
Computational Complexity and the Cook-Levin
Theorem

Paul Sacawa

MAT 477

February 11, 2014

Paul Sacawa (2014) Computational Complexity and the Cook-Levin Theorem February 11, 2014 1 / 20

Our Goals from a Naive Perspective

A Turing Machine (shortly TM) is an algorithm which takes an input and

either solves a decision problem (answering ’yes’ or ’no’, depending on

the input) or computes a function. The class P contains decision problems

which can be solved in a number of steps polynomial in the size of the

input (shortly, by a polytime algorithm). The class NP contains problems

for which to a ’yes’ response can be given a proof verifiable by means of

polytime TM (shortly, certified in polytime). Therefore, P ⊂ NP.

Paul Sacawa (2014) Computational Complexity and the Cook-Levin Theorem February 11, 2014 2 / 20

A Million Dollar Problem: Is P = NP ?

In other words, if there is a proof verifiable in polytime that a property

holds (NP), could we have computed in polytime whether it holds (P),

i.e. perhaps without a proof ?

We say a decision problem A is reducible to a decision problem B if a

polytime TM computes a function f translating inputs of A into inputs of

B in a way that preserves the response ’yes’ or ’no’. We write A ≤p B.

If B ≥p NP , NP 6= P then B is not polytime ⇒ impractical to compute.

Paul Sacawa (2014) Computational Complexity and the Cook-Levin Theorem February 11, 2014 3 / 20

NPH ≡ NP-hard are the problems that all of NP are reducible to,

i.e. shortly, problems at least as hard as each problem of NP.

Finally, NPC ≡ NP-complete = NP-hard ∩ NP, i.e. NP problems that

are the hardest in all of NP in the sense of the ≤p ordering. It is possible

that the set of maximums of this very broad class NP in terms of

computational difficulty is empty. But, we’ll prove otherwise:

Paul Sacawa (2014) Computational Complexity and the Cook-Levin Theorem February 11, 2014 4 / 20

The big picture

The following picture (dependent on the unproven hypothesis P 6= NP)

shows the relation of the complexity classes discussed.

Paul Sacawa (2014) Computational Complexity and the Cook-Levin Theorem February 11, 2014 5 / 20

Def : SAT is the problem of determining, given Φ a formula built from

variables Var = {v1, v2, v3 . . .} and connectives ∨ := or, ∧ := and,

¬ := negation, if there is a truth assignment τ : Var → {True,False}

that makes Φ[τ] true. (shortly, ’satisfying’ truth assignment).

Main Theorem (Cook, Levin) SAT ∈ NPC, so NPC is nonempty.

Remark. NP 3 SAT := {〈Φ〉 : Φ is a satisfiable sentential formula},

where 〈Φ〉 is a string in Σ∗ representing here Φ, or later other data.

Proof. A formula Φ can be certified as satisfiable by giving a truth

Paul Sacawa (2014) Computational Complexity and the Cook-Levin Theorem February 11, 2014 6 / 20

assignment that makes it true. So, let the machine V take some

assignment τ and verifiy whether Φ[τ] is true. It is a fact in the subject

that in the formal model of Turing Machines this can be done in polytime

and the proof has polynomial length. �.

So, to prove SAT ∈ NPC it suffices to show A ≤p SAT for any A ∈ NP .

This means that given a polytime verifier machine V for A , we need to

make a polytime computable translation f : Σ∗ → Σ∗ from A to SAT (in

terms of strings of Σ∗ of symbols in Σ) satisfying x ∈ A ⇐⇒ f (x) ∈ SAT

Paul Sacawa (2014) Computational Complexity and the Cook-Levin Theorem February 11, 2014 7 / 20

Rigor begins here : Claim. SAT ∈ NP-hard.

Proof. For any A ∈ NP there is a polytime machine V and j ∈ N with

x := x1x2 . . . xn ∈ A iff ∃ certificate of ”true” y ∈ Σ∗ satisfying |y | ≤ |x |j

such that V (x , y) accepts. So, given x , we must exhibit a formula Φx for

which assignments of its variables indicate possible computations of V ,

and a satisfying assignment corresponds exactly to an accepting

computation. This f : x 7→ Φx will be our reduction showing A ≤p SAT .

With n the size of the input and p(n) ∈ N running time of V (# of steps)

Paul Sacawa (2014) Computational Complexity and the Cook-Levin Theorem February 11, 2014 8 / 20

we construct f starting with variables appearing in Φx :

For each i , j ≤ p(n) and λ ∈ Σ we consider a sentential variable Tijλ

representing Tij = λ , namely: the j th tape cell at the i th step has λ ∈ Γ .

For each i ≤ p(n) and state q ∈ Q we consider a sentential variable Qiq

representings that at the i th step of the computation our V is in state q .

For each i , j ≤ p(n) we consider a variable Hij representing that at the

i th step of the computation, the tape head is at the j th cell.

Paul Sacawa (2014) Computational Complexity and the Cook-Levin Theorem February 11, 2014 9 / 20

The Structure of Φx :

We construct our formula Φx on the variables Tijλ , Qiq , Hij as

Φx = Φinitial ∧ Φfinal ∧ Φunique ∧ Φcompute , where

Φinitial asserts that the machine is appropriately set in the first

step of computation: 〈x , ·〉 is on the tape and the state is q0 , etc.

Φfinal asserts that the computation of V on input 〈x , ·〉 accepts

(here our final state is qaccept).

Paul Sacawa (2014) Computational Complexity and the Cook-Levin Theorem February 11, 2014 10 / 20

Φunique asserts that we have not set the values of the variables

inconsistently, i.e. for each i , j we can assign ”true” only to one

Tijλ , since the tape cell j at any step i has only one value.

Φcompute asserts that the assignments of the tape cells follow

in accordance with the transition function δ in order that the

assignment of the variables will represent a valid computation.

Paul Sacawa (2014) Computational Complexity and the Cook-Levin Theorem February 11, 2014 11 / 20

Construction of Φinitial .

Initially we need the tape contents to be 〈x , y〉 for arbitrary y , the

initial state to be q0 and the head of the tape to be at cell 1 . So we set

Φinitial :=
r∧

i=1

Ti1xi
∧ Q1q0 ∧ H11

The first part sets the first characters of the input to x = x1x2 . . . xr ,

the second part forces the first state to be q0 , and the third forces the

tape head to be at the first cell.

So, the length of the formula Φinitial is bounded by O(n) .

Paul Sacawa (2014) Computational Complexity and the Cook-Levin Theorem February 11, 2014 12 / 20

Construction of Φfinal .

Φfinal encodes the appropriate ending conditions. Since we want

V (x , y) to accept, we just need the final p(n)th step of the

computation to be in state qaccept . Therefore we set

Φfinal := Qp(r) qaccept
, for r = n .

So, the length of the formula Φfinal is bounded by O(1) .

Paul Sacawa (2014) Computational Complexity and the Cook-Levin Theorem February 11, 2014 13 / 20

Construction of Φunique .

Here we simply must ensure that tape cells will not have simultaneously

multiple values of symbols and that at each step our TM has a unique

state and a unique position of the tape head. Therfore we set

Φunique :=
∧

i ,j≤p(n)

∧
λ∈Γ

∧
κ∈Γ\λ

(Tijλ → ¬Tijκ) ∧
∧

i≤p(n)

∧
q1,q2∈Q

(Qiq1 → ¬Qiq2)

∧
∧

i≤p(n)

∧
j1,j2≤p(n)

(Hij1 → ¬Hij2)

The lengths of the 1st , 2nd and 3rd blocks of the formula Φunique are

bounded by O(p(n)2) , O(p(n)) and O(p(n)3) .

Paul Sacawa (2014) Computational Complexity and the Cook-Levin Theorem February 11, 2014 14 / 20

This forces an assignment satisfying Φunique to generate at every step of

our TM a choice of the tape contents, the state, and the head position.

Our formula says that for each step of our TM ”true” values of Tijλ ,

Qiq , Hij are set to be unique, i.e. ”false” is set for any other values

of the secondary variables.

So, the length of the formula Φunique is bounded by O(p(n)3) .

Paul Sacawa (2014) Computational Complexity and the Cook-Levin Theorem February 11, 2014 15 / 20

Construction of Φcompute of the size O(p(n)2) .

Most important and difficult is to demonstrate how Φcompute relates the

states to the Tijλ , Qiq , Hij in correspondence with the code of the TM

expressed by means of the transition function δ . We express Tijλ , Qiq ,

Hij as boolean functions of the same (for whatever i) number of variables

Ti−1 jκ , Qi−1 q and Hi−1 j ; and consequently, as an O(1) size formula.

We then express Φcompute as the conjunction of all of them over all tape

cells and steps of our TM. Then the length of Φcompute is O(p(n)2) .

Paul Sacawa (2014) Computational Complexity and the Cook-Levin Theorem February 11, 2014 16 / 20

Φx ∈ SAT ⇐⇒ ∃ y : V (x , y) accepts:

Based on the construction of the formula Φx , it follows that a

”satisfying” assignment of Tijλ , Qiq , Hij corresponds exactly to a

choice of 〈x , y〉 in the tape cells T1jλ that represent the tape in the

1st step of our TM and the following this step consistent computation

that ends in ”acceptance”. Such string y ∈ Σ∗ exists iff x ∈ A

because of the ”verifier” role of our Turing Machine V , i.e.

x ∈ A ⇐⇒ ∃ |y | ≤ |x |k : V (x , y) accepts ⇐⇒ Φx satisfiable .

Paul Sacawa (2014) Computational Complexity and the Cook-Levin Theorem February 11, 2014 17 / 20

End of Proof.

Moreover, formula Φx has size O(p(n)3) . Consequently,

constructed function fA : x → Φx is polytime computable and

x ∈ A ⇐⇒ fA(x) = Φx ∈ SAT .

Therefore A ≤p SAT for arbitrary A ∈ NP , i.e. SAT is in NPC ,

as required. �

Paul Sacawa (2014) Computational Complexity and the Cook-Levin Theorem February 11, 2014 18 / 20

If P 6= NP then NPC ⇒ impractical

Def. Say a sentential logic formula Φ is in 3-CNF form if it has the form

Φ = (c11 ∨ c12 ∨ c13) ∧ · · · (ck1 ∨ ck2 ∨ ck3) ∧ · · · ∧ (cn1 ∨ cn2 ∨ cn3), where

each cjk is either x or ¬x , for a variable x .

Def. 3-SAT = {〈Φ〉 : Φ is a satisfiable 3-CNF formula}

Thm. (left without proof) 3-SAT ∈ NPC .

In a graph G , a k-clique is a subset C of k vertices which are all

connected to each other by edges.

Paul Sacawa (2014) Computational Complexity and the Cook-Levin Theorem February 11, 2014 19 / 20

Thm. CLIQUE := {〈G , k〉 : G has a k-clique} ∈ NPC .

Proof. CLIQUE ∈ NP (the clique can be the certificate), so it suffices to

show 3-SAT ≤p CLIQUE. Then, given Φ =
∧r

j=1(cj1 ∨ cj2 ∨ cj3)

o 3-CNF formula n variables x1, . . . , xn , we set k = r and consider

graph GΦ = (VΦ,EΦ) with vertex set

VΦ = {(σ, i) : σ is either xm or ¬xm and σ appears as some cik} and

EΦ = {((σ, i), (δ, j)) : i 6= j and σ 6= ¬δ} Then a clique in graph GΦ is

exactly a choice of k values for cij , one for each triple, which sets Φ true.

Paul Sacawa (2014) Computational Complexity and the Cook-Levin Theorem February 11, 2014 20 / 20

