Preliminaries to Chow's Theorem

Changho Han

MAT 477
January 16, 2014

Proof of Riemann Extension Thm

From Fact 1, $X=X^{r} \cup X^{\prime}$ with $\operatorname{dim} X^{r}=r, X^{\prime} *$-analytic of $\operatorname{dim}<r$.
Take $a \in X^{r} \backslash X^{\prime}$. WLOG, assume $a=0, X^{r}=\mathbb{C}^{r} \subset \mathbb{C}^{r} \times \mathbb{C}^{n-r}$ locally.
f analytic on $\{\bar{x}\} \times(\mathbb{C} \backslash\{0\})$, so f extends analytically to $\{\bar{x}\} \times \mathbb{C}$ via:

$$
f\left(\bar{x}, x_{n}\right):=\int_{|z|=1} \frac{f(\bar{x}, z)}{z-x_{n}} d z
$$

As \bar{x} varies, $f(\bar{x}, z)$ for fixed $z \neq 0$ varies analytically, so that f extends analytically on $X^{r} \backslash X^{\prime}$. Then, by induction on $\operatorname{dim} X, f$ extends analytically to U.

Proof of Mumford's Lemma

Pick an open nbhd U of $f^{-1}(y)$ with \bar{U} compact, and let ∂U be its bdry.

Let $\left(V_{n}\right)$ be decreasing sequence of open nbhds of y with $\overline{V_{n}}$ compact and
$\cap \overline{V_{n}}=\{y\}$. Then, $\cap_{n}\left(f^{-1}\left(\overline{V_{n}}\right) \cap \partial U\right)=f^{-1}(y) \cap \partial U=\emptyset$. But this is an intersection of countable \# of cpcts, so $f^{-1}(\bar{V}) \cap \partial U=\emptyset$ for $V=V_{m}$.

Let $g: U \cap f^{-1}(V) \rightarrow V$ be restriction of f. Then, $\forall K \subset U$ compact,
$g^{-1}(K)=U \cap f^{-1}(K)$ is compact because $f^{-1}(K)$ is closed, contained in
\bar{U} compact and $f^{-1}(K) \cap \partial U \subset f^{-1}(\bar{V}) \cap \partial U=\emptyset$.

Properties of Resultant

Res is a matrix, and res is a determinant of entries in S, so that if \exists a map $e v_{a}: S \ni f \mapsto f(a)$, then this commutes with both Res and res.

Claim: $\forall P, Q \in \mathbb{C}[w], \operatorname{res}(P, Q)=0 \Leftrightarrow P, Q$ have a common root.

Proof: Denote $p=\operatorname{deg} P, q=\operatorname{deg} Q \cdot \operatorname{res}(P, Q)=0 \Rightarrow \exists F, G \in \mathbb{C}[w]$
nonzero, $\operatorname{deg} F<q$, $\operatorname{deg} G<p$ with $F P+G Q=0$, so $F P=-G Q$. Since
$\operatorname{deg} F<\operatorname{deg} Q$, not all roots of Q are roots of F, so some roots of Q are
roots of P. Conversely, if P, Q have a common root, then trivial.

Speical Weierstrass Division Thm (as a Fact)

Suppose $c \in \mathbb{C}^{d}, w \in \mathbb{C}$ and $P(a, w):=w^{d}+\sum_{j=1}^{d} a_{j} w^{d-j}$. Then, for
$F \in \mathbb{C}\{\bar{x}, w\}, \exists!Q \in \mathbb{C}\{\bar{x}, a, w\}$ and $r_{j} \in \mathbb{C}\{\bar{x}, a\}$ for $1 \leq j \leq d$
so that $\quad F(\bar{x}, w)=Q(\bar{x}, a, w) P(c, w)+\sum_{j=1}^{d} r_{j}(\bar{x}, a) w^{d-j}$.
Proof of Weierstrass Division Thm using Weierstrass Prep Thm:
$f=u P$ with $u(0) \neq 0$ and $P \in \mathbb{C}\{\bar{x}\}\left[x_{n}\right]$. It suffices to divide g by P via

Special Weierstrass Division Thm.

Proof of Weierstrass Preparation Thm

Take $F=f, \quad w=x_{n}$. Using Special Weiers. Div. Thm look for solution
of $r_{j}(\bar{x}, a(\bar{x}))=0$ with $a(0)=0 \forall j$. Then, if $r_{j}(0,0)=0 \forall j$ and
$\operatorname{det}\left(\frac{\partial r_{j}}{\partial a_{k}}(0,0)\right) \neq 0$, then by Implicit Function Thm, we can find such
solution. Indeed, set $\bar{x}=0$ and $a=0$, then by comparing degrees in
$x_{n}^{d}(\alpha+\cdots)=Q\left(0,0, x_{n}\right) x_{n}^{d}+\sum r_{j}(0,0) x_{n}^{d-j} \Rightarrow r_{j}(0,0)=0 \quad \forall j$.

Similarly, $Q(0,0,0)=\alpha \neq 0$. Taking $\frac{\partial}{\partial a_{k}}$ of $(*)$ for each k yields
$0=Q\left(0,0, x_{n}\right) x_{n}^{d-k}+\frac{\partial Q}{\partial a_{k}}\left(0,0, x_{n}\right) x_{n}^{d}+\sum_{j} \frac{\partial r_{j}}{\partial a_{k}}(0,0) w^{d-j}$. For $j>k$
by comparing degrees $\Rightarrow \frac{\partial r_{j}}{\partial c_{k}}(0,0)=0$; for $j=k, \quad \frac{\partial r_{j}}{\partial c_{j}}(0,0)=\alpha \neq 0$.

Summarizing, $\left(\frac{\partial r_{j}}{\partial c_{k}}(0,0)\right)$ is an upper triangular matrix with nonzero
diagonal entries. Hence, $\operatorname{det}\left(\frac{\partial r_{j}}{\partial c_{k}}(0,0)\right) \neq 0$, and this proves the thm.

