Chow's Theorem

Changho Han

MAT 477
January 9, 2014

Definitions: \mathbb{C}-analytic and $*$-analytic

Def: Closed set $X \subset U \subset \mathbb{C}^{n}$ is \mathbb{C}-analytic if it is locally $V\left(f_{1}, \ldots, f_{m}\right)$
$:=\left\{z \in \mathbb{C}^{n}: f_{1}(z)=\ldots=f_{m}(z)=0\right\}$ with each f_{i} locally analytic.

Def: Locally closed $X \subset U$ in \mathbb{C}^{n} is $*$-analytic if $X=\bigcup_{0 \leq j \leq r} X^{j}$ with each
$X^{j} \mathbb{C}$-submanifold of $U, \operatorname{dim}_{\mathbb{C}} X^{j}=j$, and $\overline{X^{j}} \subset \bigcup_{0 \leq k \leq r} X^{k} ; \operatorname{dim}_{\mathbb{C}} X:=r$.

Remark: If $r<n$, then X is nowhere dense in U, since it is so locally.

Fact 1: \mathbb{C}-analytic \Longrightarrow-analytic;

Idea: Express \mathbb{C}-analytic X as $\operatorname{Reg} X \sqcup \operatorname{Sing} X$ where $\operatorname{Reg} X$ is r - dim
\mathbb{C}-manifold and $r=\operatorname{dim}_{\mathbb{C}} X$. It can be done with $\operatorname{Sing} X$ being a
\mathbb{C}-analytic set. Define $X_{1}:=\operatorname{Sing} X$. Then, $\operatorname{dim}_{\mathbb{C}} X_{1}<r$. Apply above to X_{1}. By repeating above, we can get $X=X^{r} \cup X^{r-1} \cup \cdots \cup X^{0}$. \square

Riemann Extension Theorem: $U \subset \mathbb{C}^{n}$ open and X analytic in U. Say
f is analytic on $U \backslash X$ so that $\forall x \in X, f$ is bounded in some nbhd of x.

Then, f extends to an analytic function on U.

Other Preliminaries: To be proved in next talk

Weierstrass Preparation Thm: Let $f \in \mathbb{C}\{x\}, x:=\left(x_{1}, \ldots, x_{n}\right)$ and assume $f\left(0, x_{n}\right)=x_{n}^{d}\left(\alpha+x_{n} g\left(x_{n}\right)\right)$ where $\alpha \in \mathbb{C}^{*}, g \in \mathbb{C}\left\{x_{n}\right\}$ analytic.

Then, $\exists!u \in \mathbb{C}\{x\}, u(0) \neq 0$ and $a_{i} \in \mathbb{C}\left\{x_{1}, \ldots, x_{n-1}\right\}:=\mathbb{C}\{\bar{x}\}$,
$1 \leq i \leq d$ with $a_{i}(0)=0$ so that $f=u\left(x_{n}^{d}+a_{1} x_{n}^{d-1}+\cdots+a_{d}\right)$.

Weierstrass Division Thm: f from above. $\forall g \in \mathbb{C}\{x\}, \exists!h \in \mathbb{C}\{x\}$
and $b_{i} \in \mathbb{C}\{\bar{x}\}$ so that $g=h f+\left(b_{1} x_{n}^{d-1}+\cdots+b_{d}\right)$.

Hilb. Basis Thms. $\mathbb{C}[x]$ and $\mathbb{C}\{x\}$ noetherian rings: ideals are fin. gener.

Mumford's Lemma: Let $f: X \rightarrow Y$ be C^{0} map of locally compact spaces. Let $y \in Y$ and assume $f^{-1}(y)$ is compact. Then \exists open nbhds $U \subset X, V \subset Y$ of $f^{-1}(y)$ such that $f(U) \subset V$ and $\left.f\right|_{U}: U \rightarrow V$ proper.

Resultant: $\forall P, Q \in S[w]$ for S ring, $\operatorname{res}(P, Q):=\operatorname{det}(\operatorname{Res}(P, Q)) \in S$
where $\operatorname{Res}(P, Q):$ Pol $_{\operatorname{deg} Q-1} \times \operatorname{Pol}_{\operatorname{deg} P-1} \rightarrow \operatorname{Pol}_{\operatorname{deg} P+\operatorname{deg} Q-1} \quad$ and

$$
(F \quad, \quad G) \quad \mapsto \quad F P+G Q
$$

Pol $_{d} \subset S[w]$ with $f \in \mathrm{Pol}_{d}$ of $\operatorname{deg} \leq d$ and a basis of $w^{j}, j \in \mathbb{N}$.
Evaluation $e v_{a}: S \ni f \mapsto f(a) \in \mathbb{C}$ commutes with resultant as a map.

For $P, Q \in \mathbb{C}[w], \operatorname{res}(P, Q)=0 \Leftrightarrow\{w \in \mathbb{C}: P(w)=Q(w)=0\} \neq \emptyset$.

Chow's Theorem: Projective \mathbb{C}-analytic $\Rightarrow \mathbb{C}$-algebraic

as a beautiful Cor of Main Theorem: \mathbb{C}-analytic " $\Longleftarrow " *$-analytic

Proof (Chow): Denote $\pi: \mathbb{C}^{n+1} \backslash\{0\} \rightarrow \mathbb{C P}^{n}$ the usual projection.

From Fact 1, given $X \mathbb{C}$-analytic then it is $*$-analytic. Then
$C X:=\pi^{-1}(X) \cup\{0\} \subset \mathbb{C}^{n+1}$, is $*$-analytic. Main Theorem implies $C X$ is
\mathbb{C}-analytic. Then, near $0(\in U), C X \cap U$ is $V\left(f_{1}, \ldots, f_{k}\right)$. and each
$f_{i}(x)=\sum_{r} f_{i, r}(x)$, where $f_{i, r}$ is homogeneous polynomial of degree r.

Hence, $\forall|\lambda| \leq 1, \forall x^{\circ} \in C X \cap U, 0=f_{i}\left(\lambda x^{\circ}\right)=\sum_{r} \lambda^{r} f_{i, r}\left(x^{\circ}\right)$ and
$\forall f \in \mathbb{C}\{x\} \Rightarrow f\left(\lambda x^{\circ}\right) \in \mathbb{C}\{\lambda\}$. Therefore, $\forall x^{\circ} \in C X$ all $f_{i, r}\left(x^{\circ}\right)=0$, and
we can reduce to finite list due to: $C X$ is locally $V\left(\ldots, f_{i, r}, \ldots\right)$.

By Hilb. Basis Thm, it is zero set of finitely many polynomials.

Now, the proof of the Main Theorem:

Main Thm via Main Step $=$ Projection Lemma

Proof: Induction on $\operatorname{dim} X=r, X=X^{r} \cup X^{\prime}, X^{\prime} *$-analytic, $\operatorname{dim} X^{\prime}<r$.

Projection Lemma: $\pi: \mathbb{C}^{n+k} \rightarrow \mathbb{C}^{n}$ projection. $X \subset U \subset \mathbb{C}^{n+k}$ analytic. $\left.\pi\right|_{X}: X \rightarrow V \subset \mathbb{C}^{n}$ proper. Then, $\pi(X) \subset V$ analytic and $\left.\pi\right|_{X}$ finite-to-1.

Proof: By induction on k. Factor π into $\mathbb{C}^{n+k} \xrightarrow{\pi_{1}} \mathbb{C}^{n+k-1} \xrightarrow{\pi_{2}} \mathbb{C}^{n}$. Then,
$\left.\pi\right|_{X}$ proper $\left.\Rightarrow \pi_{1}\right|_{X}: X \rightarrow U_{1}:=\pi_{1}(U) \subset \mathbb{C}^{n+k-1}$ proper, so $\pi_{1}(X) \subset U_{1}$
analytic, $\pi_{1} \mid X$ finite-to-one. Also $\left.\pi_{2}\right|_{\pi_{1}(X)}: \pi_{1}(X) \rightarrow V$ proper, so the
assertion is true. Suffices to prove base case when $k=1$.
$\forall y \in V, X \cap \pi^{-1}(y) \subset U \cap \pi^{-1}(y) \subset \mathbb{C}$ compact analytic $\Rightarrow X \cap \pi^{-1}(y)$ is finite, so $\left.\pi\right|_{X}$ is finite-to-one. Say $\left\{p_{1}, \ldots, p_{m}\right\}=X \cap \pi^{-1}(y)$. Then, $\exists y \in V_{1} \subset V$ open with $X \cap \pi^{-1}\left(V_{1}\right)=\bigcup_{i=1}^{m} U_{i}$ for $p_{i} \in U_{i}$ disjoint open sets, $X_{i}:=X \cap \pi^{-1}\left(V_{1}\right) \cap U_{i}$ disjoint. Suffices to show $\pi\left(X_{i}\right)$ analytic.

Say $y=0$, and $X_{1}=V\left(f_{1}, \ldots, f_{p}\right) \in U_{1}$ with $f_{i} \in \mathbb{C}\left\{x_{1}, \ldots, x_{n+1}\right\}$. By
Weierstrass Preparation and Division Theorem, we may assume

$$
f_{1}=x_{n+1}^{d}+\sum_{l=1}^{d} a_{l} x_{n+1}^{d-l}, f_{i}=\sum_{l=1}^{d-1} b_{l i} x_{n+1}^{d-l}
$$

where $a_{l}, b_{l i} \in \mathbb{C}\left\{x_{1}, \ldots, x_{n}\right\}, a_{l}(0)=0$.

Application of Resultant to Complete the Proof:

With $w:=x_{n+1}, \operatorname{res}\left(f_{1}, t_{2} f_{2}+\cdots+t_{p} f_{p}\right)=\sum_{|\alpha|=d} t^{\alpha} R_{\alpha}, R_{\alpha} \in \mathbb{C}\{x\}$.
Now choose $V_{1} \subset V$ small that $a_{l}, b_{l i}, R_{\alpha}$ converge in V_{1}, and
$y \in V_{1} \Rightarrow$ all roots of $f_{1}\left(y, x_{n+1}\right)=0$ in U_{1}. Set $U^{\prime}:=U_{1} \cap \pi^{-1}\left(V_{1}\right)$.

Lemma: $\pi\left(X \cap U^{\prime}\right)=V\left(\ldots, R_{\alpha}, \ldots\right) \subset V_{1}$.

Proof: $\forall\left(z, z_{n+1}\right) \in X \cap U^{\prime}$, then $\forall t_{i}, f_{1}\left(z, x_{n+1}\right), \sum t_{i} f_{i}\left(z, x_{n+1}\right)$ have common root $x_{n+1}=z_{n+1}$, so resultant is 0 . Thus, $R_{\alpha}(z)=0 \forall \alpha$.

Say, $z^{\circ} \in V_{1}$ and $R_{\alpha}\left(z^{\circ}\right)=0 \forall \alpha$, then $f_{1}\left(z^{\circ}, x_{n+1}\right), \sum t_{i} f_{i}\left(z^{\circ}, x_{n+1}\right)$
have common root $\forall t$. Say $\alpha_{1}, \ldots, \alpha_{d}$ roots of $f_{1}\left(z^{\circ}, x_{n+1}\right)$. Call
$W_{j}:=\left\{t \in \mathbb{C}^{n-1}: \sum t_{i} f_{i}\left(z^{\circ}, \alpha_{j}\right)=0\right\}$. Then W_{j} is a vector space, and
$\cup W_{j}=\mathbb{C}^{n-1}$. Hence, $W_{j}=\mathbb{C}^{n-1}$ for some j. Therefore, $\left(z^{\circ}, \alpha_{j}\right)$ root of
all f_{i}^{\prime} 's, so that it is in $X \cap U^{\prime}$.

This proves the projection lemma with $\pi(X)=V\left(\ldots, R_{\alpha}, \ldots\right)$ locally.

Cor: $\operatorname{dim} \pi\left(X \cap U^{\prime}\right)=\operatorname{dim} X$ since π is finite-to-one, cf top of page 15 .

Direction (to project along) Lemma and an application

Recall: $X^{r} \cup X^{\prime} \subset U$ open, $X^{\prime} \subset U$ closed analytic, $X^{r} \subset U \backslash X^{\prime}$ analytic.

Lemma: $0 \in U \subset \mathbb{C}^{n}$ open ball, X^{r}, X^{\prime} as above, $0 \in X^{\prime}, X^{r} \cup X^{\prime} \neq U$.
\exists complex line $I \subset \mathbb{C}^{n}$ through 0 and a ball $U_{1} \ni 0$ in U so that
$X^{\prime} \cap I \cap U_{1}=\{0\}, X^{r} \cap I \cap U_{1}$ is countable with the only limit point 0.

Proof: Say $p \in U \backslash\left(X^{r} \cup X^{\prime}\right)$. Say $I=\langle p\rangle . p \notin X^{\prime} \cap I \subset U \cap I$ analytic, so countable, discrete. Set U_{1} s.t. $X^{\prime} \cap I \cap U_{1}=\{0\}$. $X^{r} \cap I \subset\left(U_{1} \cap I\right) \backslash X^{\prime}$ analytic, so is countable set possibly accumulating at $X^{\prime} \cap I$. Shrink U_{1}.■

Summarizing Outcome of Main Steps

With $X^{r} \cup X^{\prime}$ as above, we project along / from Direction Lemma.

By Mumford's lemma, set $0 \in U_{2} \subset U_{1} \subset U$ s.th. $\pi:\left(X^{r} \cup X^{\prime}\right) \cap U_{2} \rightarrow V$
is proper where $0 \in V \subset \mathbb{C}^{n-1}, \pi\left(U_{2}\right) \subset V$. By Projection Lemma,
(i) $Y_{1}:=\pi\left(X^{\prime} \cap U_{2}\right) \subset V$ analytic, $\pi_{X^{\prime} \cap U}$ is finite-to-one.
(ii) $Y_{0}:=\pi\left(\left(X^{r} \cap U_{2}\right) \backslash \pi^{-1}\left(Y_{1}\right)\right) \subset V \backslash Y_{1}$ analytic, π finite-to-1 over Y_{0}.
(iii) $\pi\left(\left(X^{r} \cup X^{\prime}\right) \cap U_{2}\right)=Y_{0} \cup Y_{1} \subset V$ similar properties to X^{r}, X^{\prime}, U.
(iv) $\forall y \in V, \pi^{-1}(y)$ is countable.

Locally Biholomorphic Projections $\pi: X^{r} \cup X^{\prime} \rightarrow V \subset \mathbb{C}^{r}$

Keep projecting till $\pi:\left(X^{r} \cup X^{\prime}\right) \cap U_{2} \rightarrow V \subset \mathbb{C}^{r}$ is proper and surjective.
Proof: π is regular with analytic image (image of of dimension $\leq r$).

If $\operatorname{dim}<r$, then $X \cap U_{2}=$ countable union of sets of $\operatorname{dim}<r$, ?!
$\pi\left(X^{\prime}\right)=Y_{1} \subset V$ analytic, $\pi\left(X^{r} \backslash \pi^{-1}\left(Y_{1}\right)\right)=V \backslash Y_{1} \subset V$ open and dense
$X^{r} \backslash \pi^{-1}\left(Y_{1}\right) \subset X^{r}$ open and dense. Also, $V \backslash Y_{1}$ connected, as $Y_{1}=\pi\left(X^{\prime}\right)$
is analytic of $\operatorname{dim} Y_{1}=\operatorname{dim} X^{\prime}<r=\operatorname{dim} V$ (as π is finite-to-one on X^{\prime}).
$\pi^{\prime}:=\left.\pi\right|_{X r \backslash \pi^{-1}\left(Y_{1}\right)}: X^{r} \backslash \pi^{-1}\left(Y_{1}\right) \rightarrow V \backslash Y_{1}$ proper, finite-to-1 btwn r-mflds.
$\forall z \in X^{r} \backslash \pi^{-1}\left(Y_{1}\right)$ fixed, say t_{1}, \ldots, t_{r} local coordinates around z. Then,

$$
J(z):=\frac{\partial\left(x_{1}, \ldots, x_{r}\right)}{\partial\left(t_{1}, \ldots, t_{r}\right)}
$$

is Jacobian of π on z with x coordinate on U_{2} (so $\pi(x)=\left(x_{1}, \ldots, x_{r}\right)$).
$J(z) \neq 0 \Leftrightarrow \pi$ locally biholomorphic at z. Then, $B_{1} \subsetneq X^{r} \backslash \pi^{-1}\left(Y_{1}\right)$ (where
π is not locally biholomorphic) is locally analytic $V(J) \subsetneq X^{r} \backslash \pi^{-1}\left(Y_{1}\right)$.
By Projection Lemma, $B:=\pi\left(B_{1}\right)$ is analytic in $V \backslash Y_{1}$.

Since $\operatorname{dim} V(J)<r$, $\operatorname{dim} B<r$, so $V \backslash\left(Y_{1} \cup B\right)$ connected and dense in V, so $X^{r} \backslash \pi^{-1}\left(B \cup Y_{1}\right)$ is dense in $X^{r} \backslash \pi^{-1}\left(Y_{1}\right)$.

$\pi: X^{r} \backslash \pi^{-1}\left(Y_{1} \cup B\right) \rightarrow V \backslash\left(Y_{1} \cup B\right)$ is locally biholomor.

between 2 manifolds of $\operatorname{dim}=r$, finite-to- 1 . This is a covering map. Want
to show: $\overline{X^{r}} \subset \pi^{-1}(V) \subset \mathbb{C}^{n}$ analytic. Say d is the number of sheets of
covering π. Pick linear function L on \mathbb{C}^{n}. Let $V \backslash\left(Y_{1} \cup B\right) \ni y \mapsto a_{i}(y)$
be the elementary symmetric function of $L\left(x_{i}\right)$'s with distinct $x_{i} \in \pi^{-1}(y)$.

All $x_{i}(y)$ are locally analytic \Rightarrow each $a_{i}(y)$ is analytic. Also, properness of $\pi: \overline{X^{r}} \rightarrow V$ implies a_{i} 's are bounded over $K \backslash\left(Y_{1} \cup B\right)$ for any compact K

Riemann Extension Theorem implies a_{i} extend analytically to V. Then
$F_{L}(x):=L(x)^{d}-a_{1}(\pi(x)) L(x)^{d-1}+\cdots+(-1)^{d} a_{d}(\pi(x))$ is analytic on $\pi^{-1}(V)$. Since $F_{L}=0$ on $X^{r} \backslash \pi^{-1}\left(Y_{1} \cup B\right), F_{L}=0$ on $\overline{X^{r}}$.

Claim: $\overline{X^{r}}=V\left(\ldots, F_{L}, \ldots\right)$.
Remark *. $(n-r-1) d+1$ of L in $\left(\mathbb{C}^{n}\right)^{*}$ with $L_{\mathbb{C}^{r}}=0$ would do.
Proof: Let $x \in \pi^{-1}(V) \backslash \overline{X^{r}} \subset \mathbb{C}^{n}$, let $y=\pi(x)$ and let $y=\lim y_{k}$,
$y_{k} \in V \backslash\left(Y_{1} \cup B\right)$. Then, $\pi^{-1}\left(y_{k}\right) \cap X^{r} \backslash \pi^{-1}\left(Y_{1} \cup B\right)$ is $\left\{x_{k}^{1}, \ldots, x_{k}^{d}\right\}$ and
since $\pi: \overline{X^{r}} \rightarrow V$ proper, choose subsequence of $\left(y_{k}\right)$ where $\lim _{k} x_{k}^{j}=x^{j}$.
Then, $x^{j} \in \overline{X^{r}}$, so $x \neq x^{j}$. Pick L so that $L\left(x^{j}\right) \neq L(x) \forall j$ (key for ${ }^{*}$).

End of Proof of Main Theorem

Then, $L\left(x_{k}^{1}\right), \ldots, L\left(x_{k}^{d}\right)$ all roots of $t^{d}-a_{1}\left(y_{k}\right) t^{d-1}+\cdots+(-1)^{d} a_{d}\left(y_{k}\right)$.
$L\left(x^{1}\right), \ldots, L\left(x^{d}\right)$ are the roots of $t^{d}-a_{1}(y) t^{d-1}+\cdots+(-1)^{d} a_{d}(y)$.
Therefore, $F_{L}(x)=L(x)^{d}-a_{1}(y) L(x)^{d-1}+\cdots+(-1)^{d} a_{d}(y) \neq 0$. This shows that $V\left(\ldots, F_{L}, \ldots\right) \subset \overline{X^{r}}$. The other inclusion is trivial, so that $\overline{X^{r}}=V\left(\ldots, F_{L}, \ldots\right)$, but we need all $L \in\left(\mathbb{C}^{n}\right)^{*}$. (Using Remark *, we only need $(n-r-1) d+1$ of F 's.) But since $\mathbb{C}\{x\}$ is noetherian we can choose L_{1}, \ldots, L_{u}, so that $\overline{X^{r}}=V\left(F_{L_{1}}, \ldots, F_{L_{u}}\right)$.

