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Incompleteness of Peano Arithmetic (Main Theorem):

If the axioms of PA are true, then there is an LA-sentence G called the

Gödel sentence of LA such that G is true and unprovable. In particular,

PA 0 G and PA 0 ¬G.

Idea: Our proof constructs G explicitly. Loosely speaking, we want G to

say, “This sentence is unprovable.” However, LA-formulas can’t talk

about LA-formulas. This motivates us to ‘code’ LA-expressions into N

using uniqe factorization into primes:
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Gödel Numbers: We assign each LA-expression E a unique natural

number pEq called the Gödel number (shortly g.n.) of E. To do this,

assign each non-variable LA-symbol an odd code number; the code

number of the variable symbol vk is 2k. For an LA-expression E given by

the sequence of symbols {s1, . . . , sk} with corresponding code numbers

{c1, . . . , ck}, the Gödel number of E is defined as pEq = πc11 π
c2
2 . . . πckk

where πi denotes the i th prime.

e.g. Say code number of S is 7. Then, pv3q = 22·3 and pSv3q = 2732·3.
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Super Gödel Numbers: We may also code sequences of LA-expressions

with N. Let P = {E1, . . . ,Ek} be a sequence of LA-expressions with

corresponding Gödel numbers {g1, . . . , gk}. The super Gödel number

(shortly sup. g.n.) of P is defined by [P] = πg11 π
g2
2 . . . πgkk .

Diagonalization: Gödel numbers allow formulas to be self-referential. In

particular, for a formula ϕ of one free variable, define its diagonalization ϕd

as ϕ(pϕq). However, we want more: formulas need to be able to express

properties of formulas via their Gödel numbers.
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Expressability: A relation R on Nk is called expressible in LA if there

exists an LA-formula ϕ(v1, . . . , vk) such that, for all n, . . . , nk ∈ N,

• if R(n, . . . , nk), then ϕ(n̄1, . . . , n̄k) is true;

• if not R(n, . . . , nk), then ¬ϕ(n̄1, . . . , n̄k) is true.

Say function f : Nk → N is expressible if the relation f(n, . . . , nk) = nk+

is expressible.

e.g. The function x− y is expressed by x = y + z.
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Main Claim: The following functions and relations are expressible:

• function diag(n): satisfies, for every LA-formula ϕ, diag(pϕq) = pϕdq

• rel. Prf(m,n): holds when m = [P], n = pϕq for some proof P of ϕ

• rel. Gdl(m,n): holds when m = [P], n = pϕq for some proof P of ϕd

We’ll return to a proof of this later on. First, the heart of it all:

Main Claim ⇒ Main Theorem

Proof: By Claim, there exists an LA-formula Gdl(x, y) which expresses

Gdl. Let T(y) be the formula ∀x¬Gdl(x, y). Let G be the diagonalization
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of T(y), namely ∀x¬Gdl(x, pTq). Then,

G false ⇔ There exists m ∈ N such that Gdl(m, pTq)

⇔ There exists m ∈ N such that, for some finite sequence P of

LA-formulas, m = pPq and P is a proof of diag. of T, namely G

⇔ G is provable

(Compare to “This sentence is unprovable.”) Now, by soundness,

G provable ⇒ G is true. Therefore, G is true and unprovable. By

soundness again, ¬G is also unprovable. �
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Primitive recursive functions

Def: f is defined from g and h by primitive recursion if:

• f(~x, ) = g(~x)

• f(~x, Sy) = h(~x, y, f(~x, y))

Def: The primivitive recursive (shortly p.r.) functions are:

• The initial functions, namely the successor function S, the zero

functions Zk, and the co-ordinate functions Iki ;

• Any composition of p.r. functions;

• Any function defined by primitive recursion from p.r. functions.
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Proposition: {p.r. functions} ⊂ {expressible functions}

Proof: It suffices to show

(1) LA expresses the initial functions;

(2) LA expresses g and h ⇒ LA expresses any composition of g and h;

(3) LA expresses g and h ⇒ LA expresses any function defined by

primitive recursion from g and h.

Proving (1) is trivial: S is expressed by Sx = y; Zk by y = 0; Iki by vi = y.
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(2): If functions g(x) and h(x) are expressed by G(x,y) and H(x,y), then

their composition f(x) = h(g(x)) is expressed by ∃z(G(x, z) ∧ H(z, y)).

(3) is tricky and relies on a sort of Gödel numbering again. Suppose

H(x, y) expresses h(x) = y. Let f (x) be defined primitive recursively by

f() = a and f(Sx) = h(f(x)). Note that f(x) = y iff

(A) There is a sequence of numbers k, k, . . . , kx such that:

k = a; for u < x, kSu = h(ku); and kx = y.
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For any such sequence k, k, . . . , kn, we wish to encode it by a pair of

numbers c and d. We need a function β(c, d, i) = ith element of the

sequence coded by c and d. A result from number theory (see Appendix)

tells us that, for every sequence k, . . . , kn, there exists c, d s.th., for all

i ≤ n, ki is the remainder of c divided by d(i+ ) + . Hence, taking

β(c, d, i) to be said remainder, (A) may be reformulated as

(B) There exists c, d such that: β(c, d, ) = a; For u < x,

β(c, d, Su) = h(β(c, d, u)); And β(c, d, x) = y
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Easy fact: The remainder function is expressible.

It follows β is expressible. Say B(c,d,i,k) expresses β(c, d, i) = k. Then,

(B) may be translated into LA as

(C) ∃c∃d{B(c,d,0,ā) ∧ (∀u ≤ x)

[u 6= x→ ∃v∃w{B(c,d,u,v) ∧ B(c,d,Su,w) ∧ H(v,w)}] ∧ B(c,d,x,y)}

We may conclude that f is expressible in LA. This argument generalizes

easily to the multivariable case.�
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Constructing our p.r. fucntions – a sketch

It remains to show that the functions and relations we need are p.r. This is

a large but mostly mechanical task aided by the following.

Four useful facts: (1) f(~x) p.r. function ⇒ f(~x) = y is a p.r. relation

(2) ’Truth-functional combinations’ (conjunction, implication etc.) of p.r.

relations are p.r.

(3) A relation defined from a p.r. relation by bounded quantification is p.r.

(4) Functions defined by p.r. cases from p.r. functions are p.r.
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Claim: Relation Term(n), which holds when n = pτq for a term τ , is p.r.

Our proof uses the following useful notion:

Def: A term-sequence is a finite sequence of expressions such that each is

either:

a. 0;

b. a variable symbol;

c. Sτ where τ is an expression which appears earlier in the sequence;
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d. (τ1 + τ2) where τ1 and τ2 are earlier expressions in the sequence; or

e. (τ1 × τ2) where τ1 and τ2 are earlier expressions in the sequence.

Note that an expression is a term iff it is the last expression in some term

sequence. Before proceeding with Claim, we need:

Lemma 1: relation V ar(n), which holds iff n is g.n. of a variable, is p.r.

Lemma 2: relation Termseq(m,n), which holds iff m = [T] and n = pτq

for a term-sequence T ending in τ , is p.r.
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Basic Fact: The following functions are primitive recursive:

• prime(i), returns the ith prime

• len(n), returns the number of distinct prime factors of n. In particular,

len(pEq) is length of LA-expression E; len([T]) length of term-sequence T

• exp(n, i), returns degree of ith prime in factorization of n. Importantly,

for sequence of expressions E, exp([E], i) returns g.n. of ith expression in E

• m ∗ n, which returns the g.n. of the concactenation of the expression

with g.n. m and the expression with g.n. n.
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Proof of Lemma 1 (i.e. that V ar(n) is p.r.)

The g.n. of the variable vk is k. Hence, V ar(n) ⇔ ∃k(n = k).

However, unbounded quantification is not necessarily p.r.-preserving. This

is dealt with by noting that n = k ⇒ k < n. Hence, V ar(n) ⇔

(∃k < n)(n = x) which is constructed in p.r. preserving ways. Therefore,

V ar(n) is p.r. �
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Proof of Lemma 2 (i.e. that Termseq(m,n) is p.r. – easy but technical)

Termseq(m,n) is equivalent to the statement

(1) exp(m, len(m)) = n; and

(2) for  ≤ k ≤ len(m):

a’ exp{m, k} = pq; or

b’ V ar(exp(m, k)); or

c’ (∃j < k)(exp(m, k) = pSq ∗ exp(m, j)); or

d’ (∃i < k)(∃j < k)(exp(m, k) = p(q ∗ exp(m, j) ∗ p+q ∗ exp(m, j) ∗ p)q)
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or

e’ (∃i < k)(∃j < k)(exp(m, k) = p(q ∗ exp(m, j) ∗ p×q ∗ exp(m, j) ∗ p)q)

Indeed, (1) guarantees that the sequence with super g.n. m ends with the

expression with g.n. n. Also, (2) guarrantees that m is actually the g.n. of

a term sequence. In particular, a’, b’, c’, d’, e’ correspond to a, b, c, d,

e, resp. Since the relation above is constructed in p.r.-preserving ways

from p.r. functions and relations, conclude Term(m,n) is p.r.
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Proof of Claim: Term(n) ⇔ ∃m Termseq(m,n), but again we need

quantification to be bounded. Suppose [T] = πd . . . πdkk for a

term-sequence T of τ . Length of T is bounded by length of τ , i.e.

k ≤ len(n). Also, [T] ≤ πkmaxi di
k and maxi di ≤ n. Therefore,

Term(n)⇔ (∃m ≤ prime(len(n))n(len(n)) Termseq(m,n). Since the

relation is constructed from p.r. relations in p.r. preserving ways, it is p.r.

�
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Using construction histories: Note that our definitions of term-sequence

and term aren’t very different from our definitions of proof an

provability. Not suprisingly then, the proof that Prf(m,n) is p.r. is very

close to the proof for Term(m,n). Actually, most of the important proofs

of primivitive recursiveness that we want (i.e. for formulas, sentences,

axioms) follow the same structure.
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Sketch that Prf(m,n) is p.r.

Fact: We’ll omit a proof that following relations are p.r.:

• Sent(n), holds when n = pϕq for some sentence ϕ;

• AxiomPA(n), holds when n = pϕq for some axiom ϕ of PA;

• Ded(l,m, n), holds when l = pϕq, m = pψq, n = pγq, where sentence γ

follows by rule of deduction from sentences ϕ and ψ.
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Then, Prf(m,n) is equivalent to the statement:

exp(m, len(m)) = n; and Sent(n); and ∀k ≤ len(m){

AxiomPA(exp(m, k)), or

(∃i ≤ k)(∃j < k)[Ded(exp(m, i), exp(m, j), exp(m, k)] }

which is constructed from p.r. functions in p.r.-preserving ways. This

result completes part of the proof of Main Claim. We’ll omit the rest.

Important Note: The only facts about PA we use in the proof of Main

Theorem are to show that AxiomPA(n) is primitive recursive!!
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Generalizing the incompleteness argument

We have shown that PA is incomplete. The obvious question is whether

PA is ’completable’. That is to say, can we add axioms to PA so that, for

every sentence ϕ, either ϕ or ¬ϕ is provable? No! Since the only fact

used about PA is that AxiomPA(n) is p.r., our argument holds for any

theory T where AxiomT (n) is p.r. We call such a theory p.r. axiomatized.
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Gödel’s First Incompleteness Theorem (Semantic Version)

Let T be a theory whose language includes LA. Suppose T is p.r.

axiomatized and all LA axioms of T are true. Then, there exists an

LA-sentence ϕ such that T 0 ϕ and T 0 ¬ϕ.
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Appendix: Beta-function

Def: Let rem(c , d) denote the remainder when c is divided by d .

Def: For d = 〈d0, . . . , dn〉 ∈ Nn, c ∈ N, let Rm(c ,d) = 〈k0, . . . , kn〉 where

ki = rem(c , di ).

β-Theorem: For every sequence k ∈ Nn, there exists c , d ∈ N such that

Rm(c ,d) = k, where di = d(i + 1) + 1. In particular, ∀i ≤ n

β(c , d , i) := rem(c, d(i + 1) + 1) = ki .

To prove this, we need:
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Chinese Remainder Theorem: Let d = 〈d0, . . . , dn〉 and suppose all di

are relatively prime. Then, for distinct c1, c2 < |d| := d0 × . . .× dn,

Rm(c1,d) 6= Rm(c2,d).

Proof: By way of contradiction, assume Rm(c1,d) = Rm(c2,d). Let

c = |c1 − c2|, Then each di divides c . Since di are relatively prime, this

implies |d| = d0 × . . .× dn divides c . Hence, |d| ≤ c ≤ max{c1, c2}. �
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Proof of β-Theorem

Step 1: Let s = max{n, k1, . . . , kn} and let d = s!. For i ≤ n, the

numbers di := d(i + 1) + 1 are relatively prime. Indeed, suppose

otherwise. Then, there exists distinct i , j ≤ n s.th. both d(i + 1) + 1 and

d(j + 1) + 1 are divisible by p. In particular, p divides d |i − j |. Also, since

p divides d(i + 1) + 1, p does not divide d . Hence, p divides

(i − j) ≤ n ≤ s, i.e. p ≤ s. But, if p doesn’t divide d = s!, then p > s.

Contradiction. Conclude di ’s are relatively prime.
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Step 2: Note that, for all c, Rm(c,d) ∈ S1 × · · · × Sn where

Si = {0, 1, . . . , di − 1}. Furthermore, |S1 × · · · × Sk | = d0 . . . dn = |d |.

The Chinese Remainder Theorem says each c < |d | is mapped to a

distinct element, i.e. Rm(c ,d) takes on |d | many values for c < |d |.

Therefore, Rm(c ,d) takes on each a ∈ S1 × · · · × Sn for c < |d |. Since

k ∈ S1 × · · · × Sn, this completes the proof. �

Alex Edmonds (2014) Gödel’s First Incompleteness Theorem January 2014 29 / 29


