Overview of First-Order Logic

Alex Edmonds

MAT 477

January 2014

Alex Edmonds (2014)

Overview of First-Order Logic

▶ < ≣ ▶ ≣ ∽ < < January 2014 1 / 15

(日) (同) (三) (三)

Review of first-order logic

Def: The logical symbols are \forall , \exists , \land , \lor , \rightarrow , \leftrightarrow , \neg , (,),=, and the

variable symbols v_1, v_2, \ldots

Def: Every non-logical symbol is either

- a constant symbol;
- an *n*-ary relation symbol for some $n \in \mathbb{N}$; or
- an *n*-ary function symbol for some $n \in \mathbb{N}$.

(日) (同) (三) (三)

Def: A language \mathcal{L} is a collection of symbols including all logical symbols

and some non-logical symbols. Typically, we denote a language by its

non-logical symbols. For instance, the language of arithmetic \mathcal{L}_A is given

by the constant symbol 0, the unary function symbol S [successor], and

the binary function symbols + and \times .

Def: Any finite sequence of symbols in the language $\mathcal L$ is called a

 \mathcal{L} -expression.

(日) (周) (三) (三)

Def: We define \mathcal{L} -terms recursively as follows:

- Any constant symbol or variable symbol in \mathcal{L} is a term;
- If f is an *n*-ary function and t_1, \ldots, t_n are terms, then

 $f(t_1,\ldots,t_n)$ is a term.

e.g. +(S(0), 0) is a \mathcal{L}_A -term. However, we allow ourself notational

conveniences. For instance, we may express +(S(0), 0) as (S0) + 0 so long

as its understood what it represents. Likewise, we may informally use

letters to represent variables, i.e. \times instead of v₄.

Def: We define \mathcal{L} -formulas as follows:

- If t_1 and t_2 are \mathcal{L} -terms, then $t_1 = t_2$ is a formula;
- If R is an $\mathit{n}\text{-}\mathsf{ary}$ relation symbol in $\mathcal{L},$ and t_1,\ldots,t_n are terms,

then $R(t_1, \ldots, t_n)$ is a formula;

- If φ is a formula, then $\neg \varphi$ is a formula;
- φ and ψ formulas $\Rightarrow (\varphi \land \psi)$ is a formula. Similarly for $\lor, \rightarrow, \leftrightarrow$;
- φ formula, x variable symbol $\Rightarrow \forall x \varphi$ and $\exists x \varphi$ are formulas.

Note: Formulas can't talk about arbitrary sets, or arbitrary formulas.

Notation: Again, we allow ourselves some informal notational

conveniences. For instance, we may write the formula

 $\forall v_1(v_1>0 \rightarrow \neg v_1=0) \text{ as } (\forall x>0)(x\neq 0).$

Def: A variable is called free in the formula φ if it occurs in φ not under

a quantifier, i.e. v_1 is free in $v_1=v_1$ and in $(\forall v_1 \ v_1=v_1) \wedge v_1=v_1.$ If

 v_{i_1},\ldots,v_{i_k} are free in φ , we may denote φ by $\varphi(v_{i_1},\ldots,v_{i_k})$. Then,

 $\varphi(t, \mathsf{v}_{i_2}, \ldots, \mathsf{v}_{i_k})$ is the formula obtained by replacing all free occurences

of v_{i_1} by term t. A sentence is a formula with no free variables.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

Def: A *theory* T in the language \mathcal{L} is a set of \mathcal{L} -sentences called *axioms*.

Peano Arithmetic is a theory in \mathcal{L}_A including the following axioms:

1. $\forall x \ 0 \neq Sx$ **2.** $\forall x \forall y (Sx = Sy \rightarrow x = y)$

3.
$$\forall x(x + 0 = x)$$
 4. $\forall x \forall y(x + Sy = S(x + y))$

5. $\forall x(x \times 0 = 0)$ **6.** $\forall x \forall y(x \times Sy = (x \times y) + x)$

7. For every formula $\varphi(x)$, $\{\varphi(0) \land \forall x(\varphi(x) \rightarrow \varphi(Sx))\} \rightarrow \forall x\varphi(x)$ Note that Axiom 7 is not actually a single axiom but rather countably

many distinct axioms, one for each formula φ .

Logical Axioms

Regardless of the theory, we always include the following axioms implicitly.

For any \mathcal{L} -formulas φ , ψ , ζ :

1. $\varphi \rightarrow (\psi \rightarrow \varphi)$

2.
$$(\varphi \to (\psi \to \zeta)) \to ((\varphi \to \psi) \to (\varphi \to \zeta))$$

3.
$$(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$$

are axioms.

(日) (周) (三) (三)

Model: So far, we have discussed notation. We wish to attach meaning

to notation. When we interpret $\forall x$, it is necessary to restrict ourselves to

some domain. We also need an interpretation of each constant, function,

and relation in \mathcal{L} . Formally,

Def: An \mathcal{L} -model is a set U, called the universe, together with:

- For each constant symbol $c \in \mathcal{L}$, some $c \in U$
- For each function symbol $\mathbf{f}^{\mathsf{k}} \in \mathcal{L}$, some function $f: U^k \to U$
- For each relation symbol $\mathsf{R}^{\mathsf{k}} \in \mathcal{L}$, some k-place relation R on U

イロト イポト イヨト イヨト

Def: The *term-function* $T_t: U^{\omega} \to U$ of the term t is given by:

• if t is a variable symbol x_i , then $T_t(a_1, a_2, ...) = a_i$;

• if t is a constant symbol c, then $T_t(a_1, a_2, ...) = c$;

 \bullet if t is $f(t_1,\ldots,t_k),$ then

 $T_{t}(a_{1}, a_{2}, \dots) = f(T_{t_{1}}(a_{1}, \dots,), T_{t_{2}}(a_{1}, \dots,), \dots)$

(a)

Def: The truth-function $F_{\varphi}: U^{\omega} \to \{0, 1\}$ of the formula φ is given by:

• If φ is $t_1 = t_2$, then $F_{\varphi}(a_1, \dots) = 1$ if $T_{t_1}(a_1, \dots) = T_{t_2}(a_1, \dots)$;

 $F_{\varphi}(a_1,\ldots) = 0$ otherwise;

• If φ is $R(t_1, \ldots, t_k)$, then $F_{\varphi}(a_1, \ldots) = 1$ if it holds that

 $R(T_{t_1}(a_1,\ldots),\ldots,T_{t_k}(a_1,\ldots)); F_{\varphi}(a_1,\ldots) = 0$ otherwise;

• If φ is $\psi \wedge \zeta$, then $F_{\varphi}(a_1,\dots) = 1$ if $F_{\psi}(a_1,\dots) = 1$ and

 $F_{\zeta}(a_1,\ldots) = 1; F_{\psi}(a_1,\ldots) = 0$ otherwise;

 \circ Defined similarly for $\psi \lor \zeta$, $\psi \to \zeta$, $\psi \leftrightarrow \zeta$;

- If φ is $\neg \psi$, then $F_{\varphi}(a_1, \dots) = 1$ if $F_{\psi}(a_1, \dots) = 0$;
- If φ is $\forall x_i \ \psi$, then $F_{\varphi}(a_1, \dots) = 1$ if for all $a'_i \in U$,

 $F_\psi(a_1,\ldots,a_{i-1},a_i',a_{i+1},\ldots)=$ 1; $F_arphi(a_1,\ldots)=$ 0 otherwise;

• If
$$\varphi$$
 is $\exists x_i \ \psi$, $F_{\varphi}(a_1, \dots) = 1$ if there exists $a'_i \in U$

s.th.
$$F_{\psi}(a_1, \ldots, a_{i-1}, a'_i, a_{i+1}, \ldots) = 1; F_{\varphi}(a_1, \ldots) = 0$$
 otherwise.

Def: Suppose φ is a sentence. Then its truth function F_{φ} is constant.

Say \mathcal{M} models φ (write $\mathcal{M} \models \varphi$) if $F_{\varphi} = 1$.

The Standard Model: Herein, we are primarily concerned with the

language \mathcal{L}_A and its *standard model*. This model has \mathbb{N} as its universe

with 0 interpreted as the additive identity; S interpreted as the successor

function; + interpreted as addition; and \times interpreted as multiplication.

We'll say the \mathcal{L}_A sentence φ is *true* if it is modeled by the standard model.

Rule of Deduction: From φ and $\varphi \rightarrow \psi$, we can conclude ψ .

Provability: A *proof* of an \mathcal{L} -sentence φ in an \mathcal{L} -theory \mathcal{T} is a finite

sequence of \mathcal{L} -formulas ending with φ such that each formula is either an

axiom or follows by the rule of deduction from some earlier formulas in the

sequence. If a proof of φ exists, write $T \vdash \varphi$ and say φ is a theorem.

Fact (Soundness): Our rule of deduction is truth-preserving. Hence, if

the axioms of T are modeled by \mathcal{M} , then \mathcal{M} models every theorem of T.

Note: For every \mathcal{L}_A -formula φ , either φ or $\neg \varphi$ is true. However, we'll see

that both φ and $\neg \varphi$ can be unprovable. Write $T \nvDash \varphi$ for φ unprovable.

A last note on notation: It is useful to borrow the notation of formal

languages for our own 'mathematicians' language. In general, context will dictate which is which. However, herein we'll use italics (i.e. $\exists y \ y = So$)

for our 'mathematician' language and non-italics (i.e. $\exists y \ y = S0)$ for our

formal language. On the other hand, \mathcal{L}_A has no numeral symbols except 0

so we'll use \bar{n} to denote S...SO (*n* times).

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで