Chow's Theorem

Changho Han

MAT 477

January 9, 2014

Changho Han (2014)

Chow's Theorem

January 9, 2014 1 / 18

(日) (同) (三) (三)

Definitions: C-analytic and *-analytic

Def: Closed set $X \subset U \subset \mathbb{C}^n$ is \mathbb{C} -analytic if it is locally $V(f_1, \ldots, f_m)$

 $:= \{z \in \mathbb{C}^n : f_1(z) = ... = f_m(z) = 0\}$ with each f_i locally analytic.

Def: Locally closed $X \subset U$ in \mathbb{C}^n is *-analytic if $X = \bigcup_{0 \le j \le r} X^j$ with each

 $X^j \mathbb{C}$ -submanifold of U, dim $_{\mathbb{C}} X^j = j$, and $\overline{X^j} \subset \bigcup_{0 \le k \le r} X^k$; dim $_{\mathbb{C}} X := r$.

Remark: If r < n, then X is nowhere dense in U, since it is so locally.

Fact 1: \mathbb{C} -analytic \implies *-analytic;

Idea: Express \mathbb{C} -analytic X as $\operatorname{Reg} X \sqcup \operatorname{Sing} X$ where $\operatorname{Reg} X$ is *r*-dim

 \mathbb{C} -manifold and $r = \dim_{\mathbb{C}} X$. It can be done with SingX being a

 \mathbb{C} -analytic set. Define $X_1 := \operatorname{Sing} X$. Then, $\dim_{\mathbb{C}} X_1 < r$. Apply above

to X_1 . By repeating above, we can get $X = X^r \cup X^{r-1} \cup \cdots \cup X^0$.

Riemann Extension Theorem: $U \subset \mathbb{C}^n$ open and X analytic in U. Say

f is analytic on $U \setminus X$ so that $\forall x \in X$, f is bounded in some nbhd of x.

Then, f extends to an analytic function on U.

Other Preliminaries: To be proved in next talk

Weierstrass Preparation Thm: Let $f \in \mathbb{C}\{x\}$, $x := (x_1, \ldots, x_n)$ and

assume $f(0, x_n) = x_n^d(\alpha + x_ng(x_n))$ where $\alpha \in \mathbb{C}^*$, $g \in \mathbb{C}\{x_n\}$ analytic.

Then, $\exists ! u \in \mathbb{C}\{x\}$, $u(0) \neq 0$ and $a_i \in \mathbb{C}\{x_1, \dots, x_{n-1}\} := \mathbb{C}\{\overline{x}\}$,

 $1 \leq i \leq d$ with $a_i(0) = 0$ so that $f = u(x_n^d + a_1x_n^{d-1} + \cdots + a_d)$.

Weierstrass Division Thm: *f* from above. $\forall g \in \mathbb{C}\{x\}, \exists ! h \in \mathbb{C}\{x\}$

and $b_i \in \mathbb{C}\{\overline{x}\}$ so that $g = hf + (b_1 x_n^{d-1} + \cdots + b_d)$.

Hilb. Basis Thms. $\mathbb{C}[x]$ and $\mathbb{C}\{x\}$ noetherian rings: ideals are fin. gener.

Mumford's Lemma: Let $f : X \to Y$ be C^0 map of locally compact

spaces. Let $y \in Y$ and assume $f^{-1}(y)$ is compact. Then \exists open nbhds

 $U \subset X$, $V \subset Y$ of $f^{-1}(y)$ such that $f(U) \subset V$ and $f|_U : U \to V$ proper.

Resultant: $\forall P, Q \in S[w]$ for S ring, $res(P, Q) := det(Res(P, Q)) \in S$

where
$$\operatorname{Res}(P, Q) : \operatorname{Pol}_{\deg Q-1} \times \operatorname{Pol}_{\deg P-1} \to \operatorname{Pol}_{\deg P+\deg Q-1}$$
 and
 $(F, G) \mapsto FP + GQ$

 $\operatorname{Pol}_d \subset S[w]$ with $f \in \operatorname{Pol}_d$ of deg $\leq d$ and a basis of w^j , $j \in \mathbb{N}$.

Evaluation $ev_a : S \ni f \mapsto f(a) \in \mathbb{C}$ commutes with resultant as a map.

For $P, Q \in \mathbb{C}[w]$, $\operatorname{res}(P, Q) = 0 \Leftrightarrow \{w \in \mathbb{C} : P(w) = Q(w) = 0\} \neq \emptyset$.

Chow's Theorem: Projective \mathbb{C} -analytic $\Rightarrow \mathbb{C}$ -algebraic

as a beautiful **Cor** of **Main Theorem**: \mathbb{C} -analytic " \Leftarrow " *-analytic

Proof (Chow): Denote $\pi : \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{CP}^n$ the usual projection.

From Fact 1, given X \mathbb{C} -analytic then it is *-analytic. Then

 $CX := \pi^{-1}(X) \cup \{0\} \subset \mathbb{C}^{n+1}$, is *-analytic. <u>Main Theorem</u> implies CX is

 \mathbb{C} -analytic. Then, near 0 ($\in U$), $CX \cap U$ is $V(f_1, \ldots, f_k)$. and each

 $f_i(x) = \sum_r f_{i,r}(x)$, where $f_{i,r}$ is homogeneous polynomial of degree r.

Hence, $\forall |\lambda| \leq 1$, $\forall x^{\circ} \in CX \cap U$, $0 = f_i(\lambda x^{\circ}) = \sum_r \lambda^r f_{i,r}(x^{\circ})$ and

 $\forall f \in \mathbb{C}\{x\} \Rightarrow f(\lambda x^{\circ}) \in \mathbb{C}\{\lambda\}.$ Therefore, $\forall x^{\circ} \in CX$ all $f_{i,r}(x^{\circ}) = 0$, and

we can reduce to finite list due to: CX is locally $V(\ldots, f_{i,r}, \ldots)$.

By <u>Hilb. Basis Thm</u>, it is zero set of finitely many polynomials.

Now, the proof of the <u>Main Theorem</u>:

Main Thm via Main Step = Projection Lemma

<u>Proof</u>: Induction on dim X = r, $X = X^r \cup X'$, X' *-analytic, dim X' < r.

Projection Lemma: $\pi : \mathbb{C}^{n+k} \to \mathbb{C}^n$ projection. $X \subset U \subset \mathbb{C}^{n+k}$ analytic.

 $\pi|_X: X \to V \subset \mathbb{C}^n$ proper. Then, $\pi(X) \subset V$ analytic and $\pi|_X$ finite-to-1.

Proof: By induction on k. Factor π into $\mathbb{C}^{n+k} \xrightarrow{\pi_1} \mathbb{C}^{n+k-1} \xrightarrow{\pi_2} \mathbb{C}^n$. Then,

 $\pi|_X$ proper $\Rightarrow \pi_1|_X: X o U_1 := \pi_1(U) \subset \mathbb{C}^{n+k-1}$ proper, so $\pi_1(X) \subset U_1$

analytic, $\pi_1|_X$ finite-to-one. Also $\pi_2|_{\pi_1(X)}: \pi_1(X) \to V$ proper, so the

assertion is true. Suffices to prove base case when k = 1.

$$orall y \in V$$
, $X \cap \pi^{-1}(y) \subset U \cap \pi^{-1}(y) \subset \mathbb{C}$ compact analytic $\Rightarrow X \cap \pi^{-1}(y)$

is finite, so $\pi|_X$ is finite-to-one. Say $\{p_1, \ldots, p_m\} = X \cap \pi^{-1}(y)$. Then, $\exists y \in V_1 \subset V$ open with $X \cap \pi^{-1}(V_1) = \bigcup_{i=1}^m U_i$ for $p_i \in U_i$ disjoint open

sets, $X_i := X \cap \pi^{-1}(V_1) \cap U_i$ disjoint. Suffices to show $\pi(X_i)$ analytic.

Say
$$y=0$$
, and $X_1=V(f_1,\ldots,f_p)\in U_1$ with $f_i\in\mathbb{C}\{x_1,\ldots,x_{n+1}\}.$ By

Weierstrass Preparation and Division Theorem, we may assume

$$f_1 = x_{n+1}^d + \sum_{l=1}^d a_l x_{n+1}^{d-l}, \ f_i = \sum_{l=1}^{d-1} b_{li} x_{n+1}^{d-l}$$

where $a_{l}, b_{li} \in \mathbb{C}\{x_{1}, \dots, x_{n}\}, a_{l}(0) = 0.$

Application of <u>Resultant</u> to Complete the Proof:

With
$$w := x_{n+1}$$
, $\operatorname{res}(f_1, t_2 f_2 + \cdots + t_p f_p) = \sum_{|\alpha|=d} t^{\alpha} R_{\alpha}$, $R_{\alpha} \in \mathbb{C}\{x\}$.

Now choose $V_1 \subset V$ small that a_I, b_{II}, R_{lpha} converge in V_1 , and

 $y \in V_1 \Rightarrow$ all roots of $f_1(y, x_{n+1}) = 0$ in U_1 . Set $U' := U_1 \cap \pi^{-1}(V_1)$.

Lemma: $\pi(X \cap U') = V(\ldots, R_{\alpha}, \ldots) \subset V_1$.

Proof: $\forall (z, z_{n+1}) \in X \cap U'$, then $\forall t_i, f_1(z, x_{n+1}), \sum t_i f_i(z, x_{n+1})$ have

common root $x_{n+1} = z_{n+1}$, so resultant is 0. Thus, $R_{\alpha}(z) = 0 \ \forall \alpha$.

Say, $z^\circ \in V_1$ and $R_\alpha(z^\circ) = 0$ $\forall \alpha$, then $f_1(z^\circ, x_{n+1}), \sum t_i f_i(z^\circ, x_{n+1})$

have common root $\forall t$. Say $\alpha_1, \ldots, \alpha_d$ roots of $f_1(z^\circ, x_{n+1})$. Call

 $W_j := \{t \in \mathbb{C}^{n-1} : \sum t_i f_i(z^\circ, \alpha_j) = 0\}.$ Then W_j is a vector space, and

 $\cup W_j = \mathbb{C}^{n-1}$. Hence, $W_j = \mathbb{C}^{n-1}$ for some *j*. Therefore, (z°, α_j) root of

all f_i 's, so that it is in $X \cap U'$.

This proves the projection lemma with $\pi(X) = V(\ldots, R_{\alpha}, \ldots)$ locally.

Cor: dim $\pi(X \cap U')$ = dim X since π is finite-to-one, cf top of page 15.

Direction (to project along) Lemma and an application

Recall: $X^r \cup X' \subset U$ open, $X' \subset U$ closed analytic, $X^r \subset U \setminus X'$ analytic.

Lemma: $0 \in U \subset \mathbb{C}^n$ open ball, X^r, X' as above, $0 \in X', X^r \cup X' \neq U$.

 \exists complex line $I \subset \mathbb{C}^n$ through 0 and a ball $U_1 \ni 0$ in U so that

 $X' \cap I \cap U_1 = \{0\}, X' \cap I \cap U_1$ is countable with the only limit point 0.

Proof: Say $p \in U \setminus (X^r \cup X')$. Say $I = \langle p \rangle$. $p \notin X' \cap I \subset U \cap I$ analytic, so

countable, discrete. Set U_1 s.t. $X' \cap I \cap U_1 = \{0\}$. $X' \cap I \subset (U_1 \cap I) \setminus X'$

analytic, so is countable set possibly accumulating at $X' \cap I$. Shrink U_1 .

Summarizing Outcome of Main Steps

With $X^r \cup X'$ as above, we project along *I* from <u>Direction Lemma</u>.

By Mumford's lemma, set $0 \in U_2 \subset U_1 \subset U$ s.th. $\pi : (X^r \cup X') \cap U_2 \rightarrow V$

is proper where $0 \in V \subset \mathbb{C}^{n-1}$, $\pi(U_2) \subset V$. By Projection Lemma,

(i) $Y_1 := \pi(X' \cap U_2) \subset V$ analytic, $\pi_{X' \cap U}$ is finite-to-one.

(ii) $Y_0 := \pi((X^r \cap U_2) \setminus \pi^{-1}(Y_1)) \subset V \setminus Y_1$ analytic, π finite-to-1 over Y_0 .

(iii) $\pi((X^r \cup X') \cap U_2) = Y_0 \cup Y_1 \subset V$ similar properties to X^r, X', U .

(iv) $\forall y \in V$, $\pi^{-1}(y)$ is countable.

Locally Biholomorphic Projections $\pi: X^r \cup X' \to V \subset \mathbb{C}^r$

Keep projecting till $\pi : (X^r \cup X') \cap U_2 \to V \subset \mathbb{C}^r$ is proper and surjective.

Proof: π is regular with analytic image (image of of dimension $\leq r$).

If dim < r, then $X \cap U_2$ = countable union of sets of dim < r, ?!

 $\pi(X') = Y_1 \subset V$ analytic, $\pi(X' \setminus \pi^{-1}(Y_1)) = V \setminus Y_1 \subset V$ open and dense $X' \setminus \pi^{-1}(Y_1) \subset X'$ open and dense. Also, $V \setminus Y_1$ connected, as $Y_1 = \pi(X')$

is analytic of dim $Y_1 = \dim X' < r = \dim V$ (as π is finite-to-one on X').

 $\pi' := \pi|_{X^r \setminus \pi^{-1}(Y_1)} : X^r \setminus \pi^{-1}(Y_1) \to V \setminus Y_1 \text{ proper, finite-to-1 btwn } r\text{-mflds}.$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

 $orall z \in X^r ackslash \pi^{-1}(Y_1)$ fixed, say t_1, \ldots, t_r local coordinates around z. Then,

$$J(z) := \frac{\partial(x_1,\ldots,x_r)}{\partial(t_1,\ldots,t_r)}$$

is Jacobian of π on z with x coordinate on U_2 (so $\pi(x) = (x_1, \ldots, x_r)$).

 $J(z) \neq 0 \Leftrightarrow \pi$ locally biholomorphic at z. Then, $B_1 \subsetneq X^r \setminus \pi^{-1}(Y_1)$ (where

 π is not locally biholomorphic) is locally analytic $V(J) \subsetneq X^r \setminus \pi^{-1}(Y_1)$.

By Projection Lemma, $B := \pi(B_1)$ is analytic in $V \setminus Y_1$.

Since dim V(J) < r, dim B < r, so $V \setminus (Y_1 \cup B)$ connected and dense

in V, so $X^r \setminus \pi^{-1}(B \cup Y_1)$ is dense in $X^r \setminus \pi^{-1}(Y_1)$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

 $\pi: X^r \setminus \pi^{-1}(Y_1 \cup B) \to V \setminus (Y_1 \cup B)$ is locally biholomor.

between 2 manifolds of dim = r, finite-to-1. This is a covering map. Want

to show: $\overline{X^r} \subset \pi^{-1}(V) \subset \mathbb{C}^n$ analytic. Say *d* is the number of sheets of

covering π . Pick linear function L on \mathbb{C}^n . Let $V \setminus (Y_1 \cup B) \ni y \mapsto a_i(y)$

be the elementary symmetric function of $L(x_i)$'s with distinct $x_i \in \pi^{-1}(y)$.

All $x_i(y)$ are locally analytic \Rightarrow each $a_i(y)$ is analytic. Also, properness of

 $\pi: \overline{X^r} \to V$ implies a_i 's are bounded over $K \setminus (Y_1 \cup B)$ for any compact K

Riemann Extension Theorem implies a_i extend analytically to V. Then

$$F_{L}(x) := L(x)^{d} - a_{1}(\pi(x))L(x)^{d-1} + \dots + (-1)^{d}a_{d}(\pi(x)) \text{ is analytic}$$

on $\pi^{-1}(V)$. Since $F_{L} = 0$ on $X^{r} \setminus \pi^{-1}(Y_{1} \cup B)$, $F_{L} = 0$ on $\overline{X^{r}}$.
Claim: $\overline{X^{r}} = V(\dots, F_{L}, \dots)$.
Remark *. $(n - r - 1)d + 1$ of L in $(\mathbb{C}^{n})^{*}$ with $L_{|\mathbb{C}^{r}} = 0$ would do.
Proof: Let $x \in \pi^{-1}(V) \setminus \overline{X^{r}} \subset \mathbb{C}^{n}$, let $y = \pi(x)$ and let $y = \lim y_{k}$,
 $y_{k} \in V \setminus (Y_{1} \cup B)$. Then, $\pi^{-1}(y_{k}) \cap X^{r} \setminus \pi^{-1}(Y_{1} \cup B)$ is $\{x_{k}^{1}, \dots, x_{k}^{d}\}$ and
since $\pi : \overline{X^{r}} \to V$ proper, choose subsequence of (y_{k}) where $\lim_{k} x_{k}^{j} = x^{j}$.
Then, $x^{j} \in \overline{X^{r}}$, so $x \neq x^{j}$. Pick L so that $L(x^{j}) \neq L(x) \forall j$ (key for *).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

End of Proof of Main Theorem

Then, $L(x_k^1), \ldots, L(x_k^d)$ all roots of $t^d - a_1(y_k)t^{d-1} + \cdots + (-1)^d a_d(y_k)$. $L(x^1), \ldots, L(x^d)$ are the roots of $t^d - a_1(y)t^{d-1} + \cdots + (-1)^d a_d(y)$. Therefore, $F_{L}(x) = L(x)^{d} - a_{1}(y)L(x)^{d-1} + \dots + (-1)^{d}a_{d}(y) \neq 0$. This shows that $V(\ldots, F_L, \ldots) \subset \overline{X^r}$. The other inclusion is trivial, so that $\overline{X^r} = V(\ldots, F_L, \ldots)$, but we need all $L \in (\mathbb{C}^n)^*$. (Using Remark *, we only need (n - r - 1)d + 1 of F's.) But since $\mathbb{C}\{x\}$ is noetherian we can choose L_1, \ldots, L_u , so that $\overline{X^r} = V(F_{I_1}, \ldots, F_{I_u})$.