Hilbert's 17th Problem for Real Closed Fields à la Artin

Aaron Crighton

MAT 477
February 4, 2014

Main Theorem: $f \in \mathbb{R}[x], f(x) \geq 0$ imply $f=\sum_{i} f_{i}^{2}$,

 where $x=\left(x_{0}, \ldots, x_{n}\right),\left\{f_{j}\right\}_{j} \subset \mathbb{R}(x), \mathbb{R}[x]$ and $\mathbb{R}(x)$ are the ring of polynomials and the field of their fractions. We'll use fields and models.Def 1: Field \mathbb{F} is ordered with order $<\mathbb{F}$ (or " $<$ " if clear) when
i) $\forall x, y, z \in \mathbb{F}, x<y \Longrightarrow x+z<y+z$ (implies char $(\mathbb{F})=0$);
ii) $\forall x, y, z \in \mathbb{F},(x<y$ and $0<z) \Longrightarrow x z<y z$ (implies $x^{2}>0$ for $\left.x \neq 0\right)$.

Def 2: A real closed field is an ordered field $(\mathbb{F},<\mathbb{F})$ such that:
i) Every positive element of \mathbb{F} has a square root in \mathbb{F};
ii) Every odd degree polynomial of \mathbb{F} has a root in \mathbb{F}.

Fact: Real closed fields admit quantifier elimination.

With p a prime number we'll also use the following
Easy Fact: Groups of size p^{k} have normal subgroups of index $=p$.
Lemma 1: If -1 and $b \in \mathbb{F}$ are not sums of squares in a field \mathbb{F}
then -1 is not a sum of squares (shortly ss) in $\mathbb{F}(\sqrt{-b})$.
Proof: Case $\sqrt{-b} \notin \mathbb{F}$ suffices, equivalently $\operatorname{dim}_{\mathbb{F}} \mathbb{F}(\sqrt{-b})=2$. Then
$-1=\sum_{i=1}^{m}\left(x_{i}+y_{i} \sqrt{-b}\right)^{2} \Rightarrow b=\frac{1+\sum_{i} x_{i}{ }^{2}}{\sum_{i} y_{i}{ }^{2}}=\sum_{i} w_{i}{ }^{2}$ since
$\left(\sum_{i} y_{i}^{2}\right)^{-1}=\sum_{i}\left(y_{i} / \sum_{j} y_{j}^{2}\right)^{2}$, contrary to the assumption.

Question: Why $\mathbb{R}(x)$ and not $\mathbb{R}[x]$?

Proposition: The function $f(x, y)=x^{4} y^{2}+x^{2} y^{4}-x^{2} y^{2}+1$ is positive but not a sum of squares in $\mathbb{R}[x, y]$.

Pf: Easy calculus $\Rightarrow f$ is positive $(\min (f(x, y))=26 / 27)$. Suppose
$f=\sum q_{i}^{2}$ with $q_{i} \in \mathbb{R}[x]$. Notice that $\operatorname{deg}\left(q_{i}\right) \leq 2$ w.r.t both x and y.

Then q_{i} is of the form:
$q_{i}=a_{0}^{i}+a_{1}^{i} x+a_{2}^{i} y+a_{3}^{i} x y+a_{4}^{i} x^{2}+a_{5}^{i} y^{2}+a_{6}^{i} x^{2} y+a_{7}^{i} y^{2} x+a_{8}^{i} x^{2} y^{2}$.
Comparing coefficients of in the equation $f=\sum q_{i}^{2}$ shows $\sum\left(a_{8}^{i}\right)^{2}=0$

Hence $a_{i}^{9}=0$ for each i. Similarly, $a_{4}^{i}=a_{5}^{i}=0$ for each i. Then
coefficients with $a_{9}^{i}=a_{4}^{i}=a_{5}^{i}=0$ show that $a_{2}^{i}=a_{1}^{i}=0$ as well. Finally,

Looking at the coefficent of $x^{2} y^{2}$ in the new equation
$x^{4} y^{2}+x^{2} y^{4}-x^{2} y^{2}+1=\sum\left(a_{0}^{i}++a_{3}^{i} x y+a_{6}^{i} x^{2} y+a_{7}^{i} y^{2} x\right)^{2}$
we obtain $-1=\sum\left(a_{3}^{i}\right)^{2}$, which is impossible. \square

More Algebraic Results on Ordered Fields

Lemma 2: If \mathbb{F} is a field where -1 is not a ss and $b \in \mathbb{F}$ is not a ss then
\mathbb{F} can be ordered so that $b<0$.

Proof: Let $\mathbf{F}=\{$ fields $\mathbb{K}: \mathbb{F}(\sqrt{-b}) \subset \mathbb{K} \subset \overline{\mathbb{F}}$ and -1 is not a ss in $\mathbb{K}\}$

By Zorn's Lemma, \mathbf{F} has a maximal element \mathbb{K}. By Lemma 1 , if c is not a ss in \mathbb{K}, then $\mathbb{K}(\sqrt{-c}) \in \mathbf{F}$. So, by maximality, $\sqrt{-c} \in \mathbb{K}$. Order \mathbb{K} as follows: $\quad x<y \Longleftrightarrow y-x \neq 0$ and $y-x$ is a square in \mathbb{K}

This is easily checked to be well-defined. Then both $\mathbb{F}(\sqrt{-b})$ and \mathbb{F}
inherit this order as subfields and $-b=(\sqrt{-b})^{2}>0$ so $b<0 . \square$

Corollary 1: A field \mathbb{F} can be ordered iff -1 is not a sum of squares in \mathbb{F}

Pf: Lemma 2 implies " " ". For " \Rightarrow " note $1=1^{2}>0 \Longleftrightarrow-1<0 \square$

Fund. Thm. Alg. If \mathbb{F} is a real closed field, then $\mathbb{F}(\sqrt{-1})$ is alg. closed.

Proof: If $a, b \in \mathbb{F}$ then, $\left(\sqrt{\frac{a+\sqrt{a^{2}+b^{2}}}{2}} \pm \sqrt{\frac{-a+\sqrt{a^{2}+b^{2}}}{2}} \sqrt{-1}\right)^{2}=$
$\frac{a+\sqrt{a^{2}+b^{2}}}{2}-\frac{-a+\sqrt{a^{2}+b^{2}}}{2} \pm 2 \sqrt{\frac{a+\sqrt{a^{2}+b^{2}}}{2} \frac{-a+\sqrt{a^{2}+b^{2}}}{2}} \sqrt{-1}=a \pm|b| \sqrt{-1}$,
where $|b|:=\max \{b ;-b\}$, i.e. elements in $\mathbb{F}(\sqrt{-1})$ have square roots.

Proof of Fund. Thm of Alg. for Real Closed Fields.

$\mathbb{F}(\sqrt{-1})$ has no quadratic extensions, i.e. $P \in \mathbb{F}(\sqrt{-1})[x]$ of deg 2 factor.

For any finite Galois extension \mathbb{K} of $\mathbb{F}(\sqrt{-1})$ write $\operatorname{dim}_{\mathbb{F}} \mathbb{K}=2^{n} m(m$ odd $)$.

Sylow Thm: exists subgroup H of $G:=\operatorname{Gal}(\mathbb{K} / \mathbb{F})$ with $|H|=2^{n}$.

Then $[G: H]=m$. Say β generates over \mathbb{F} the field \mathbb{L} fixed by H. Then minimal degree $f(x) \in \mathbb{F}[x]$ with $f(\beta)=0$ are irreducible and $\operatorname{deg} f=m$, but m being odd and \mathbb{F} a real closed field $\Rightarrow m=1 \Rightarrow G$ is a p-group with $p=2$, i.e. $|G|=2^{k}$.
$\mathbb{F}(\sqrt{-1})$ is Galois, so $J=G a l(\mathbb{F}(\sqrt{-1}) / \mathbb{F}) \unlhd G$, i.e. G / J is a group.

Basic Fact: $\operatorname{Gal}(\mathbb{K} / \mathbb{F}(\sqrt{-1})) \cong G / J \Rightarrow|\operatorname{Gal}(\mathbb{K} / \mathbb{F}(\sqrt{-1}))|=2^{n-1}$.

If $n \neq 1$, "Easy Fact" imples $\exists N \unlhd G / J$ such that $[G / J: N]=2$

If \mathbb{M} is the field fixed by N over $\mathbb{F}(\sqrt{-1})$ then $[\mathbb{M}: \mathbb{F}(\sqrt{-1})]=2$.

But $\mathbb{F}(\sqrt{-1})$ has no quadratic extensions. Hence $n=1$ and $\mathbb{F}(\sqrt{-1})$ is
the algebraic closure of \mathbb{F}, as required. \square

Ordered Algebraic Extensions of Ordered Fields

Corollary 2: \mathbb{F} is real closed $\Longrightarrow \mathbb{F}$ has no ordered algebraic extensions.

Pf: The only algebraic extension of \mathbb{F} is $\mathbb{F}(\sqrt{-1})$ which
cannot be ordered since -1 is a sum of squares. \square

Lemma 3: If \mathbb{F} is an ordered field then \mathbb{F} can be extended to an ordered
field \mathbb{K} with every positive element of \mathbb{F} being a square.

Pf: 'Our' field \mathbb{K} is generated by $\{\sqrt{c}: c \in \mathbb{F}, c>0\}$. Indeed, -1 is not
a ss in this field. If not, then -1 is a ss in $\mathbb{F}^{\prime}:=\mathbb{F}\left(\sqrt{c_{0}}, \ldots, \sqrt{c_{n}}\right)$ for some
$c_{0}, \ldots, c_{n} \in \mathbb{F}$. All products of distinct $\sqrt{c_{i}}$ form an \mathbb{F}-basis for \mathbb{F}^{\prime}.
Then $-1=\left(\sum_{N \subset n} b_{N}\left(\prod_{i \in N} \sqrt{c_{i}}\right)\right)^{2}=\sum_{N \subset n} b_{N}^{2}\left(\prod_{i \in N} c_{i}\right)>_{\mathbb{F}} 0$,
but this is a contradiction. By Lemma $2, \mathbb{K}$ can be ordered. \square
Lemma 4: If \mathbb{F} is an ordered field and $f(x) \in \mathbb{F}[x]$ is irreducible of odd degree then $\mathbb{F}[x] /(f(x))$ can be ordered in a compatbile way with \mathbb{F}.

Pf: Extend \mathbb{F} to \mathbb{K} from Lemma 3. Induction on $n=\frac{\operatorname{deg}(f)-1}{2}(\mathrm{n}=0$ clear).
If case " $\mathrm{n}-1$ " \nRightarrow case " n ", let $f(\alpha)=0$ and $\mathbb{K}(\alpha)$ cannot be ordered
$\Longleftrightarrow \exists g_{0}, \ldots, g_{n}$ such that $\sum_{i=0}^{n} g_{i}(\alpha)^{2}=-1 \quad$ (Corollary 1).

Equivalently $\exists q$ s.th $f(x) q(x)+\sum_{i=0}^{n} g_{i}(x)^{2}=-1$ in $\mathbb{K}[x]$. WLOG we may
assume $\operatorname{deg}\left(g_{i}\right)<\operatorname{deg}(f) \Rightarrow \operatorname{deg}(q)<(\operatorname{deg}(f)-2)$ and is odd.

Say $\beta \in \overline{\mathbb{K}}$ s.th. $q(\beta)=0 \Rightarrow f(\beta) q(\beta)+\sum_{i=0}^{n} g_{i}(\beta)^{2}=\sum_{i=0}^{n} g_{i}(\beta)^{2}=-1$,
which contradicts the inductive assumption. Hence, $\mathbb{K}[x] /(f(x))$ can be
ordered and $\mathbb{F}[x] /(f(x))$ can be ordered by restriction. This extends $<_{\mathbb{F}}$. \square

Summarizing Corollary 2 and Lemmas 3, 4 we have:

Theorem 2: If \mathbb{F} is an ordered field then,
\mathbb{F} is real closed $\Longleftrightarrow \mathbb{F}$ has no ordered algebraic extensions \square

Corollary 3: Ordered fields admit algebraic real closed extensions.

Pf: Extend \mathbb{F} to \mathbb{K} from Lemma 3. By Zorn's Lemma, \mathbb{K} has a maximal ordered algebraic extension. By theorem 2, this extension is real closed. \square

Concepts from Model Theory with reminder (Alex's talk):

$1^{\text {st }}$-order language has quantifiers "for all" $\equiv \forall$ and "there exists" $\equiv \exists$.

Def 3: The $1^{\text {st }}$ order language $\mathbb{L}_{O R}$ contains the following symbols,
i) The binary functions + , - and .
ii) A binary relation $<$
iii) The constant symbols 0 and 1

Appendix contains explicit expressions for the axioms (called RCF) of
real closed fields in this language.

Def 4: A theory for a language \mathbb{L} is a set of \mathbb{L}-sentences.

Def 5: An \mathbb{L}-structure \mathbb{M} is called a model of a theory \mathbf{T} if $\mathbb{M} \models \Phi$
for each $\Phi \in \mathbf{T}$. In this case we write $\mathbb{M} \models \mathbf{T}$.

Recall $|\mathbb{M}|$ stands for the underlying set of the model \mathbb{M}.

Def 6: \mathbb{M} and \mathbb{N} are \mathbb{L}-structures $\Rightarrow \mathbb{M}$ is a submodel of $\mathbb{N}(\mathbb{M} \subseteq \mathbb{N})$ if
i) $|\mathbb{M}| \subseteq|\mathbb{N}|$
ii) For each n-ary function symbol $f \in \mathbb{L},\left.f^{\mathbb{N}}\right|_{|\mathbb{M}|}=f^{\mathbb{M}}$
iii) For each n-ary relation symbol $R \in \mathbb{L}, R^{\mathbb{M}}=R^{\mathbb{N}} \bigcap|\mathbb{M}|^{n}$

Recall that $\mathbb{M} \models \Phi\left[a_{0}, \ldots, a_{n}\right]$ means Φ is true of a_{0}, \ldots, a_{n} in model \mathbb{M}.

Def 7: If \mathbb{M} and \mathbb{N} are \mathbb{L}-structures then \mathbb{M} is an elementary submodel
of \mathbb{N} (we write $\mathbb{M} \preceq \mathbb{N}$) provided:
i) $\mathbb{M} \subseteq \mathbb{N}$
ii) For each formula $\phi\left(v_{0}, \ldots, v_{n}\right)$ and each $\left(a_{0}, \ldots, a_{n}\right) \in|\mathbb{M}|^{n+1}$,
$\mathbb{M} \models \Phi\left[a_{0}, \ldots, a_{n}\right] \Longleftrightarrow \mathbb{N} \models \Phi\left[a_{0}, \ldots, a_{n}\right]$.
Def 8: Theory \mathbf{T} is model-complete when for all models $\mathbb{M}, \mathbb{N} \models \mathbf{T}$,
$\mathbb{M} \subseteq \mathbb{N} \Longrightarrow \mathbb{M} \preceq \mathbb{N}$ (we say that all submodels are elementary).

Def 9: Theory \mathbf{T} has quantifier elimination if for a formula $\Phi\left(v_{0}, \ldots, v_{n}\right)$
$\mathbf{T} \models\left(\forall v_{0} \cdots \forall v_{n}\right)(\Phi \leftrightarrow \Psi)$ with $\Psi\left(v_{0}, \ldots, v_{n}\right)$ quantifier-free.

Fact: The theory RCF admits quantifer elimination.

Lemma 5: If \mathbf{T} has quantifier elimination, then \mathbf{T} is model complete.

Pf: It suffices to show that if $\Psi\left(v_{0}, \ldots, v_{n}\right)$ is quantifier free and $\mathbb{M} \subset \mathbb{N}$ then $\mathbb{M} \models \Psi\left[a_{0}, \ldots, a_{n}\right] \Longleftrightarrow \mathbb{N} \models \Psi\left[a_{0}, \ldots, a_{n}\right]$ for all $a_{0}, \ldots, a_{n} \in|\mathbb{M}|$.

This fact is proven by induction on complexity of Ψ (details attached). \square

Corollary 4: RCF is model complete.

Return to the Main Theorem (Hilbert's 17th Problem):

$f \in \mathbb{R}[x]$ and $f(x) \geq 0, \forall x \in \mathbb{R}^{n+1} \Rightarrow \exists f_{1}, \ldots, f_{m} \in \mathbb{R}(x)$ s.th $f=\sum_{i=1}^{m} f_{i}^{2}$.
Pf: If not true, say $f(x) \geq 0$ and f is not a ss in $\mathbb{R}(x)$. Since -1 is not a ss
in the field $\mathbb{R}(x)$, there is a field ordering $<_{\mathbb{R}(x)}$ (shortly $\left.<\right)$ s.th $f<0$
by Lemma 1 . Every positive element of \mathbb{R} is a square in $\mathbb{R}(x) \Rightarrow$
ordering $<_{\mathbb{R}(x)}$ extends $<_{\mathbb{R}}$. Therefore \mathbb{R} and $\mathbb{R}(x)$ are $\mathbb{L}_{O R}$-models,
by interpreting the,+ . and $<$ symbols in the obvious way.
We can extend $\mathbb{R}(x)$ to a real closed field \mathbb{F} (see page 12 , Cor. 3).

We now have $\mathbb{R} \subset \mathbb{F}$ so by model completeness, we have $\mathbb{R} \preceq \mathbb{F}$.

Let $m=\operatorname{deg}(f)$. Since the coefficients of f also lie in \mathbb{F}, we can view it
as an element of \mathbb{F} or as a degree m polynomial in $\mathbb{F}[t], t=\left(t_{0}, \ldots, t_{n}\right)$.

There is a formula $\Phi\left(v_{0}, \ldots, v_{k}\right)$ (see appendix) s.th for a model \mathbb{K} of RCF,
$\mathbb{K} \models \Phi\left(v_{0}, \ldots, v_{k}\right)\left[a_{0}, \ldots, a_{k}\right]$ means that polynomial $g \in \mathbb{K}[t]$ of deg m
with coefficients a_{0}, \ldots, a_{k} takes a negative value.

Then letting $\left[a_{0}, \ldots, a_{k}\right]$ be the coefficients of f we have $\mathbb{F} \models \Phi\left[a_{0}, \ldots, a_{k}\right]$
since the elements $x_{0}, \ldots, x_{n} \in \mathbb{F}$ make f negative by construction.

By model completeness we can infer that
$\mathbb{R} \models \Phi\left[a_{0}, \ldots a_{k}\right]$ which is to say that f takes a negative value
at a point $\left(p_{0}, \ldots, p_{n}\right) \in \mathbb{R}^{n+1}$, contradicting our assumption.

Then it must be the case that f is in fact a sum of squares in $\mathbb{R}(x)$
so we are done.

Appendix

1) A formula $\Phi\left(v_{0}, \ldots, v_{k}\right)$ stating "The polynomial of degree m with coefficients v_{0}, \ldots, v_{k} is negative for some value" we write as:
$\exists x_{0} \cdots \exists x_{n}\left(v_{0}+v_{1} x_{o}+v_{2} x_{1}+\cdots+v_{n+1} x_{n}+\cdots+v_{k-n} x_{0}^{m}+\cdots+v_{k} x_{n}^{m}<0\right)$
2) Real Closed Field Axioms in $\mathbb{L}_{\text {ORF }}$

Total order: \quad i $)(\forall x) \neg(x<x) \quad$ ii $)(\forall x)(\forall y) \neg(x<y \wedge y<x)$
iii) $(\forall x)(\forall y)(\forall z)((x<y \wedge y<z) \rightarrow(x<z)$
iv) $(\forall x)(\forall y)((x<y \vee y<x \vee x=y)$

Field axioms:

$$
\begin{aligned}
& \text { v) }(\forall x)(\forall y)(\forall z)((x+y)+z=x+(y+z)) \\
& \text { vi) }(\forall x)(x+0=x) \quad \text { vii })(\forall x)(\exists y)(x+y=0) \\
& \text { viii) }(\forall x)(\forall y)(x+y=y+x) \\
& \text { ix) }(\forall x)(\forall y)(\forall z)((x \cdot y) \cdot z=x \cdot(y \cdot z)) \\
& \text { x) }(\forall x)(x \cdot 1=0) \\
& \text { xi) }(\forall x)(x=0 \vee(\exists y)(x \cdot y=1)) \\
& \text { xii) }(\forall x)(\forall y)(x \cdot y=y \cdot x)
\end{aligned}
$$

Ordered Field:

xiii) $(\forall x)(\forall y)(\forall z)(x<y \rightarrow x+z<y+z)$
xiv) $(\forall x)(\forall y)(\forall z)(0<z \rightarrow(x<y \rightarrow x \cdot z<y \cdot z))$

Real Closed Axioms:

For each odd $n \in \mathbb{N}$, 'polynomials of degree n have a root'
we write $\left(\forall x_{0}\right) \cdots\left(\forall x_{n}\right)(\exists v)\left(x_{0}+x_{1} \cdot v+\cdots+x_{n} \cdot v^{n}=0\right)$

And, 'positive elements have a square root'
we write $(\forall x)(\exists y)(0<x \rightarrow(y \cdot y=x))$

Quantifier-free formulas preserved under submodels Pf:

Case 1: Ψ is of the form $t_{1}=t_{2}$ for terms t_{1}, t_{2}. Then,
$\mathbb{M} \models \Psi[\bar{a}] \Longleftrightarrow t_{1}^{\mathbb{M}}[\bar{a}]=t_{2}^{\mathbb{M}}[\bar{a}] \Longleftrightarrow t_{1}^{\mathbb{N}}[\bar{a}]=t_{2}^{\mathbb{N}}[\bar{a}] \Longleftrightarrow \mathbb{N} \models \Psi[\bar{a}]$

Case 2: Ψ is of the form $t_{1}<t_{2}$ for terms t_{1}, t_{2}. Then,
$\mathbb{M} \models \Psi[\bar{a}] \Longleftrightarrow t_{1}^{\mathbb{M}}[\bar{a}]<_{\mathbb{M}} t_{2}^{\mathbb{M}}[\bar{a}] \Longleftrightarrow t_{1}^{\mathbb{N}}[\bar{a}]<_{\mathbb{N}} t_{2}^{\mathbb{N}}[\bar{a}] \Longleftrightarrow \mathbb{N} \models \Psi[\bar{a}]$

Case 3: Ψ is of the form $\neg \Phi$ where the result holds for Φ. Then,
$\mathbb{M} \models \Psi[\bar{a}] \Longleftrightarrow \operatorname{not} \mathbb{M} \models \Phi[\bar{a}] \Longleftrightarrow \operatorname{not} \mathbb{N} \models \Phi[\bar{a}] \Longleftrightarrow \mathbb{N} \models \Psi[\bar{a}]$

Case 4: Ψ is of the form $\Phi \wedge \Theta$ where the result holds for Φ and Θ. Then,
$\mathbb{M} \models \Psi[\bar{a}] \Longleftrightarrow \mathbb{M} \models \Phi[\bar{a}]$ and $\mathbb{M} \models \Theta[\bar{a}] \Longleftrightarrow$
$\mathbb{N} \models \Phi[\bar{a}]$ and $\mathbb{N} \models \Theta[\bar{a}] \Longleftrightarrow \mathbb{N} \models \Psi[\bar{a}]$

The cases of formulas built from \vee and \rightarrow follow by the equivalences,
i) $A \vee B \Longleftrightarrow \neg(\neg A \wedge \neg B)$
ii) $A \rightarrow B \Longleftrightarrow \neg(\neg B \wedge A)$

