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Towards ker(Int®) is acyclic. Extension of Forms Thm:

(ax) Say k>0, s>1, o an s-simplex and w € QX(U(d0)) is closed.
Assume [, w=0 if s=k+1. Then exists ¥ € Q*(U(c)) closed and
s.th. @,,,, = w holds, perhaps upon shrinking U(90).

(b)) Say k >1, s> 1, ¢ an s-simplex, w € QX(U(c)) closed, and

a € QK 1(U(00)) , U(ds) C U(a) , s.th. da . When s = k

= Wyoo)
assume [ w= [, a. Then exists & € Q*"}(U(c)) s.th. |y = O

and d& = w , perhaps upon shrinking both U(do) C U(o) .
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Proof of ker(Int®) is acyclic, induction on s < n :

Say L :=J; 0f and w € ker(Int¥) is closed. Our plan is to construct
inductively nbds U(Ls) of Ls and forms as € Q“"1(U(Ls)) s.th.
Qs yanuite_ ) = Ps—1 das = Wyre and Intk_l(ak_l) =0. Then
an € ker(Int“"1) and da, = w , proving that ker(Int®) is acyclic.
Choose disjoint, contractible nbds U(c?) . By Poincare Lemma exists

afy € QO(U(09)) with dafy = Wl Set ag:=ag for k>1 and

ag = afy — af(09) for k=1 = Int’(ag) =0, as required for s =0 .
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Proof of ker(Int®) is acyclic, inductive step:

Given as_y , for each o7 we now construct nbds U(o7) s.th. overlaps of
each two are subsets of U(Ls_1) and, also, forms as € QK~1(U(0%))
that coincide with as_1 on overlaps. Inductive assumption includes

das_1 ,and as_1 € ker(Int*"1(U(Ls_1))) for s = k . Then (by)

= Y,
gives aL € Qk"1(U(0%)) s.th. dal = W]y sy AN d;‘u(a ;) = Qs-1 - Shrink

as in top 2 lines and glue &. into d&s on U(Ls):=J; U(cf) . We set

as = @s for s # k—1 and as := a5 — ¢k_1(lntk_1(as)) fors=k—1.
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®* and Int®* are homomorpisms of complexes and the former is the right
inverse of the latter imply daj_1 = w — ®*(Int"(w)) =w on U(Ls)

and, also, that Int*"!(ay_1) = Int"* (G, 1) — Intk "1 (@k_1) =0 . W

Proof of the Extension of Forms Theorem: by induction on k .
Plan: show (ag) holds, then (ax—1) = (bk) and, finally, (bx) = (ax) .
(ag): Say w € QO(U(d0)) closed. Then w is locally constant. Moreover,

then w = ¢ is constant since Oo is connected when s >1 and

0= fagw = w(p1) —w(po) when o= pop; .
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(ak—1) = (bk) : Say w,« are as in (bg) . Poincare Lemma provides

o € Q1(U(0)) sth. do/ =w . Then B := (a —a') € Q< 1(U(d0)) is
closed and when s =k also [, = [, a— [,/ =] w—[ w=0.
Applying (ax_1) to [ provides its closed extension 3 € Q~1(U(0)) .
Then & := (3 +a') € Q" 1(U(0)) is as required in (by) due to the
constructions of ' , 8 and 3 being closed.

(bk) = (ak) : Say o = pp...ps and w are asin (ax), k>0 . Also,

o' := p1...ps , P is the union of all faces of o with pg as a vertex and
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U(P) is a contractible nbd s.th. P C U(P) C U(dc) . Poincare Lemma
gives o/ € Q*7L(U(P)) sth. da’ = wlyepy ; say nbd U(do’) C U(P) .
With A:= (00 —o') € Xk ,s=k+1 = 0A=—00", SuppA="P
and fa,w — faa/ o = fa,w + fA do' = faaw = 0 by the assumptions on
w in (ak) . Applying now (bk) to simplex ¢’ and forms w , o provides
&' e Q1(U(0")) with &|y(pp) = o and d&’ = w|y(,r) . Shrink U(P)
so that U(P) N U(o’) C U(dd”) , let U(do) := U(P)U U(c’) and

set a€ QY(U(0o)) by a=a' on U(P) and a=3& on U(d') .

Dylan Butson (2011) March 4t and 24t", 2014 7/8



Extending, e.g. as 0 , smoothly by means of partition of unity, to form

a € Qk"Y(U(o)) provides the required in (ax) closed form & := da since

Q,, = day, = w due to the construction of forms o and & . 1

Application towards y(M)

v\/=|+L4~?_+%+‘=|Vg . v : ~
6=‘+3+ll-‘-‘:60 )

- - v=de=6t=4 N
t=1o-4 =40 s g1

X =18-60+40= -2 . R

St 24
P O =-2=2-29

Home Assignment: for g > 2 “it follows‘that ¥(C) = 2 — 2g.
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