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Towards ker(Int•) is acyclic. Extension of Forms Thm:

(ak) Say k ≥ 0 , s ≥ 1 , σ an s-simplex and ω ∈ Ωk(U(∂σ)) is closed.

Assume
∫
∂σ ω = 0 if s = k + 1 . Then exists ω̃ ∈ Ωk(U(σ)) closed and

s.th. ω̃|U(∂σ)
= ω holds, perhaps upon shrinking U(∂σ).

(bk) Say k ≥ 1 , s ≥ 1 , σ an s-simplex, ω ∈ Ωk(U(σ)) closed, and

α ∈ Ωk−1(U(∂σ)) , U(∂σ) ⊂ U(σ) , s.th. dα = ω|U(∂σ)
. When s = k

assume
∫
σ ω =

∫
∂σ α . Then exists α̃ ∈ Ωk−1(U(σ)) s.th. α̃|U(∂σ)

= α

and dα̃ = ω , perhaps upon shrinking both U(∂σ) ⊂ U(σ) .
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Proof of ker(Int•) is acyclic, induction on s ≤ n :

Say Ls :=
⋃

i σ
s
i and ω ∈ ker(Intk) is closed. Our plan is to construct

inductively nbds U(Ls) of Ls and forms αs ∈ Ωk−1(U(Ls)) s.th.

αs |U(Ls )∩U(Ls−1)
= αs−1 , dαs = ω|U(Ls )

and Intk−1(αk−1) = 0 . Then

αn ∈ ker(Intk−1) and dαn = ω , proving that ker(Int•) is acyclic.

Choose disjoint, contractible nbds U(σ0
i ) . By Poincare Lemma exists

α′0 ∈ Ω0(U(σ0
i )) with dα′0 = ω|

U(σ0
i

)
. Set α0 := α′0 for k > 1 and

α0 := α′0 − α′0(σ0
i ) for k = 1 ⇒ Int0(α0) = 0 , as required for s = 0 .
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Proof of ker(Int•) is acyclic, inductive step:

Given αs−1 , for each σsi we now construct nbds U(σsi ) s.th. overlaps of

each two are subsets of U(Ls−1) and, also, forms αs ∈ Ωk−1(U(σsi ))

that coincide with αs−1 on overlaps. Inductive assumption includes

dαs−1 = ω|U(Ls−1)
and αs−1 ∈ ker(Intk−1(U(Ls−1))) for s = k . Then (bk)

gives α̃i
s ∈ Ωk−1(U(σsi )) s.th. dα̃i

s = ω|U(σs
i

)
and α̃i

s|U(∂σs
i

)
= αs−1 . Shrink

as in top 2 lines and glue α̃i
s into α̃s on U(Ls) :=

⋃
i U(σsi ) . We set

αs := α̃s for s 6= k − 1 and αs := α̃s − Φk−1(Intk−1(αs)) for s = k − 1 .
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Φ• and Int• are homomorpisms of complexes and the former is the right

inverse of the latter imply dαk−1 = ω − Φk(Intk(ω)) = ω on U(Ls)

and, also, that Intk−1(αk−1) = Intk−1(α̃k−1)− Intk−1(α̃k−1) = 0 . �

Proof of the Extension of Forms Theorem: by induction on k .

Plan: show (a0) holds, then (ak−1)⇒ (bk) and, finally, (bk)⇒ (ak) .

(a0): Say ω ∈ Ω0(U(∂σ)) closed. Then ω is locally constant. Moreover,

then ω ≡ c is constant since ∂σ is connected when s > 1 and

0 =
∫
∂σ ω := ω(p1)− ω(p0) when σ = p0p1 .
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(ak−1)⇒ (bk) : Say ω, α are as in (bk) . Poincare Lemma provides

α′ ∈ Ωk−1(U(σ)) s.th. dα′ = ω . Then β := (α− α′) ∈ Ωk−1(U(∂σ)) is

closed and when s = k also
∫
∂σ β =

∫
∂σ α−

∫
∂σ α

′ =
∫
σ ω −

∫
σ ω = 0 .

Applying (ak−1) to β provides its closed extension β̃ ∈ Ωk−1(U(σ)) .

Then α̃ := (β̃ + α′) ∈ Ωk−1(U(σ)) is as required in (bk) due to the

constructions of α′ , β and β̃ being closed.

(bk)⇒ (ak) : Say σ = p0...ps and ω are as in (ak) , k > 0 . Also,

σ′ := p1...ps , P is the union of all faces of σ with p0 as a vertex and
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U(P) is a contractible nbd s.th. P ⊂ U(P) ⊂ U(∂σ) . Poincare Lemma

gives α′ ∈ Ωk−1(U(P)) s.th. dα′ = ω|U(P) ; say nbd U(∂σ′) ⊂ U(P) .

With A := (∂σ − σ′) ∈ Σk , s = k + 1 ⇒ ∂A = −∂σ′ , SuppA = P

and
∫
σ′ ω −

∫
∂σ′ α

′ =
∫
σ′ ω +

∫
A dα′ =

∫
∂σ ω = 0 by the assumptions on

ω in (ak) . Applying now (bk) to simplex σ′ and forms ω , α′ provides

α̃′ ∈ Ωk−1(U(σ′)) with α̃′|U(∂σ′) = α′ and dα̃′ = ω|U(σ′) . Shrink U(P)

so that U(P) ∩ U(σ′) ⊂ U(∂σ′) , let U(∂σ) := U(P) ∪ U(σ′) and

set α ∈ Ωk−1(U(∂σ)) by α = α′ on U(P) and α = α̃′ on U(σ′) .
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Extending, e.g. as 0 , smoothly by means of partition of unity, to form

α ∈ Ωk−1(U(σ)) provides the required in (ak) closed form ω̃ := dα since

ω̃|∂σ = dα|∂σ = ω due to the construction of forms α′ and α̃′ . �

Application towards χ(M) :
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