De Rham Theorem à la Whitney, Part 2.

Dylan Butson

$$
\text { MAT } 477
$$

March $4^{\text {th }}$ and $24^{\text {th }}, 2014$

Towards ker $\left(\operatorname{Int}{ }^{\bullet}\right)$ is acyclic. Extension of Forms Thm:

$\left(a_{k}\right)$ Say $k \geq 0, s \geq 1, \sigma$ an s-simplex and $\omega \in \Omega^{k}(U(\partial \sigma))$ is closed.
Assume $\int_{\partial \sigma} \omega=0$ if $s=k+1$. Then exists $\tilde{\omega} \in \Omega^{k}(U(\sigma))$ closed and s.th. $\tilde{\omega}_{\mid U(\partial \sigma)}=\omega$ holds, perhaps upon shrinking $U(\partial \sigma)$.
$\left(b_{k}\right)$ Say $k \geq 1, s \geq 1, \sigma$ an s-simplex, $\omega \in \Omega^{k}(U(\sigma))$ closed, and $\alpha \in \Omega^{k-1}(U(\partial \sigma)), U(\partial \sigma) \subset U(\sigma)$, s.th. $d \alpha=\omega_{\mid U(\partial \sigma)}$. When $s=k$ assume $\int_{\sigma} \omega=\int_{\partial \sigma} \alpha$. Then exists $\tilde{\alpha} \in \Omega^{k-1}(U(\sigma))$ s.th. $\tilde{\alpha}_{\mid U(\partial \sigma)}=\alpha$ and $d \tilde{\alpha}=\omega$, perhaps upon shrinking both $U(\partial \sigma) \subset U(\sigma)$.

Proof of $k e r\left(\operatorname{lnt}{ }^{\bullet}\right)$ is acyclic, induction on $s \leq n$:

Say $L_{s}:=\bigcup_{i} \sigma_{i}^{s}$ and $\omega \in \operatorname{ker}\left(I n t^{k}\right)$ is closed. Our plan is to construct inductively nbds $U\left(L_{s}\right)$ of L_{s} and forms $\alpha_{s} \in \Omega^{k-1}\left(U\left(L_{s}\right)\right)$ s.th. $\alpha_{n} \in \operatorname{ker}\left(\operatorname{lnt}{ }^{k-1}\right)$ and $d \alpha_{n}=\omega$, proving that $k e r\left(\operatorname{Int} t^{\bullet}\right)$ is acyclic.

Choose disjoint, contractible nbds $U\left(\sigma_{i}^{0}\right)$. By Poincare Lemma exists $\alpha_{0}^{\prime} \in \Omega^{0}\left(U\left(\sigma_{i}^{0}\right)\right)$ with $d \alpha_{0}^{\prime}=\omega_{U\left(\sigma_{i}^{0}\right)}$. Set $\alpha_{0}:=\alpha_{0}^{\prime}$ for $k>1$ and $\alpha_{0}:=\alpha_{0}^{\prime}-\alpha_{0}^{\prime}\left(\sigma_{i}^{0}\right)$ for $k=1 \Rightarrow \operatorname{lnt}^{0}\left(\alpha_{0}\right)=0$, as required for $s=0$.

Proof of $\operatorname{ker}\left(\ln t^{\bullet}\right)$ is acyclic, inductive step:

Given α_{s-1}, for each σ_{i}^{s} we now construct nbds $U\left(\sigma_{i}^{s}\right)$ s.th. overlaps of each two are subsets of $U\left(L_{s-1}\right)$ and, also, forms $\alpha_{s} \in \Omega^{k-1}\left(U\left(\sigma_{i}^{s}\right)\right)$
that coincide with α_{s-1} on overlaps. Inductive assumption includes $d \alpha_{s-1}=\omega_{\mid U\left(L_{s-1}\right)}$ and $\alpha_{s-1} \in \operatorname{ker}\left(\operatorname{lnt}^{k-1}\left(U\left(L_{s-1}\right)\right)\right)$ for $s=k$. Then $\left(b_{k}\right)$ gives $\tilde{\alpha}_{s}^{i} \in \Omega^{k-1}\left(U\left(\sigma_{i}^{s}\right)\right)$ s.th. $d \tilde{\alpha}_{s}^{i}=\omega_{\left.\right|_{U\left(\sigma_{i}^{s}\right)}}$ and $\tilde{\alpha}_{\left.s\right|_{U\left(\partial \sigma_{i}^{s}\right)} ^{i}}=\alpha_{s-1}$. Shrink as in top 2 lines and glue $\tilde{\alpha}_{s}^{i}$ into $\tilde{\alpha}_{s}$ on $U\left(L_{s}\right):=\bigcup_{i} U\left(\sigma_{i}^{s}\right)$. We set $\alpha_{s}:=\tilde{\alpha}_{s}$ for $s \neq k-1$ and $\alpha_{s}:=\tilde{\alpha}_{s}-\Phi^{k-1}\left(\operatorname{lnt}{ }^{k-1}\left(\alpha_{s}\right)\right)$ for $s=k-1$.
Φ^{\bullet} and Int $^{\bullet}$ are homomorpisms of complexes and the former is the right inverse of the latter imply $d \alpha_{k-1}=\omega-\Phi^{k}\left(\operatorname{lnt}^{k}(\omega)\right)=\omega$ on $U\left(L_{s}\right)$ and, also, that $\operatorname{Int}^{k-1}\left(\alpha_{k-1}\right)=\operatorname{Int}^{k-1}\left(\tilde{\alpha}_{k-1}\right)-\operatorname{Int}^{k-1}\left(\tilde{\alpha}_{k-1}\right)=0$.

Proof of the Extension of Forms Theorem: by induction on k.
Plan: show $\left(a_{0}\right)$ holds, then $\left(a_{k-1}\right) \Rightarrow\left(b_{k}\right)$ and, finally, $\left(b_{k}\right) \Rightarrow\left(a_{k}\right)$.
$\left(a_{0}\right)$: Say $\omega \in \Omega^{0}(U(\partial \sigma))$ closed. Then ω is locally constant. Moreover,
then $\omega \equiv c$ is constant since $\partial \sigma$ is connected when $s>1$ and
$0=\int_{\partial \sigma} \omega:=\omega\left(p_{1}\right)-\omega\left(p_{0}\right)$ when $\sigma=p_{0} p_{1}$.
$\underline{\left(a_{k-1}\right) \Rightarrow\left(b_{k}\right): S a y ~} \omega, \alpha$ are as in $\left(b_{k}\right)$. Poincare Lemma provides
$\alpha^{\prime} \in \Omega^{k-1}(U(\sigma))$ s.th. $d \alpha^{\prime}=\omega$. Then $\beta:=\left(\alpha-\alpha^{\prime}\right) \in \Omega^{k-1}(U(\partial \sigma))$ is closed and when $s=k$ also $\int_{\partial \sigma} \beta=\int_{\partial \sigma} \alpha-\int_{\partial \sigma} \alpha^{\prime}=\int_{\sigma} \omega-\int_{\sigma} \omega=0$.

Applying $\left(a_{k-1}\right)$ to β provides its closed extension $\tilde{\beta} \in \Omega^{k-1}(U(\sigma))$.
Then $\tilde{\alpha}:=\left(\tilde{\beta}+\alpha^{\prime}\right) \in \Omega^{k-1}(U(\sigma))$ is as required in $\left(b_{k}\right)$ due to the constructions of α^{\prime}, β and $\tilde{\beta}$ being closed.
$\left(b_{k}\right) \Rightarrow\left(a_{k}\right):$ Say $\sigma=p_{0} \ldots p_{s}$ and ω are as in $\left(a_{k}\right), k>0$. Also,
$\sigma^{\prime}:=p_{1} \ldots p_{s}, \mathcal{P}$ is the union of all faces of σ with p_{0} as a vertex and
$U(\mathcal{P})$ is a contractible nbd s.th. $\mathcal{P} \subset U(\mathcal{P}) \subset U(\partial \sigma)$. Poincare Lemma gives $\alpha^{\prime} \in \Omega^{k-1}(U(\mathcal{P}))$ s.th. $\quad d \alpha^{\prime}=\left.\omega\right|_{U(\mathcal{P})}$; say nbd $U\left(\partial \sigma^{\prime}\right) \subset U(\mathcal{P})$.

With $A:=\left(\partial \sigma-\sigma^{\prime}\right) \in \Sigma_{k}, s=k+1 \Rightarrow \partial A=-\partial \sigma^{\prime}, \operatorname{Supp} A=\mathcal{P}$
and $\int_{\sigma^{\prime}} \omega-\int_{\partial \sigma^{\prime}} \alpha^{\prime}=\int_{\sigma^{\prime}} \omega+\int_{A} d \alpha^{\prime}=\int_{\partial \sigma} \omega=0$ by the assumptions on
ω in $\left(a_{k}\right)$. Applying now $\left(b_{k}\right)$ to simplex σ^{\prime} and forms ω, α^{\prime} provides
$\tilde{\alpha}^{\prime} \in \Omega^{k-1}\left(U\left(\sigma^{\prime}\right)\right)$ with $\left.\tilde{\alpha}^{\prime}\right|_{U\left(\partial \sigma^{\prime}\right)}=\alpha^{\prime}$ and $d \tilde{\alpha}^{\prime}=\left.\omega\right|_{U\left(\sigma^{\prime}\right)}$. Shrink $U(\mathcal{P})$ so that $U(\mathcal{P}) \cap U\left(\sigma^{\prime}\right) \subset U\left(\partial \sigma^{\prime}\right)$, let $U(\partial \sigma):=U(\mathcal{P}) \cup U\left(\sigma^{\prime}\right)$ and set $\alpha \in \Omega^{k-1}(U(\partial \sigma))$ by $\alpha=\alpha^{\prime}$ on $U(\mathcal{P})$ and $\alpha=\tilde{\alpha}^{\prime}$ on $U\left(\sigma^{\prime}\right)$.

Extending, e.g. as 0 , smoothly by means of partition of unity, to form
$\alpha \in \Omega^{k-1}(U(\sigma))$ provides the required in $\left(a_{k}\right)$ closed form $\tilde{\omega}:=d \alpha$ since
$\tilde{\omega}_{\left.\right|_{\partial \sigma}}=d \alpha_{\left.\right|_{\partial \sigma}}=\omega$ due to the construction of forms α^{\prime} and $\tilde{\alpha}^{\prime}$.
Application towards $\chi(M)$:

