Preliminaries to Chow's Theorem

Changho Han

MAT 477

January 16, 2014

Changho Han (2014)

Preliminaries to Chow's Theorem

January 16, 2014 1 / 7

< 4 → <

3

Proof of Riemann Extension Thm

From Fact 1, $X = X^r \cup X'$ with dim $X^r = r$, X' *-analytic of dim < r .

Take $a\in X^rackslash X'$. WLOG, assume a=0 , $X^r=\mathbb{C}^r\subset \mathbb{C}^r imes \mathbb{C}^{n-r}$ locally.

f analytic on $\{\overline{x}\} \times (\mathbb{C} \setminus \{0\})$, so f extends analytically to $\{\overline{x}\} \times \mathbb{C}$ via:

$$f(\overline{x}, x_n) := \int_{|z|=1} \frac{f(\overline{x}, z)}{z - x_n} dz$$

As \overline{x} varies, $f(\overline{x}, z)$ for fixed $z \neq 0$ varies analytically, so that f extends

analytically on $X^r \setminus X'$. Then, by induction on dim X, f extends

analytically to U.

(日) (周) (三) (三)

П

= 900

Proof of Mumford's Lemma

Pick an open nbhd U of $f^{-1}(y)$ with \overline{U} compact, and let ∂U be its bdry.

Let (V_n) be decreasing sequence of open nbhds of y with $\overline{V_n}$ compact and

$$\cap \overline{V_n} = \{y\}$$
. Then, $\cap_n(f^{-1}(\overline{V_n}) \cap \partial U) = f^{-1}(y) \cap \partial U = \emptyset$. But this is an

intersection of countable # of cpcts, so $f^{-1}(\overline{V}) \cap \partial U = \emptyset$ for $V = V_m$.

Let $g: U \cap f^{-1}(V) \to V$ be restriction of f. Then, $\forall K \subset U$ compact,

 $g^{-1}(K) = U \cap f^{-1}(K)$ is compact because $f^{-1}(K)$ is closed, contained in

$$\overline{U}$$
 compact and $f^{-1}(K) \cap \partial U \subset f^{-1}(\overline{V}) \cap \partial U = \emptyset$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Properties of Resultant

Res is a matrix, and res is a determinant of entries in S, so that if \exists a

map $ev_a: S \ni f \mapsto f(a)$, then this commutes with both Res and res.

Claim: $\forall P, Q \in \mathbb{C}[w]$, $res(P, Q) = 0 \Leftrightarrow P$, Q have a common root.

Proof: Denote $p = \deg P$, $q = \deg Q$. $\operatorname{res}(P, Q) = 0 \Rightarrow \exists F, G \in \mathbb{C}[w]$

nonzero, deg F < q, deg G < p with FP + GQ = 0, so FP = -GQ. Since

 $\deg F < \deg Q$, not all roots of Q are roots of F, so some roots of Q are

roots of P. Conversely, if P, Q have a common root, then trivial.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

 \Box

Speical Weierstrass Division Thm (as a Fact)

Suppose
$$c\in \mathbb{C}^d$$
 , $w\in \mathbb{C}$ and $P(a,w):=w^d+\sum_{j=1}^d a_jw^{d-j}$. Then, for

 $F \in \mathbb{C}\{\overline{x},w\}$, $\exists ! Q \in \mathbb{C}\{\overline{x},a,w\}$ and $r_j \in \mathbb{C}\{\overline{x},a\}$ for $1 \leq j \leq d$

so that
$$F(\overline{x},w) = Q(\overline{x},a,w)P(c,w) + \sum_{j=1}^d r_j(\overline{x},a)w^{d-j}$$
. (*)

Proof of Weierstrass Division Thm using Weierstrass Prep Thm:

f = uP with $u(0) \neq 0$ and $P \in \mathbb{C}\{\overline{x}\}[x_n]$. It suffices to divide g by P via

Special Weierstrass Division Thm.

(日) (周) (三) (三)

Proof of Weierstrass Preparation Thm

Take F = f, $w = x_n$. Using Special Weiers. Div. Thm look for solution

of $r_j(\overline{x}, a(\overline{x})) = 0$ with $a(0) = 0 \ \forall \ j$. Then, if $r_j(0, 0) = 0 \ \forall \ j$ and

 $det(\frac{\partial r_j}{\partial a_k}(0,0)) \neq 0$, then by <u>Implicit Function Thm</u>, we can find such

solution. Indeed, set $\overline{x} = 0$ and a = 0, then by comparing degrees in

$$x_n^d(\alpha + \cdots) = Q(0, 0, x_n) x_n^d + \sum r_j(0, 0) x_n^{d-j} \Rightarrow r_j(0, 0) = 0 \quad \forall j .$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Similarly, $Q(0,0,0) = \alpha \neq 0$. Taking $\frac{\partial}{\partial a_k}$ of (*) for each k yields

$$0 = Q(0,0,x_n)x_n^{d-k} + rac{\partial Q}{\partial a_k}(0,0,x_n)x_n^d + \sum_j rac{\partial r_j}{\partial a_k}(0,0)w^{d-j}$$
 . For $j > k$

by comparing degrees $\Rightarrow \frac{\partial r_j}{\partial c_k}(0,0) = 0$; for j = k, $\frac{\partial r_j}{\partial c_j}(0,0) = \alpha \neq 0$.

Summarizing, $\left(\frac{\partial r_j}{\partial c_k}(0,0)\right)$ is an upper triangular matrix with nonzero

diagonal entries. Hence, $det(\frac{\partial r_j}{\partial c_k}(0,0)) \neq 0$, and this proves the thm. \Box

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● 日 ● ● ○ ○ ○ ○