Overview of First-Order Logic

Alex Edmonds

MAT 477
January 2014

Review of first-order logic

Def: The logical symbols are $\forall, \exists, \wedge, \vee, \rightarrow, \leftrightarrow, \neg,(),,=$, and the variable symbols $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots$

Def: Every non-logical symbol is either

- a constant symbol;
- an n-ary relation symbol for some $n \in \mathbb{N}$; or
- an n-ary function symbol for some $n \in \mathbb{N}$.

Def: A language \mathcal{L} is a collection of symbols including all logical symbols
and some non-logical symbols. Typically, we denote a language by its
non-logical symbols. For instance, the language of arithmetic \mathcal{L}_{A} is given
by the constant symbol 0 , the unary function symbol S [successor], and
the binary function symbols + and \times.

Def: Any finite sequence of symbols in the language \mathcal{L} is called a
\mathcal{L}-expression.

Def: We define \mathcal{L}-terms recursively as follows:

- Any constant symbol or variable symbol in \mathcal{L} is a term;
- If f is an n-ary function and $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}$ are terms, then
$\mathrm{f}\left(t_{1}, \ldots, t_{n}\right)$ is a term.
e.g. $+(S(0), 0)$ is a \mathcal{L}_{A}-term. However, we allow ourself notational
conveniences. For instance, we may express $+(S(0), 0)$ as $(\mathrm{S} 0)+0$ so long
as its understood what it represents. Likewise, we may informally use
letters to represent variables, i.e. \times instead of v_{4}.

Def: We define \mathcal{L}-formulas as follows:

- If t_{1} and t_{2} are \mathcal{L}-terms, then $t_{1}=t_{2}$ is a formula;
- If R is an n-ary relation symbol in \mathcal{L}, and $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}$ are terms, then $R\left(t_{1}, \ldots, t_{n}\right)$ is a formula;
- If φ is a formula, then $\neg \varphi$ is a formula;
- φ and ψ formulas $\Rightarrow(\varphi \wedge \psi)$ is a formula. Similarly for $\vee, \rightarrow, \leftrightarrow$;
- φ formula, x variable symbol $\Rightarrow \forall x \varphi$ and $\exists x \varphi$ are formulas.

Note: Formulas can't talk about arbitrary sets, or arbitrary formulas.

Notation: Again, we allow ourselves some informal notational
conveniences. For instance, we may write the formula
$\forall \mathrm{v}_{1}\left(\mathrm{v}_{1}>0 \rightarrow \neg \mathrm{v}_{1}=0\right)$ as $(\forall \mathrm{x}>0)(\mathrm{x} \neq 0)$.

Def: A variable is called free in the formula φ if it occurs in φ not under
a quantifier, i.e. v_{1} is free in $\mathrm{v}_{1}=\mathrm{v}_{1}$ and in $\left(\forall \mathrm{v}_{1} \mathrm{v}_{1}=\mathrm{v}_{1}\right) \wedge \mathrm{v}_{1}=\mathrm{v}_{1}$. If
$\mathrm{v}_{\mathrm{i}_{1}}, \ldots, \mathrm{v}_{\mathrm{i}_{\mathrm{k}}}$ are free in φ, we may denote φ by $\varphi\left(\mathrm{v}_{\mathrm{i}_{1}}, \ldots, \mathrm{v}_{\mathrm{i}_{k}}\right)$. Then,
$\varphi\left(\mathrm{t}, \mathrm{v}_{\mathrm{i}_{2}}, \ldots, \mathrm{v}_{\mathrm{i}_{\mathrm{k}}}\right)$ is the formula obtained by replacing all free occurences
of $v_{i_{1}}$ by term t. A sentence is a formula with no free variables.

Def: A theory T in the language \mathcal{L} is a set of \mathcal{L}-sentences called axioms.

Peano Arithmetic is a theory in \mathcal{L}_{A} including the following axioms:

1. $\forall x 0 \neq S x$
2. $\forall x \forall y(S x=S y \rightarrow x=y)$
3. $\forall x(x+0=x)$
4. $\forall x \forall y(x+S y=S(x+y))$
5. $\forall x(x \times 0=0)$
6. $\forall x \forall y(x \times S y=(x \times y)+x)$
7. For every formula $\varphi(\mathrm{x}),\{\varphi(0) \wedge \forall x(\varphi(\mathrm{x}) \rightarrow \varphi(\mathrm{Sx}))\} \rightarrow \forall \mathrm{x} \varphi(\mathrm{x})$

Note that Axiom 7 is not actually a single axiom but rather countably
many distinct axioms, one for each formula φ.

Logical Axioms

Regardless of the theory, we always include the following axioms implicitly.

For any \mathcal{L}-formulas φ, ψ, ζ :

1. $\varphi \rightarrow(\psi \rightarrow \varphi)$
2. $(\varphi \rightarrow(\psi \rightarrow \zeta)) \rightarrow((\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \zeta))$
3. $(\neg \varphi \rightarrow \neg \psi) \rightarrow(\psi \rightarrow \varphi)$
are axioms.

Model: So far, we have discussed notation. We wish to attach meaning
to notation. When we interpret $\forall x$, it is necessary to restrict ourselves to
some domain. We also need an interpretation of each constant, function,
and relation in \mathcal{L}. Formally,

Def: An \mathcal{L}-model is a set U, called the universe, together with:

- For each constant symbol $\mathrm{c} \in \mathcal{L}$, some $c \in U$
- For each function symbol $\mathrm{f}^{\mathrm{k}} \in \mathcal{L}$, some function $f: U^{k} \rightarrow U$
- For each relation symbol $\mathrm{R}^{\mathrm{k}} \in \mathcal{L}$, some k -place relation R on U

Def: The term-function $T_{\mathrm{t}}: U^{\omega} \rightarrow U$ of the term t is given by:

- if t is a variable symbol x_{i}, then $T_{\mathrm{t}}\left(a_{1}, a_{2}, \ldots\right)=a_{i}$;
- if t is a constant symbol c , then $T_{\mathrm{t}}\left(a_{1}, a_{2}, \ldots\right)=c$;
- if t is $f\left(t_{1}, \ldots, t_{k}\right)$, then

$$
T_{\mathrm{t}}\left(a_{1}, a_{2}, \ldots\right)=f\left(T_{\mathrm{t}_{1}}\left(a_{1}, \ldots,\right), T_{\mathrm{t}_{2}}\left(a_{1}, \ldots,\right), \ldots\right)
$$

Def: The truth-function $F_{\varphi}: U^{\omega} \rightarrow\{0,1\}$ of the formula φ is given by:

- If φ is $\mathrm{t}_{1}=\mathrm{t}_{2}$, then $F_{\varphi}\left(a_{1}, \ldots\right)=1$ if $T_{\mathrm{t}_{1}}\left(a_{1}, \ldots\right)=T_{\mathrm{t}_{2}}\left(a_{1}, \ldots\right)$;
$F_{\varphi}\left(a_{1}, \ldots\right)=0$ otherwise;
- If φ is $\mathrm{R}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right)$, then $F_{\varphi}\left(a_{1}, \ldots\right)=1$ if it holds that
$R\left(T_{\mathrm{t}_{1}}\left(a_{1}, \ldots\right), \ldots, T_{\mathrm{t}_{\mathrm{k}}}\left(a_{1}, \ldots\right)\right) ; F_{\varphi}\left(a_{1}, \ldots\right)=\mathrm{o}$ otherwise;
- If φ is $\psi \wedge \zeta$, then $F_{\varphi}\left(a_{1}, \ldots\right)=1$ if $F_{\psi}\left(a_{1}, \ldots\right)=1$ and
$F_{\zeta}\left(a_{1}, \ldots\right)=1 ; F_{\psi}\left(a_{1}, \ldots\right)=0$ otherwise;
- Defined similarly for $\psi \vee \zeta, \psi \rightarrow \zeta, \psi \leftrightarrow \zeta$;
- If φ is $\neg \psi$, then $F_{\varphi}\left(a_{1}, \ldots\right)=1$ if $F_{\psi}\left(a_{1}, \ldots\right)=0$;
- If φ is $\forall \mathrm{x}_{\mathrm{i}} \psi$, then $F_{\varphi}\left(a_{1}, \ldots\right)=1$ if for all $a_{i}^{\prime} \in U$,
$F_{\psi}\left(a_{1}, \ldots, a_{i-1}, a_{i}^{\prime}, a_{i+1}, \ldots\right)=1 ; F_{\varphi}\left(a_{1}, \ldots\right)=0$ otherwise;
- If φ is $\exists \mathrm{x}_{\mathrm{i}} \psi, F_{\varphi}\left(a_{1}, \ldots\right)=1$ if there exists $a_{i}^{\prime} \in U$
s.th. $F_{\psi}\left(a_{1}, \ldots, a_{i-1}, a_{i}^{\prime}, a_{i+1}, \ldots\right)=1 ; F_{\varphi}\left(a_{1}, \ldots\right)=$ o otherwise.

Def: Suppose φ is a sentence. Then its truth function F_{φ} is constant.

Say \mathcal{M} models $\varphi($ write $\mathcal{M} \models \varphi)$ if $F_{\varphi}=1$.

The Standard Model: Herein, we are primarily concerned with the
language \mathcal{L}_{A} and its standard model. This model has \mathbb{N} as its universe
with 0 interpreted as the additive identity; S interpreted as the successor
function; + interpreted as addition; and \times interpreted as multiplication.

We'll say the \mathcal{L}_{A} sentence φ is true if it is modeled by the standard model.

Rule of Deduction: From φ and $\varphi \rightarrow \psi$, we can conclude ψ.

Provability: A proof of an \mathcal{L}-sentence φ in an \mathcal{L}-theory T is a finite
sequence of \mathcal{L}-formulas ending with φ such that each formula is either an
axiom or follows by the rule of deduction from some earlier formulas in the
sequence. If a proof of φ exists, write $T \vdash \varphi$ and say φ is a theorem.

Fact (Soundness): Our rule of deduction is truth-preserving. Hence, if
the axioms of T are modeled by \mathcal{M}, then \mathcal{M} models every theorem of T.

Note: For every \mathcal{L}_{A}-formula φ, either φ or $\neg \varphi$ is true. However, we'll see that both φ and $\neg \varphi$ can be unprovable. Write $T \nvdash \varphi$ for φ unprovable.

A last note on notation: It is useful to borrow the notation of formal
languages for our own 'mathematicians' language. In general, context will
dictate which is which. However, herein we'll use italics (i.e. $\exists y y=S$ o)
for our 'mathematician' language and non-italics (i.e. $\exists \mathrm{y} y=S 0$) for our
formal language. On the other hand, \mathcal{L}_{A} has no numeral symbols except 0
so we'll use \bar{n} to denote S . . . S0 (n times).

