ xn · vn = 0)

And, ’positive elements have a square root’

we write (∀x)(∃y)(0 < x → (y · y = x))
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Quantifier-free formulas preserved under submodels Pf:

Case 1: Ψ is of the form t1 = t2 for terms t1, t2. Then,

M |= Ψ[a] ⇐⇒ tM1 [a] = tM2 [a] ⇐⇒ tN1 [a] = tN2 [a] ⇐⇒ N |= Ψ[a]

Case 2: Ψ is of the form t1 < t2 for terms t1, t2. Then,

M |= Ψ[a] ⇐⇒ tM1 [a] <M tM2 [a] ⇐⇒ tN1 [a] <N tN2 [a] ⇐⇒ N |= Ψ[a]

Case 3: Ψ is of the form ¬Φ where the result holds for Φ. Then,
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M |= Ψ[a] ⇐⇒ not M |= Φ[a] ⇐⇒ not N |= Φ[a] ⇐⇒ N |= Ψ[a]

Case 4: Ψ is of the form Φ ∧Θ where the result holds for Φ and Θ. Then,

M |= Ψ[a] ⇐⇒ M |= Φ[a] and M |= Θ[a] ⇐⇒

N |= Φ[a] and N |= Θ[a] ⇐⇒ N |= Ψ[a]

The cases of formulas built from ∨ and → follow by the equivalences,

i) A ∨ B ⇐⇒ ¬(¬A ∧ ¬B)

ii) A→ B ⇐⇒ ¬(¬B ∧ A)
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