Poincaré Duality and Harmonic Forms

Dylan Butson

MAT 477

March 24, 2014

Dylan Butson (2014)

Poincaré Duality and Harmonic Forms

March 24, 2014 1 / 11

3

- ∢ ⊒ →

Differential forms Review

k-forms:
$$\omega \in \Omega^k(M)$$
 , $\omega(p) \in \Lambda^k(T_pM)^*$, i.e. $\omega(p) : (T_pM)^k o R$

antisymmetric and linear in each T_pM , e.g. $d\phi(p)$: $T_pM
i v \mapsto rac{\partial \phi}{\partial v}$, or

$$(\omega_1 \wedge ... \wedge \omega_k)(v_1,...,v_k) := \det(\omega_j(v_i)) \text{ for } \omega_j \in (T_pM)^* \ , \ v_i \in T_pM \ .$$

Smooth f: M o N induce maps $Df_p: T_p(M) o T_{f(p)}(N)$, e.g. via

Jacobian Matrices in local coordinates, and $f^*: \Omega^k(N) o \Omega^k(M)$ via

$$(f^*\omega)(p)(v_1,...,v_k) := \omega(f(p))(Df_p(v_1),...,Df_p(v_k))$$
 . For $U \subset R^n$ and

n-form $\omega = gdx^1 \land ... \land dx^n$ let $\int_U \omega := \int_U gdx^1 ... dx^n$. For $f: U \to M$,

Review Continued

 $Supp(\omega) \subset f(U)$ we let $\int_{M} \omega := \int_{U} f^* \omega$, provided that map f preserves orientation, i.e. linear maps $Df_p: T_p(U) \to T_{f(p)}(M)$ send positive frames into positive frames. For an *n*-form ω on M let $\int_M \omega := \sum_{i=1}^k \int_M \phi_i \omega$. **Def:** O(M):=($\vec{n}(\partial M)$, O(∂M)), where $\vec{n}(\partial M)$ is the outward normal to smooth boundary ∂M of M, relates orientations of the latter two. $d: \omega \mapsto d\omega$ is additive with $d(gdx^{i_1} \wedge ... \wedge dx^{i_k}) := dg \wedge dx^{i_1} \wedge ... \wedge dx^{i_k}$. **Theorem:** (Stokes) For an (n-1)-form ω on M holds $\int_M d\omega = \int_{\partial M} \omega$.

= nar

Poincaré Duality: $H^{k}(M), H^{n-k}(M)$ are dual

Theorem: Let *M* compact, oriented. There exists a non-degenerate

pairing $\smile: H^k(M) \times H^{n-k}(M) \to \mathbb{R}$ given by $([\omega], [\eta]) \mapsto \int_M \omega \wedge \eta$.

To check this is well-defined, consider $\omega + \textit{d} \alpha \in [\omega] \ , \ \eta + \textit{d} \sigma \in [\eta]$.

$$\int_{\mathcal{M}} (\omega + d\alpha) \wedge (\eta + d\sigma) = \int_{\mathcal{M}} \omega \wedge \eta + \omega \wedge d\sigma + d\alpha \wedge \eta + d\alpha \wedge d\eta$$
.

For any closed form $\omega \in \Omega^k$ and $\alpha \in \Omega^j$ we have that $\omega \wedge d\alpha$ is exact since

$$d((-1)^k\omega\wedgelpha)=(-1)^k(d\omega\wedgelpha+(-1)^k\omega\wedge dlpha)=\omega\wedge dlpha$$
 . Thus we find

$$\int_{\mathcal{M}} (\omega + d\alpha) \wedge (\eta + d\sigma) = \int_{\mathcal{M}} \omega \wedge \eta + \int_{\mathcal{M}} d\beta = \int_{\mathcal{M}} \omega \wedge \eta + \int_{\partial \mathcal{M}} \beta = \int_{\mathcal{M}} \omega \wedge \eta .$$

Towards non-degeneracy: The Hodge star

Dylan Butson (2014)

Let O(M) the orientation of M, g a Riemannian metric on M with $\{\partial_i\}$ an orthonormal frame and $\{dx^i\}$ the dual frame positively oriented. For an increasing k-tuple $I = (i_1, ..., i_k)$ use notation $dx^I = dx^{i_1} \wedge ... \wedge dx^{i_k}$. **Definition:** The Hodge star operator $\star : \Omega^k(M) \to \Omega^{n-k}(M)$ is defined on the basis $\{dx'\}$ by $\star(dx^{i_1} \land ... \land dx^{i_k}) = dx^{j_1} \land ... \land dx^{j_{n-k}}$, where $(j_1, ..., j_{n-k})$ are distinct integers in $\{1, ..., n\} \setminus \{i_1, ..., i_k\}$ ordered so that $[\partial_{i_1}, ..., \partial_{i_k}, \partial_{i_1}, ..., \partial_{i_{n-k}}] = O(M)$, and extended to $\omega \in \Omega^k(M)$ by linearity. = 900 ヘロト 不得下 不足下 不足下

March 24, 2014

5 / 11

The L^2 Inner Product on $\Omega^k(M)$

Clear that $dx^{I} \wedge \star dx^{I} = \text{vol for any increasing } k$ -tuple I, and that

 $dx^{I} \wedge \star dx^{J} = 0$ for any distinct increasing k-tuples I, J.

Lemma: Inner product $\langle \cdot, \cdot \rangle : \Omega^k(M)^2 \to \mathbb{R}$ given by $\langle \alpha, \beta \rangle = \int_M \alpha \wedge \star \beta$.

Bilinearity is clear. To check positive definiteness: for $\omega \in \Omega^k(M)$

$$\begin{split} \langle \omega, \omega \rangle &= \int_{\mathcal{M}} \omega \wedge \star \omega = \int_{\mathcal{M}} (\sum_{I} \omega_{I} dx^{I}) \wedge \star (\sum_{J} \omega_{J} dx^{J}) = \\ \int_{\mathcal{M}} \sum_{I,J} \omega_{I} \omega_{J} dx^{I} \wedge \star dx^{J} = \int_{\mathcal{M}} (\sum_{I} \omega_{I}^{2}) \text{vol} \geq 0 \text{ since } (\sum_{I} \omega_{I}^{2}) \geq 0 . \end{split}$$

Equality holds if and only if $(\sum_{I} \omega_{I}^{2}) \equiv 0$ if and only if $\omega \equiv 0$.

Proof of non-degeneracy

Lemma: \forall cohomology class $[\tilde{\omega}] \in H^k(M)$, $\exists \omega \in [\tilde{\omega}]$ s.th. $d \star \omega = 0$. Now, let $[\tilde{\omega}] \in H^k(M)$, and $\omega \in [\tilde{\omega}]$ as above. Since $d \star \omega = 0$, we have that $[\star\omega] \in H^{n-k}(M)$ makes sense. Further, $[\tilde{\omega}] \smile [\star\omega] = \int_M \omega \wedge \star \omega \ge 0$ with equality if and only if $\omega \equiv 0$, if and only if $[\tilde{\omega}] = 0$, done. Forms of the type above, i.e. such that $d\omega = d \star \omega = 0$, are called harmonic. We will now prove a generalization of the above lemma:

Theorem: \exists a unique harmonic representative of each cohomology class.

< ロト < 同ト < ヨト < ヨト

= 900

Thm: \exists unique harmonic rep. of each cohomology class.

Given the inner product, we construct a formal adjoint d^* to d:

Proposition: There is $d^* : \Omega^k(M) \to \Omega^{k-1}(M)$ with $\langle d\alpha, \beta \rangle = \langle \alpha, d^*\beta \rangle$ for $\alpha \in \Omega^{k-1}(M)$, $\beta \in \Omega^k(M)$. Claim $d^* = (-1)^{n(k+1)+1} \star d \star$ will do: $d(\alpha \wedge \star \beta) = d\alpha \wedge \star \beta + (-1)^{k-1} \alpha \wedge d \star \beta = d\alpha \wedge \star \beta + (-1)^{n(k+1)+2} \alpha \wedge \star \star d \star \beta$. Noting $\star^2 = (-1)^{k(n-k)}$ id on $\Omega^k(M)$. Integrating both sides, we obtain $0 = \int_M d(\alpha \wedge \star \beta) = \int_M d\alpha \wedge \beta - \int_M \alpha \wedge \star ((-1)^{n(k+1)+1} \star d \star \beta)$.

The first equality follows from Stokes' theorem. This is the result.

Dylan Butson (2014)

March 24, 2014 8 / 11

The Hodge Laplacian Δ on $\Omega^k(M)$

Definition: $\Delta := d^*d + dd^* : \Omega^k(M) \to \Omega^k(M)$. For $f \in \Omega^0(M)$ $\Delta f = \star d \star (\sum_i \partial_i f \ dx^i) = \pm \star d(\sum_i \partial_i f \ (-1)^i dx^1 \wedge ... \wedge dx^i \wedge ... \wedge dx_n) = \pm \star (\sum_i \partial^2_{ii} f \ \text{vol}) = -\sum_i \partial^2_{ii} f$ agreeing with the usual Δ .

Proposition: ker $\Delta = \ker d \cap \ker d^*$. Clearly ker $d \cap \ker d^* \subset \ker \Delta$.

Also $\langle \Delta \omega, \omega \rangle = \langle d^* d \omega, \omega \rangle + \langle d d^* \omega, \omega \rangle = |d \omega|^2 + |d^* \omega|^2$ so that if

 $\Delta\omega=0$ then $|d\omega|^2=|d^*\omega|^2=0$ implying $\omega\in\ker d\cap\ker d^*$, as claimed.

Definition: $\omega \in \Omega^k(M)$ is called harmonic if $\omega \in ker\Delta$.

◆□ → ◆□ → ◆臣 → ◆臣 → ○ ● ○ のへで

Harmonic Representatives of Cohomology Classes exist

Let \mathcal{H}_j be Hilbert spaces, $\mathcal{T}:\mathcal{H}_1 o \mathcal{H}_2$ a continuous linear operator.

Then ker $T := T^{-1}(0)$ is a closed subspace, thus defines a Hilbert space. Further, (im T)^{\perp} = ker T^* since $w \in (ImT)^{\perp}$ iff $\langle Tv, w \rangle = 0 \forall v \in \mathcal{H}_1$ iff $\langle v, T^*w \rangle = 0 \ \forall \ v \in \mathcal{H}_1$ iff $w \in \ker T^*$. In sum, if im T closed then $\mathcal{H} = \operatorname{im} T \oplus \operatorname{ker} T^*$. Apply this (only formally!) to d on L^2 forms. First, ker d^k will be a Hilbert space. Then since d^{k-1} maps into ker d^k we should be able to decompose ker $d^k = \operatorname{im} d^{k-1} \oplus \operatorname{ker}(d^*|_{\operatorname{ker} d^k})$.

(ロ) (型) (注) (モ) (モ) (モ) (の)

Harmonic Representatives of Cohomology Classes

 $\ker(d^*|_{\ker d^k}) = \ker d^* \cap \ker d = \ker \Delta$. So, $\ker d^k = \operatorname{im} \, d^{k-1} \oplus \ker \Delta$.

<u>Fact:</u> (hard analysis) ker $\Delta \subset \Omega^k(M)$; harmonic forms are C^∞ .

All of the above work was sketched thinking of the operators as acting on

(a dense subset of) L^2 forms. Using this fact, we can intersect both sides

of the first line with $\Omega^k(M)$ to find the same decomposition for

ker $d^k|_{\Omega^k(M)}$. Thus we have: $H^k(M) = \ker d^k / \operatorname{im} d^{k-1} \cong \ker \Delta$ and so

obtain a harmonic representative of each cohomology class.

◆□ ▶ ◆◎ ▶ ◆目 ▶ ◆目 ▶ ○ ● ● ●