Central Limit Theorem using Characteristic functions

RongXi Guo

MAT 477

January 20, 2014

RongXi Guo (2014)

Central Limit Theorem using Characteristic f

January 20, 2014 1 / 15

Introduction-study a random variable

Let Ω with measure m, $m(\Omega) = 1$ and $\mathfrak{F}(\Omega)$ measurable functions.

To random variables $X \in \mathfrak{F}(\Omega)$ we associate distribution functions

$$F(x) := P(X < x) := m(\xi \in \Omega : X(\xi) < x)$$
 and $f(x) = F'(x)$ is the

probability density function (shortly pdf). We assume exist finite:

Expected value of X (mean value) $\mu = E(X) = \int_{R} x dF(x) = \int_{\Omega} X(\xi) dm$

Variance and the standard deviation $\sigma^2 = V(X) = \int_R (x - \mu)^2 dF(x)$.

Convention: P(...) := m(...) and for $\{A_j \subset R\}_{1 \le j \le n}$ and

$$\left\{X_{j}\in\mathfrak{F}\left(\Omega
ight)
ight\}_{j}$$
 set $X_{1}\in\mathcal{A}_{1},\cdots,X_{n}\in\mathcal{A}_{n}:=\left\{\xi\in\Omega:X_{j}\left(\xi
ight)\in\mathcal{A}_{j},\forall j
ight\}$

For our X_j distribution function, expected value and variance

are the same and $\{X_j\}_j$ are independent, identically distributed (shortly iid), i.e. $P(X_1 \in A_1, \dots, X_n \in A_n) = \prod_{j=1}^n P(X_j \in A_j)$.

For iid $\{X_j\}_j$ set $S_n := \frac{\sum_{i=1}^{n} X_i}{n}$ and also

$$E(S_n) = E\left(\frac{\sum_{i=1}^{n} X_i}{n}\right) = \frac{\sum_{i=1}^{n} E(X_i)}{n} = \frac{n \cdot \mu}{n} = \mu$$

$$V(S_n) = V\left(\frac{\sum_{i=1}^n X_i}{n}\right) = \frac{V\left(\sum_{i=1}^n X_i\right)}{n^2} = \frac{n \cdot V(X)}{n^2} = \frac{V(X)}{n} = \frac{\sigma^2}{n} .$$

・ロト ・得 ト ・ヨト ・ヨー つくの

Law of Large Numb: $\lim_{n\to\infty} P\left(|S_n - \mu| > \epsilon\right) = 0, \forall \epsilon > 0$ Proof: $\frac{\sigma^2}{n} = V(S_n) = \int_R (x - \mu)^2 dF(x) \ge \int_{|x-\mu| > \epsilon} (x - \mu)^2 dF(x)$ $\ge \epsilon^2 \cdot P\left(|S_n - \mu| > \epsilon\right) \Rightarrow P\left(|S_n - \mu| > \epsilon\right) \le \delta \text{ for } n > \frac{\sigma^2}{\epsilon^2 \cdot \delta}.$

Def: $X_n \xrightarrow{d} X$, i.e. converge in the sense of distributions means

 \forall bounded and continuous function $f~:~\int_R f dF_n \to \int_R f dF$.

Central Limit Theorem (shortly CLT): $\frac{(S_n-\mu)\sqrt{n}}{\sigma} \xrightarrow{d} N(0,1)$, where

 $S_n = \frac{\sum_{i=1}^{n} X_i}{n}$ and N(0,1) is the rv with pdf $\frac{e^{-\frac{1}{2}x^2}}{\sqrt{2\pi}}$ of Gauss distribution

Next, note that N(0,1) has expected value $\int_{R} x dF(x) = 0$ and

variance $\int_R x^2 dF(x) = 1$. Also, $\{X_j\}_j$ being iid's of course (page 3)

 $E\left(S_{n}\right)=\mu$, $V\left(S_{n}\right)=\frac{\sigma^{2}}{n}$. To prove the theorem we'll use the

characteristic functions $\varphi(t) = E(e^{itX}) = \int_R e^{itx} dF(x)$, shortly cfs

Note: rvs always admit cfs; $\varphi'(0) = i\mu$ and $\mu = 0 \Rightarrow \varphi''(0) = -\sigma^2$.

Also $\varphi(0) = E(1) = 1$, $|\varphi(t)| = \left| \int_{R} e^{itx} dF(x) \right| \le \int_{R} \left| e^{itx} \right| dF(x) = 1$.

Fact1: $F(b) - F(a) = \frac{1}{2\pi} \lim_{x \to \infty} \int_{-x}^{x} \frac{e^{-ita} - e^{-itb}}{it} \varphi(t) dt$.

Easy if $\exists F'(x) : f(x) = \frac{1}{2\pi} \int_R e^{-itx} \varphi(t) dt$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Properties of characteristic function

$$\varphi_{X_1+X_2}(t) = E(e^{it(X_1+X_2)}) = E(e^{itX_1}) \cdot E(e^{itX_2}) = \varphi_{X_1}(t) \cdot \varphi_{X_2}(t)$$

$$\varphi_{aX+b}(t) = E(e^{it(aX+b)}) = e^{itb} \cdot E(e^{i(at)X)}) = e^{itb} \cdot \varphi_X(at)$$

and also the uniform continuity of cf with $\mu = 0$ and $\sigma = 1$:

$$|arphi(t+h)-arphi(t)|=\left|\mathsf{E}(e^{i(t+h)X}-e^{itX})
ight|\leq \mathsf{E}(\left|e^{ihX}-1
ight|)
ightarrow 0$$

Characteristic function for Gauss distribution is $e^{-\frac{t^2}{2}}$, page 14.

Convergence of F implies convergence of cfs

Proposition :
$$X_n \stackrel{d}{\rightarrow} X \Leftrightarrow \varphi_n(x) \rightarrow \varphi(x) \quad \forall x \in R$$
.

Proof. " \Rightarrow ": e^{itx} is bounded and continuous and $X_n \xrightarrow{d} X$

imply $\int_R e^{itx} dF_n \to \int_R e^{itx} dF$. To show " \Leftarrow " (see page 12)

we need to prove first a so called 'tightness' of our rvs.

Tightness of a family of Random Variables.

Def: a family of rvs X_n is tight when

 $\forall \epsilon > 0 \exists M \text{ such that } P(|X_n| > M) < \epsilon \text{ for all } n$.

◆□ ▶ ◆◎ ▶ ◆目 ▶ ◆目 ▶ ○ ● ● ●

Claim: convergence of cfs implies tightness of rvs .

Proof of 1st step : we show that for any distribution $X := X_n$,

 $orall \epsilon > 0 \exists M, P(|X| > M) < rac{\epsilon}{2}$.

Indeed, every cf has a value of 1 at 0 (page 5) and is continuous

 $\Rightarrow \forall \ \epsilon > 0 \ \exists \ \delta > 0 \quad \text{such that} \ \forall \ |t| < \delta \ , \ |1 - \varphi(t)| < \frac{\epsilon}{4}$

$$\Rightarrow \int_{-\delta}^{\delta} \left| 1 - arphi \left(t
ight)
ight| {\it d}t < 2\delta \cdot rac{\epsilon}{4} = rac{\epsilon \cdot \delta}{2}$$

 $\Rightarrow \delta^{-1} \int_{-\delta}^{\delta} \left| 1 - \varphi \left(t \right) \right| dt < \frac{\epsilon}{2}$. On the other hand, for some large M

$$\delta^{-1}\int_{-\delta}^{\delta}\left|1-arphi\left(t
ight)
ight|\,dt~$$
 is an upper bound on $P(|X|\geq M)$:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\begin{split} \delta^{-1} \int_{-\delta}^{\delta} (1 - \varphi(t)) \, dt &= \delta^{-1} \int_{-\delta}^{\delta} \left(1 - E\left(e^{itX}\right) \right) \, dt \\ &= \delta^{-1} \left(2\delta - \int_{R} \left(\frac{\sin(\delta x)}{x} - \frac{\sin(-\delta x)}{x} \right) \, dF(x) \right) \\ &= 2 \left(1 - \int_{R} \frac{\sin(\delta x)}{\delta x} \, dF(x) \right) \text{ . Replacing } 1 \text{ by } \int_{R} 1 \, dF(x) \\ &\text{we have } 2 \left(1 - \int_{R} \frac{\sin(\delta x)}{\delta x} \, dF(x) \right) = 2 \int_{R} \left(1 - \frac{\sin(\delta x)}{\delta x} \right) \, dF(x) \text{ .} \\ &2 \int_{R} \left(1 - \frac{\sin(\delta x)}{\delta x} \right) \, dF(x) \ge 2 \int_{|x| \ge \frac{2}{\delta}} \left(1 - \frac{\sin(\delta x)}{\delta x} \right) \, dF(x) \ge \\ &\int_{|x| \ge \frac{2}{\delta}} 1 \, dF(x) = P\left(|X| \ge \frac{2}{\delta} \right) \implies \delta^{-1} \int_{-\delta}^{\delta} |1 - \varphi(t)| \, dt \ge P\left(|X| \ge \frac{2}{\delta}\right) \text{ . Together with above } \frac{\epsilon}{2} > \delta^{-1} \int_{-\delta}^{\delta} |1 - \varphi(t)| \, dt \ge P\left(|X| \ge \frac{2}{\delta}\right) \text{ . } \end{split}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 二臣

Step 2 : convergence of cfs implies tightness in its rvs

 $\varphi_{n}(x) \rightarrow \varphi(x)$ means $\forall \epsilon > 0$, $x \in R \exists$ natural number N s. th.

 $\forall n > N \text{ holds } |\varphi_n(x) - \varphi(x)| < \frac{\epsilon}{4} \Rightarrow \forall \epsilon, \delta \exists N \text{ such that}$

 $\forall n \geq N$ we have $\delta^{-1} \int_{-\delta}^{\delta} |\varphi_n(t) - \varphi(t)| dt < \frac{\epsilon}{2}$ (fact from analysis).

Also, (page 9) we may choose δ to satisfy $\delta^{-1} \int_{-\delta}^{\delta} |1 - \varphi(t)| dt < \frac{\epsilon}{2}$

 $\forall n \geq N$ we have $P\left(|X_n| \geq rac{2}{\delta}
ight) \leq \delta^{-1} \int_{-\delta}^{\delta} |1 - \varphi_n(t)| dt$

$$\leq \delta^{-1} \left(\int_{-\delta}^{\delta} \left| 1 - arphi \left(t
ight)
ight| \, dt + \int_{-\delta}^{\delta} \left| arphi_{n} \left(t
ight) - arphi \left(t
ight)
ight| \, dt
ight) < \epsilon \; .$$

Also, for *n* smaller than $N \exists \delta_n$ such that

$$P\left(|X_n| \geq \frac{2}{\delta_n}\right) \leq \delta_n^{-1} \int_{-\delta_n}^{\delta_n} |1 - \varphi_n(t)| dt < \epsilon$$

choose $\delta_{\min} := \min \{\delta_1, \delta_2, \cdots, \delta_n, \delta\}$.

we have then that
$$P\left(|X_n| \ge \frac{2}{\delta_{min}}\right) < \epsilon$$
 for any n

 \Rightarrow rvs with convergent cfs are tight, the claim is proved. \Box

3

イロト イポト イヨト イヨト

Proof of $\varphi_n(x) \to \varphi(x) \quad \forall x \text{ implies } X_n \stackrel{d}{\to} X \text{ using}$

Fact 2. Tightness of rvs implies compactness in the sense of convergence of distributions ("Prokhorov's Theorem").

Proof of " \Leftarrow " from page 7 : Pick any convergent, say to F_1 , subsequence $\{F_{1n}\}_n$ of distributions. Say $\{\varphi_{1n}\}_n$ are their cfs.

 $\varphi_n(x) \to \varphi(x) \ \forall x \text{ implies convergence of all } \{\varphi_{1n}\}_n \text{ to the}$

same φ and proved " \Rightarrow " on page 7 implies that φ is the cf for any F_1

 \Rightarrow exists unique $F_1 =: F$ and, using **Fact 2.**, $\Rightarrow X_n \xrightarrow{d} X$, i.e.

$$X_n \xrightarrow{d} X \Leftrightarrow \varphi_n(x) \to \varphi(x) \ \forall x \text{ is proved.} \square$$

Conclusion of the proof of Central Limit Theorem

For a series of iid
$$X_i$$
, let $Y_n = \frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma \sqrt{n}}$

$$\varphi_{Y_n}(t) = \varphi_{\frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma\sqrt{n}}}(t) = \varphi_{\sum_{i=1}^{n} X_i - n\mu}(\frac{t}{\sigma\sqrt{n}}) =: \varphi^n(\frac{t}{\sigma\sqrt{n}}) \text{. Let } s := \frac{t}{\sigma\sqrt{n}} \text{,}$$

as $n o \infty$ s o 0 . Recall: $arphi'(0) = i \mu = 0$, $arphi''(0) = -\sigma^2$, see page 5 .

From Taylor expansion: $\varphi(0) + s \cdot \varphi'(0) + \frac{s^2}{2} \cdot \varphi''(0) - \varphi(s) = o(s^2) \Rightarrow$

$$\lim_{n\to\infty} \{\varphi_{Y_n}(t) = \left(1 - \frac{\sigma^2 + o(1)}{2} \cdot \left(\frac{t}{\sigma\sqrt{n}}\right)^2\right)^n\} = \lim_{n\to\infty} \left(1 - \frac{\sigma^2}{2} \left(\frac{t}{\sigma\sqrt{n}}\right)^2\right)^n$$

 $=e^{-rac{t^2}{2}}$ \Rightarrow the limit of the cfs is the cf of a Gauss distribution

$$\Rightarrow \quad rac{(S_n-\mu)\sqrt{n}}{\sigma} = Y_n \stackrel{d}{ o} {\sf N}(0,1)$$
 , as required. \square

Appendix. cf of Normal distribution, calculation:

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} .$$

$$\varphi(t) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} e^{itx} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2 + itx - \frac{1}{2}(it)^2 + \frac{1}{2}(it)^2} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x - it)^2} e^{-\frac{t^2}{2}} dx$$

$$= e^{-\frac{t^2}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x - it)^2} dx .$$

$$y = x - it \Rightarrow \frac{dy}{dx} = 1 \Rightarrow$$

$$\varphi(t) = e^{-\frac{t^2}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^2} dy = e^{-\frac{t^2}{2}} .$$

3

< 177 ▶

Abbreviations

- rv : random variable
- rvs : random variables
- pdf : probability density function
- iid : independent, identical distributed rvs
- cf : characteristic function
- cfs : characteristic functions