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Main Theorem: f € R[x], f(x) > 0imply f =>_.f?,
where x = (xp,...,Xn) , {fj}; CR(x), R[x] and R(x) are the ring of
polynomials and the field of their fractions. We'll use fields and models.
Def 1: Field F is ordered with order <p (or "< " if clear) when

) Vx,y,z€F, x<y= x+z<y+z (implies char(F) =0 );

i) Vx,y,z€F, (x <yand 0 < z) = xz < yz (implies x> > 0 for x # 0).
Def 2: A real closed field is an ordered field (I, <g) such that:

i) Every positive element of I has a square root in FF ;

ii) Every odd degree polynomial of F has a root in F .
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Fact: Real closed fields admit quantifier elimination.

With p a prime number we'll also use the following

Easy Fact: Groups of size p¥ have normal subgroups of index = p .
Lemma 1: If —1 and b € TF are not sums of squares in a field F
then —1 is not a sum of squares (shortly ss) in F(y/—b) .

Proof: Case /—b ¢ F suffices, equivalently dimg F(y/—b) =2 . Then

m

2
“1= 206 +yV b = b= = 5w since
i=1 i

i)t =3/ Zj ¥j?)? , contrary to the assumption. [J
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Question: Why R(x) and not R[x]?

Proposition: The function f(x,y) = x*y? + x2y* — x2y? + 1 is positive
but not a sum of squares in R[x, y].

Pf: Easy calculus = f is positive (min(f(x,y)) = 26/27). Suppose

f = q? with g; € R[x]. Notice that deg(q;) <2 w.r.t both x and y.
Then g; is of the form:

qi = ah + ajx + aby + abxy + ajx? + aly? + alx?y + aby?x + aix?y2.

Comparing coefficients of in the equation f = 3" g2 shows >_(a})? = 0
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Hence a? = 0 for each i. Similarly, aj = al = 0 for each i. Then

coefficients with aj = aj = al = 0 show that a} = a} = 0 as well. Finally,

Looking at the coefficent of x2y? in the new equation

Xty? 42yt —xPy? 41 =3 (ah + +abxy + apxPy + ajy®x)?

we obtain —1 = "(a})?2, which is impossible. O
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More Algebraic Results on Ordered Fields

Lemma 2: If I is a field where -1 is not a ss and b € F is not a ss then

F can be ordered so that b < 0.

Proof: Let F = {fields K: F(v/—b) C K C F and -1 is not a ss in K}

By Zorn's Lemma, F has a maximal element K. By Lemma 1, if ¢ is not a
ss in K, then K(y/—c) € F . So, by maximality, v/—c € K . Order K as
follows: x<y <= y—x#0and y —xis asquare in K

This is easily checked to be well-defined. Then both F(v/—b) and F
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inherit this order as subfields and —b = (v/=b)> >0s0o b< 0. [
Corollary 1: A field F can be ordered iff —1 is not a sum of squares in F
Pf: Lemma 2 implies "<=" . For "=" note 1 =12>0 < —-1<00

Fund. Thm. Alg. If F is a real closed field, then F(1/—1) is alg. closed.

Proof: If a, b€ then, (\/ by tb o \/ —atVatt b /T2 =

2 2 _ 2 2 2 2 _ 2 2
a+\/; +b2 a+\/2a +h% 2\/a+\/; +b a+\/23 +b V-l=a+ ’b‘\/jl ,
where |b| := max{b; —b} , i.e. elements in F(1/—1) have square roots.
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Proof of Fund. Thm of Alg. for Real Closed Fields.
F(y/—1) has no quadratic extensions, i.e. P € F(v/—1)[x] of deg 2 factor.
For any finite Galois extension K of F(y/—1) write dimpK = 2"m (m odd).
Sylow Thm: exists subgroup H of G := Gal(K/F) with |[H| =2" .

Then [G : H] = m . Say [ generates over F the field L fixed by H . Then
minimal degree f(x) € F[x] with f(3) = 0 are irreducible and deg f = m ,
but m being odd and F a real closed field = m=1 = G is a p-group

with p=2,ie |G| =2k.
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F(v/—1) is Galois, so J = Gal(F(v/—1)/F) < G, i.e. G/J is a group.
Basic Fact: Gal(K/F(v/-1)) = G/J = |Gal(K/F(y/-1))| =2"1.

If n# 1, "Easy Fact” imples 3 N < G/J such that [G/J: N] =2

If M is the field fixed by N over F(y/—1) then [M : F(/~1)] = 2.

But F(v/—1) has no quadratic extensions. Hence n =1 and F(y/—1) is

the algebraic closure of F, as required. [J
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Ordered Algebraic Extensions of Ordered Fields

Corollary 2: F is real closed = [F has no ordered algebraic extensions.
Pf: The only algebraic extension of F is F(1/—1) which

cannot be ordered since —1 is a sum of squares. [

Lemma 3: If F is an ordered field then F can be extended to an ordered
field K with every positive element of I being a square.

Pf: 'Our’ field K is generated by {\/c : ¢ € F,c > 0}. Indeed, -1 is not

a ss in this field. If not, then —1is a ss in F' := F(,/co, ..., /Cn) for some
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€0, ..., cn € F. All products of distinct ,/c; form an F-basis for F'.

Then —1 = (3 bn(I] v@))> = X by(I1 ) >r 0,

NCn ieN NCn ieN

but this is a contradiction. By Lemma 2, K can be ordered. [J

Lemma 4: If F is an ordered field and f(x) € [F[x] is irreducible of odd

degree then F[x]/(f(x)) can be ordered in a compatbile way with F.
deg(f)—1

Pf: Extend IF to K from Lemma 3. Induction on n = =55>— (n=0 clear).

If case "n-1" # case "n”, let f(a)) = 0 and K(«) cannot be ordered

n
<= 3 go,...,8n such that 3" gi(a)®> = —1 (Corollary 1).
i=0
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Equivalently 3 g s.th f(x)q(x) + i gi(x)? = =1 in K[x]. WLOG we may
i=0

assume deg(gi) < deg(f) = deg(q) < (deg(f) — 2) and is odd.

Say 8 € K s.th. q(8) = 0 = f(B)q(B) + Z gi(B)? = Z &)’ =-1,

which contradicts the inductive assumption. Hence, K[x]/(f(x)) can be

ordered and F[x]/(f(x)) can be ordered by restriction. This extends <p. [J
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Summarizing Corollary 2 and Lemmas 3, 4 we have:
Theorem 2: If I is an ordered field then,

F is real closed <= F has no ordered algebraic extensions [J
Corollary 3: Ordered fields admit algebraic real closed extensions.

Pf: Extend F to K from Lemma 3. By Zorn’s Lemma, K has a maximal

ordered algebraic extension. By theorem 2, this extension is real closed. [J
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Concepts from Model Theory with reminder (Alex's talk):
15t-order language has quantifiers "for all” =V and "there exists" = 3 .
Def 3: The 15t order language Lor contains the following symbols,

i) The binary functions +, — and -

ii) A binary relation <

iii) The constant symbols 0 and 1

Appendix contains explicit expressions for the axioms (called RCF) of

real closed fields in this language.
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Def 4: A theory for a language L is a set of LL-sentences.

Def 5: An LL-structure M is called a model of a theory T if M = ¢

for each ® € T. In this case we write M = T.

Recall |M]| stands for the underlying set of the model M .

Def 6: M and N are L-structures = M is a submodel of N (M C N) if
) M| C N

M

ii) For each n-ary function symbol f € L, [y = f

iii) For each n-ary relation symbol R € L, RM = RN " |M|"
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Recall that M = ®[ao, ..., a,] means ® is true of ag, ..., a, in model M.
Def 7: If M and N are LL-structures then M is an elementary submodel
of N (we write M < N) provided:

i) M C N

ii) For each formula ¢(vo, ..., v,) and each (ag, ..., a,) € |[M|"H1,

M = ®lag,...,an] <= N ®lag, ..., an] .

Def 8: Theory T is model-complete when for all models M, N = T,

M C N = M < N (we say that all submodels are elementary).
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Def 9: Theory T has quantifier elimination if for a formula ®(vo, ..., vp)
TE (Vv Yvp)(P < V) with W(v,. .., v,) quantifier-free.

Fact: The theory RCF admits quantifer elimination.

Lemma 5: If T has quantifier elimination, then T is model complete.

Pf: It suffices to show that if W(vy,...,v,) is quantifier free and Ml C N
then M = Vao, ..., an] <= N |=V]ap, ..., a,] for all a,...,a, € M.
This fact is proven by induction on complexity of W (details attached). OJ

Corollary 4: RCF is model complete.
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Return to the Main Theorem (Hilbert's 17th Problem):

m

feR[x] and f(x) >0, Vx e R™ = 3 f, .. f, e R(x)sth f =S 2.
i=1

Pf: If not true, say f(x) > 0 and f is not a ss in R(x). Since —1 is not a ss
in the field R(x), there is a field ordering <g(y) (shortly < ) s.th f <0

by Lemma 1. Every positive element of R is a square in R(x) =

ordering <p(y) extends <g. Therefore R and R(x) are Log-models,

by interpreting the +, - and < symbols in the obvious way.

We can extend R(x) to a real closed field F (see page 12, Cor. 3).
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We now have R C F so by model completeness, we have R < F.

Let m = deg(f). Since the coefficients of f also lie in F, we can view it

as an element of I or as a degree m polynomial in F[t] ,t = (to,...,ts) -

There is a formula ®(vp, ..., vk) (see appendix) s.th for a model K of RCF,

K = (v, ..., vk)[a0, ..., ak] means that polynomial g € K][t] of deg m

with coefficients ag, ..., ax takes a negative value.

Aaron Crighton (2013) February 4, 2014 19/1



Then letting [ag, ..., ax] be the coefficients of f we have F |= ®[a, ..., a]
since the elements Xxp, ..., X, € F make f negative by construction.

By model completeness we can infer that

R = ®[ap, ...ax] which is to say that f takes a negative value

at a point (po, ..., pn) € R™1, contradicting our assumption.

Then it must be the case that f is in fact a sum of squares in R(x)

so we are done. [
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Appendix

1) A formula ®(vo, ..., vx) stating " The polynomial of degree m with
coefficients vy, ..., vk is negative for some value” we write as:

Ix0 -+ Ixn(Vo+viXo +vaxi+ - Vg1 Xn o VX" e viex! < 0)
2) Real Closed Field Axioms in Logr

Total order:  i)(Vx)=(x < x) ii)(Vx)(Vy)~(x <y Ay < x)

i) (Vx)(Vy)(Vz2)(x <y Ay < z) = (x < 2)

V) (Vx)(VY)(x <y Vy <xVx=y)
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Field axioms:
v) (V)W) (V2)((x +y) + 2 =x+ (y + 2))
vi) (Wx)(x +0=x)  vii)(¥x)(3y)(x +y = 0)
viii) (V) (Fy)(x +y = y + %)

ix) (Vx)(Vy)(Vz)((x - y)-z=x-(y-2))

x) (vx)(x - 1 = 0)

xi) (vx)(x =0V (Jy)(x-y =1))

xii) (Vx)(Vy)(x -y =y - x)
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Ordered Field:

xiii) (Vx)(Vy)(Vz)(x <y = x+z<y+2z)

xiv) (Vx)(Vy)(Vz) (0 <z—= (x <y = x-z<y-Zz))

Real Closed Axioms:

For each odd n € N, "polynomials of degree n have a root’
we write (Vxg) -+ (Vx,)(3v)(x0 + x1 - v+ -+ x5 - v" = 0)
And, 'positive elements have a square root’

we write (Vx)(3y)(0 < x = (y -y = x))
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Quantifier-free formulas preserved under submodels Pf:
Case 1: VW is of the form t; = t, for terms t1, t». Then,

MV — [ = 88— 476 = 476 < NE vl
Case 2: V is of the form t; < t, for terms ty, tp. Then,

M | V[a] < tM[a] < t)'[a] <= t'[3] <y t)'[a] <= N = V[3]

Case 3: VW is of the form —® where the result holds for ®. Then,
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MEV[E] < not M [ 9[3] <= not N[ 9[3] < N[ V[3]
Case 4: V is of the form ® A © where the result holds for ® and ©. Then,
MEV[a] < ME ¢[a] and M E O[] «~—

N E ®[a] and N E ©[3a] < N E V[3]

The cases of formulas built from V and — follow by the equivalences,

i) AVB <= —(-AA-B)

i)A— B <= —(=-BAA)
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