Poincaré Duality and Harmonic Forms

Dylan Butson

MAT 477

March 24, 2014

Differential forms Review

k-forms: $\omega \in \Omega^{k}(M), \omega(p) \in \Lambda^{k}\left(T_{p} M\right)^{*}$, i.e. $\omega(p):\left(T_{p} M\right)^{k} \rightarrow R$ antisymmetric and linear in each $T_{p} M$, e.g. $d \phi(p): T_{p} M \ni v \mapsto \frac{\partial \phi}{\partial v}$, or
$\left(\omega_{1} \wedge \ldots \wedge \omega_{k}\right)\left(v_{1}, \ldots, v_{k}\right):=\operatorname{det}\left(\omega_{j}\left(v_{i}\right)\right)$ for $\omega_{j} \in\left(T_{p} M\right)^{*}, v_{i} \in T_{p} M$.
Smooth $f: M \rightarrow N$ induce maps $D f_{p}: T_{p}(M) \rightarrow T_{f(p)}(N)$, e.g. via Jacobian Matrices in local coordinates, and $f^{*}: \Omega^{k}(N) \rightarrow \Omega^{k}(M)$ via
$\left(f^{*} \omega\right)(p)\left(v_{1}, \ldots, v_{k}\right):=\omega(f(p))\left(D f_{p}\left(v_{1}\right), \ldots, D f_{p}\left(v_{k}\right)\right)$. For $U \subset R^{n}$ and n-form $\omega=g d x^{1} \wedge \ldots \wedge d x^{n}$ let $\int_{U} \omega:=\int_{U} g d x^{1} \ldots d x^{n}$. For $f: U \rightarrow M$,

Review Continued

$\operatorname{Supp}(\omega) \subset f(U)$ we let $\int_{M} \omega:=\int_{U} f^{*} \omega$, provided that map f preserves orientation, i.e. linear maps $D f_{p}: T_{p}(U) \rightarrow T_{f(p)}(M)$ send positive frames into positive frames. For an n-form ω on M let $\int_{M} \omega:=\sum_{i=1}^{k} \int_{M} \phi_{i} \omega$.

Def: $\mathrm{O}(M):=(\vec{n}(\partial M), \mathrm{O}(\partial M))$, where $\vec{n}(\partial M)$ is the outward normal to smooth boundary ∂M of M, relates orientations of the latter two.
$d: \omega \mapsto d \omega$ is additive with $d\left(g d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}}\right):=d g \wedge d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}}$.
Theorem: (Stokes) For an $(n-1)$-form ω on M holds $\int_{M} d \omega=\int_{\partial M} \omega$.

Poincaré Duality: $H^{k}(M), H^{n-k}(M)$ are dual

Theorem: Let M compact, oriented. There exists a non-degenerate pairing $\smile: H^{k}(M) \times H^{n-k}(M) \rightarrow \mathbb{R}$ given by $([\omega],[\eta]) \mapsto \int_{M} \omega \wedge \eta$. To check this is well-defined, consider $\omega+d \alpha \in[\omega], \eta+d \sigma \in[\eta]$. $\int_{M}(\omega+d \alpha) \wedge(\eta+d \sigma)=\int_{M} \omega \wedge \eta+\omega \wedge d \sigma+d \alpha \wedge \eta+d \alpha \wedge d \eta$. For any closed form $\omega \in \Omega^{k}$ and $\alpha \in \Omega^{j}$ we have that $\omega \wedge d \alpha$ is exact since $d\left((-1)^{k} \omega \wedge \alpha\right)=(-1)^{k}\left(d \omega \wedge \alpha+(-1)^{k} \omega \wedge d \alpha\right)=\omega \wedge d \alpha$. Thus we find $\int_{M}(\omega+d \alpha) \wedge(\eta+d \sigma)=\int_{M} \omega \wedge \eta+\int_{M} d \beta=\int_{M} \omega \wedge \eta+\int_{\partial M} \beta=\int_{M} \omega \wedge \eta$.

Towards non-degeneracy: The Hodge star

Let $O(M)$ the orientation of M, g a Riemannian metric on M with $\left\{\partial_{i}\right\}$ an orthonormal frame and $\left\{d x^{i}\right\}$ the dual frame positively oriented. For an increasing k-tuple $I=\left(i_{1}, \ldots, i_{k}\right)$ use notation $d x^{\prime}=d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}}$.

Definition: The Hodge star operator $\star: \Omega^{k}(M) \rightarrow \Omega^{n-k}(M)$ is defined on
the basis $\left\{d x^{\prime}\right\}$ by $\star\left(d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}}\right)=d x^{j_{1}} \wedge \ldots \wedge d x^{j_{n-k}}$, where
$\left(j_{1}, \ldots, j_{n-k}\right)$ are distinct integers in $\{1, \ldots, n\} \backslash\left\{i_{1}, \ldots, i_{k}\right\}$ ordered so that
$\left[\partial_{i_{1}}, \ldots, \partial_{i_{k}}, \partial_{j_{1}}, \ldots, \partial_{j_{n-k}}\right]=O(M)$, and extended to $\omega \in \Omega^{k}(M)$ by linearity.

The L^{2} Inner Product on $\Omega^{k}(M)$

Clear that $d x^{\prime} \wedge \star d x^{\prime}=$ vol for any increasing k-tuple I, and that $d x^{\prime} \wedge \star d x^{J}=0$ for any distinct increasing k-tuples I, J.

Lemma: Inner product $\langle\cdot, \cdot\rangle: \Omega^{k}(M)^{2} \rightarrow \mathbb{R}$ given by $\langle\alpha, \beta\rangle=\int_{M} \alpha \wedge \star \beta$.
Bilinearity is clear. To check positive definiteness: for $\omega \in \Omega^{k}(M)$
$\langle\omega, \omega\rangle=\int_{M} \omega \wedge \star \omega=\int_{M}\left(\sum_{l} \omega_{l} d x^{\prime}\right) \wedge \star\left(\sum_{\jmath} \omega_{\jmath} d x^{J}\right)=$
$\int_{M} \sum_{l, J} \omega_{l} \omega_{J} d x^{\prime} \wedge \star d x^{J}=\int_{M}\left(\sum_{l} \omega_{l}^{2}\right)$ vol ≥ 0 since $\left(\sum_{l} \omega_{l}^{2}\right) \geq 0$.
Equality holds if and only if $\left(\sum_{l} \omega_{l}^{2}\right) \equiv 0$ if and only if $\omega \equiv 0$.

Proof of non-degeneracy

Lemma: \forall cohomology class $[\tilde{\omega}] \in H^{k}(M), \exists \omega \in[\tilde{\omega}]$ s.th. $d \star \omega=0$.
Now, let $[\tilde{\omega}] \in H^{k}(M)$, and $\omega \in[\tilde{\omega}]$ as above. Since $d \star \omega=0$, we have that $[\star \omega] \in H^{n-k}(M)$ makes sense. Further, $[\tilde{\omega}] \smile[\star \omega]=\int_{M} \omega \wedge \star \omega \geq 0$
with equality if and only if $\omega \equiv 0$, if and only if $[\tilde{\omega}]=0$, done.
Forms of the type above, i.e. such that $d \omega=d \star \omega=0$, are called
harmonic. We will now prove a generalization of the above lemma:
Theorem: \exists a unique harmonic representative of each cohomology class.

Thm: \exists unique harmonic rep. of each cohomology class.

Given the inner product, we construct a formal adjoint d^{*} to d :
Proposition: There is $d^{*}: \Omega^{k}(M) \rightarrow \Omega^{k-1}(M)$ with $\langle d \alpha, \beta\rangle=\left\langle\alpha, d^{*} \beta\right\rangle$ for $\alpha \in \Omega^{k-1}(M), \beta \in \Omega^{k}(M)$. Claim $d^{*}=(-1)^{n(k+1)+1} \star d \star$ will do:
$d(\alpha \wedge \star \beta)=d \alpha \wedge \star \beta+(-1)^{k-1} \alpha \wedge d \star \beta=d \alpha \wedge \star \beta+(-1)^{n(k+1)+2} \alpha \wedge \star \star d \star \beta$.
Noting $\star^{2}=(-1)^{k(n-k)}$ id on $\Omega^{k}(M)$. Integrating both sides, we obtain
$0=\int_{M} d(\alpha \wedge \star \beta)=\int_{M} d \alpha \wedge \beta-\int_{M} \alpha \wedge \star\left((-1)^{n(k+1)+1} \star d \star \beta\right)$.
The first equality follows from Stokes' theorem. This is the result.

The Hodge Laplacian Δ on $\Omega^{k}(M)$

Definition: $\Delta:=d^{*} d+d d^{*}: \Omega^{k}(M) \rightarrow \Omega^{k}(M)$. For $f \in \Omega^{0}(M)$
$\Delta f=\star d \star\left(\sum_{i} \partial_{i} f d x^{i}\right)= \pm \star d\left(\sum_{i} \partial_{i} f(-1)^{i} d x^{1} \wedge \ldots \wedge d x^{i} \wedge \ldots \wedge d x_{n}\right)=$
$\pm \star\left(\sum_{i} \partial_{i j}^{2} f\right.$ vol $)=-\sum_{i} \partial_{i j}^{2} f$ agreeing with the usual Δ.
Proposition: ker $\Delta=\operatorname{ker} d \cap \operatorname{ker} d^{*}$. Clearly ker $d \cap \operatorname{ker} d^{*} \subset \operatorname{ker} \Delta$.
Also $\langle\Delta \omega, \omega\rangle=\left\langle d^{*} d \omega, \omega\right\rangle+\left\langle d d^{*} \omega, \omega\right\rangle=|d \omega|^{2}+\left|d^{*} \omega\right|^{2}$ so that if
$\Delta \omega=0$ then $|d \omega|^{2}=\left|d^{*} \omega\right|^{2}=0$ implying $\omega \in \operatorname{ker} d \cap \operatorname{ker} d^{*}$, as claimed.
Definition: $\omega \in \Omega^{k}(M)$ is called harmonic if $\omega \in \operatorname{ker} \Delta$.

Harmonic Representatives of Cohomology Classes exist

Let \mathcal{H}_{j} be Hilbert spaces, $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ a continuous linear operator.
Then $\operatorname{ker} T:=T^{-1}(0)$ is a closed subspace, thus defines a Hilbert space.
Further, $(\operatorname{im} T)^{\perp}=\operatorname{ker} T^{*}$ since $w \in(I m T)^{\perp}$ iff $\langle T v, w\rangle=0 \forall v \in \mathcal{H}_{1}$ iff $\left\langle v, T^{*} w\right\rangle=0 \forall v \in \mathcal{H}_{1}$ iff $w \in \operatorname{ker} T^{*}$. In sum, if im T closed then $\mathcal{H}=\operatorname{im} T \oplus \operatorname{ker} T^{*}$. Apply this (only formally!) to d on L^{2} forms.

First, ker d^{k} will be a Hilbert space. Then since d^{k-1} maps into ker d^{k} we should be able to decompose $\operatorname{ker} d^{k}=\operatorname{im} d^{k-1} \oplus \operatorname{ker}\left(\left.d^{*}\right|_{\operatorname{ker} d^{k}}\right)$.

Harmonic Representatives of Cohomology Classes

$\operatorname{ker}\left(\left.d^{*}\right|_{\text {ker } d^{k}}\right)=\operatorname{ker} d^{*} \cap \operatorname{ker} d=\operatorname{ker} \Delta$. So, $\operatorname{ker} d^{k}=\operatorname{im} d^{k-1} \oplus \operatorname{ker} \Delta$.
Fact: (hard analysis) ker $\Delta \subset \Omega^{k}(M)$; harmonic forms are C^{∞}.
All of the above work was sketched thinking of the operators as acting on
(a dense subset of) L^{2} forms. Using this fact, we can intersect both sides
of the first line with $\Omega^{k}(M)$ to find the same decomposition for
ker $\left.d^{k}\right|_{\Omega^{k}(M)}$. Thus we have: $H^{k}(M)=\operatorname{ker} d^{k} / \operatorname{im} d^{k-1} \cong \operatorname{ker} \Delta$ and so obtain a harmonic representative of each cohomology class.

