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Basic Notions of Symbolic Representation

We represent by Σ some finite set of symbols, called an input alphabet.

For our purposes, Σ := {0, 1}. The elements of the alphabet Σ will be our

means of symbolically representing data in our TMs. We denote by Σ∗ the

set of finite length strings γ = σ1 . . . σn of symbols of Σ (σk ∈ Σ), with

|γ| := # of symbols in γ . These strings are our input and output strings.
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Symbolic Representation of Decision Problems

By a language we means a subset A of the set of all strings , A ⊂ Σ∗,

which we will think of as the computational problem of determining for

a given string x ∈ Σ∗, whether x ∈ A. For some property Ψ(x) and

A := {x ∈ Σ∗ : Ψ(x) holds} , the problem of determining whether x ∈ A

is the problem of deciding whether x satisfies the property Ψ.
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A Turing Machine will consist of a few components. We have an

infinite sequence of cells where each cell contains a symbol of some

alphabet (shortly, a memory tape). Here, the machine stores data.

The tape has a head which at each step indicates one cell, which is the cell

the machine is currently reading. We also have a set of states Q and a

function δ telling the machine how to act at any step: Q and δ

represent the ’code’ of the machine.
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Our Computational Model: Turing Machines.

Def : A Turing Machine is a tuple M := (Q,Σ, Γ, q0, qaccept , qreject , δ)

containing the following data:

a finite set of computation states Q ⊃ {q0, qaccept , qreject};

for us the input alphabet Σ := {0, 1} ;

for us the tape alphabet Γ := Σ ∪ {�} consists of symbols that we

allow to appear on the tape and � represents empty cells;

a distinguished starting state q0 ∈ Q ;
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a distinguished accepting state qaccept ∈ Q (when answer is ”yes”);

a distinguished rejecting state qreject ∈ Q (when answer is ”no”);

a transition function δ : Q × Γ→ Q × Γ× {left, right, stay},

shortly dir := {left, right, stay}.

Q and δ together form the program of M . To run M on input

x = x1 . . . xr ∈ Σ∗, we place x along the beginning of the tape, filling the

rest of the tape with � characters. We then place the head at the first

cell, set q0 to be the state of the machine, and repeatedly follow δ :
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If we are in state q , the symbol under the tape head is s ∈ Γ, and

δ(q, s) = (q′, s ′, d ′) , where d ′ ∈ dir . We then interpret this as an

instruction to rewrite the current symbol as s ′ , move to state q′ , and

move the tape head in the direction dir . We repeat until we reach either

qaccept or qreject , at which point we stop and say M has accepted or

rejected the input x based on the final state.
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Def : Language L(M) := {x ∈ Σ∗ : M running on input x accepts} .

Ex. We construct M s.th. L(M) = {x ∈ Σ∗ : even number of 1’s in x} :

Q = {q0, q1, qacc , qrej} and transitions δ are as below:
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Turing Machines can compute functions f : Σ∗ → Σ∗. In this case, we run

the TM in the exact same way, and when the computation ends, either

accepting or rejecting, whichever is the case, we say the output M(x) is

the content of the tape up to the first � character, i.e. is in Σ∗). The

latter makes M to evaluate a function f on strings,

i.e. ∀x ∈ Σ∗ : f (x) = M(x) hold.
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Fact (Sanity Check). The decision problems A ∈ Σ∗ solvable in

polytime by TMs and functions f : Σ∗ → Σ∗ computable in polytime by

TMs are exactly those computable in polytime by programs in common

computer languages. We therefore let ourselves think of TMs as programs

written in a ’sane’ programming language, and make arguments about

what TMs can do without appealing to the formal definition.
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Formal Definition of Complexity Class P .

For a M ∈ TM and x ∈ Σ∗, we define

tM(n) := maxx∈Σ∗,|x |=n # steps M takes to compute with input x .

Def : For f : N→ N , let

TIME (f ) := {A ⊂ Σ∗ : ∃M s.th. L(M) = A and tM(n) = O(f (n))} .

Def : P :=
⋃

k∈N TIME (nk) .

So, informally P is the class of problems solvable in polytime.
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Formal Definition of Complexity Class NP .

NP contains languages A for which x ∈ A can be proven in polytime,

in other words, the languages for which it is possible to find a polytime

V ∈ TM s.th. x ∈ A iff there is a polynomial length string c ∈ Σ∗

s.th. with input 〈x , c〉 our machine V accepts, i.e. the role of V is to

verify a potential certificate c of the fact that x is in A .

NP :=

{
A ⊂ Σ∗: ∃ polytime V ∈ TM, k ∈ N s.th.

x ∈ A ⇐⇒ ∃c ∈ Σ∗t : |c| ≤ |x |k and V (x , c) accepts

}
.
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Def : SAT is the problem of determining, given a formula Φ built from

variables Var = {v1, v2, v3 . . .} and connectives ∨ := or, ∧ := and,

¬ := negation, if there is a truth assignment τ : Var → {True,False}

that makes Φ[τ ] true (shortly, ’satisfying’ truth assignment). Formally,

SAT := {〈Φ〉 : Φ is a satisfiable sentential formula} ,

where 〈Φ〉 is a string in Σ∗ representing here Φ , or later other data
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SAT ∈ NP: consider a machine V which takes a truth assignment τ

of the variables of Φ and checks whether it makes Φ[τ ] true. It can be

done in polytime (as on page 11). Formally, take as an input take as an

input x = 〈Φ〉 and a certificate c = 〈τΦ〉 representing some truth

assignment of the variables of Φ . Then V 〈Φ, τ〉 shall verify whether Φ[τ ]

is true and ‘accept’ only in that case.

〈Φ〉 ∈ SAT ⇐⇒ ∃τ : Φ(τ) = True ⇐⇒ ∃τ : V 〈Φ, τ〉 accepts.
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Hierarchy of Complexity Classes: P ⊂ NP .

E.g. P ⊂ NP . For A ∈ P, let M be the polytime TM with L(M) = A ,

and let simply define a verifier V (x , y) = M(x) . The algorithm of V is to

ignore the input y and just run M(x) in polytime and return that result.

If M runs in O(nk) time, then so will V (x , y) , because it runs the same

algorithm, simply ignoring the certificate input y (and it is easy to

ignore the end of the input in O(n) time).
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Cook Reducibility: a ’Hardness’ ordering on Languages.

Def : For languages A,B ⊂ Σ∗ , write A ≤p B if there is a polytime

computable function f : Σ∗ → Σ∗ such that

x ∈ A ⇐⇒ f (x) ∈ B

We say solving A is reducible to solving B by means of f . As we

will say, this shows that B is at least as hard as solving A , so ”≤p”

is an ordering by ’hardness’ of solving up to polytime.

Lemma. ”≤p” is a preorder. Proof. A simple and direct calculation.
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Lemma. If A ≤p B , and B ∈ P , then also A ∈ P .

Proof. Take the following polytime algorithm for A : given x ∈ Σ∗ ,

compute f (x) in polytime and decide whether f (x) ∈ B , also computes

in polytime. Then our algorithm records respectively ”yes” or ”no”.

Def : For a language H ⊂ Σ∗ , say H is NP-hard if for all A ∈ NP ,

we have A is Cook-reducible to H : ∀ A ∈ NP holds A ≤p H .

So, informally C is as ’hard’ as any problem of NP .
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Def : For a language C ⊂ Σ∗ , say C is NP-complete (shortly NPC)

if C ∈ NP and C is NP-hard, i.e. NPC := NP ∩NP-hard .

MainTheorem (Cook, Lewin) (1971). There exists an NP-complete

problem and, moreover, SAT is NPC .

We saw already that SAT ∈ NP , so now for any A ∈ NP , we

need a polytime machine M such that x ∈ A ⇐⇒ M(x) ∈ SAT .
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