Computational Complexity and the Cook-Levin Theorem

Paul Sacawa

MAT 477

February 11, 2014

Paul Sacawa (2014)

Computational Complexity and the Cook-Lev

February 11, 2014 1 / 20

Our Goals from a Naive Perspective

A Turing Machine (shortly TM) is an algorithm which takes an input and

either solves a decision problem (answering 'yes' or 'no', depending on

the input) or computes a function. The class **P** contains decision problems

which can be solved in a number of steps polynomial in the size of the

input (shortly, by a polytime algorithm). The class **NP** contains problems

for which to a 'yes' response can be given a proof verifiable by means of

polytime TM (shortly, certified in polytime). Therefore, $\mathbf{P} \subset \mathbf{NP}$.

イロト 不得 とくほ とくほう 二日

A Million Dollar Problem: ls P = NP?

In other words, if there is a proof verifiable in polytime that a property

holds (NP), could we have computed in polytime whether it holds (P),

i.e. perhaps without a proof ?

We say a decision problem A is reducible to a decision problem B if a

polytime TM computes a function f translating inputs of A into inputs of

B in a way that preserves the response 'yes' or 'no'. We write $A \leq_p B$.

If $B \ge_p NP$, $NP \ne P$ then B is not polytime \Rightarrow impractical to compute.

 $\mathbf{NPH} \equiv \mathbf{NP}$ -hard are the problems that all of \mathbf{NP} are reducible to,

i.e. shortly, problems at least as hard as each problem of $\ensuremath{\mathsf{NP}}.$

Finally, $NPC \equiv NP$ -complete = NP-hard $\cap NP$, i.e. NP problems that

are the hardest in all of **NP** in the sense of the \leq_p ordering. It is possible

that the set of maximums of this very broad class $\boldsymbol{\mathsf{NP}}$ in terms of

computational difficulty is empty. But, we'll prove otherwise:

The big picture

The following picture (dependent on the unproven hypothesis $\textbf{P} \neq \textbf{NP})$

shows the relation of the complexity classes discussed.

Def : **SAT** is the problem of determining, given Φ a formula built from

variables $Var = \{v_1, v_2, v_3 \dots\}$ and connectives $\forall := \text{ or, } \land := \text{ and,}$

 $\neg :=$ negation, if there is a truth assignment $\tau : Var \rightarrow \{True, False\}$

that makes $\Phi[\tau]$ true. (shortly, 'satisfying' truth assignment).

Main Theorem (Cook, Levin) SAT \in NPC, so NPC is nonempty.

Remark. NP \ni SAT := { $\langle \Phi \rangle$: Φ is a satisfiable sentential formula},

where $\langle \Phi \rangle$ is a string in Σ^* representing here Φ , or later other data.

Proof. A formula Φ can be certified as satisfiable by giving a truth

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

assignment that makes it true. So, let the machine V take some

assignment τ and verifive whether $\Phi[\tau]$ is true. It is a fact in the subject

that in the formal model of Turing Machines this can be done in polytime

and the proof has polynomial length. \blacksquare .

So, to prove **SAT** \in **NPC** it suffices to show $A \leq_p \textbf{SAT}$ for any $A \in \textbf{NP}$.

This means that given a polytime verifier machine V for A, we need to

make a polytime computable translation $f: \Sigma^* \to \Sigma^*$ from A to **SAT** (in

terms of strings of Σ^* of symbols in Σ) satisfying $x \in A \iff f(x) \in \mathbf{SAT}$

Rigor begins here : Claim. **SAT** \in **NP-hard**.

Proof. For any $A \in \mathbf{NP}$ there is a polytime machine V and $j \in \mathbb{N}$ with

 $x := x_1 x_2 \dots x_n \in A$ iff \exists certificate of "true" $y \in \Sigma^*$ satisfying $|y| \leq |x|^j$

such that V(x, y) accepts. So, given x, we must exhibit a formula Φ_x for

which assignments of its variables indicate possible computations of V ,

and a satisfying assignment corresponds exactly to an accepting

computation. This $f: x \mapsto \Phi_x$ will be our reduction showing $A \leq_p SAT$.

With *n* the size of the input and $p(n) \in \mathbb{N}$ running time of *V* (# of steps)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

we construct f starting with variables appearing in Φ_x :

For each $i,j \leq p(n)$ and $\lambda \in \Sigma$ we consider a sentential variable $T_{ij\lambda}$

representing $T_{ij} = \lambda$, namely: the j^{th} tape cell at the i^{th} step has $\lambda \in \Gamma$.

For each $i \leq p(n)$ and state $q \in Q$ we consider a sentential variable Q_{iq}

representings that at the i^{th} step of the computation our V is in state q .

For each $i, j \leq p(n)$ we consider a variable H_{ij} representing that at the

 i^{th} step of the computation, the tape head is at the j^{th} cell.

▲日▼ ▲冊▼ ▲ヨ▼ ▲ヨ▼ ヨー つぬの

The Structure of Φ_x :

We construct our formula Φ_x on the variables $T_{ij\lambda}$, Q_{iq} , H_{ij} as

$$\Phi_{x} = \Phi_{\textit{initial}} \wedge \Phi_{\textit{final}} \wedge \Phi_{\textit{unique}} \wedge \Phi_{\textit{compute}} \quad , \ \textit{where}$$

- $\Phi_{initial}$ asserts that the machine is appropriately set in the first step of computation: $\langle x, \cdot \rangle$ is on the tape and the state is q_0 , etc.
- Φ_{final} asserts that the computation of V on input (x, ·) accepts
 (here our final state is q_{accent}).

• Φ_{unique} asserts that we have not set the values of the variables

inconsistently, i.e. for each i, j we can assign "true" only to one

 $T_{ij\lambda}$, since the tape cell j at any step i has only one value.

• $\Phi_{compute}$ asserts that the assignments of the tape cells follow

in accordance with the transition function δ in order that the

assignment of the variables will represent a valid computation.

Construction of $\Phi_{initial}$.

Initially we need the tape contents to be $\langle x,y\rangle$ for arbitrary y , the

initial state to be q_0 and the head of the tape to be at cell 1 . So we set

$$\Phi_{\textit{initial}} := \bigwedge_{i=1}^r T_{i1 imes_i} \wedge Q_{1q_0} \wedge H_{11}$$

The first part sets the first characters of the input to $x = x_1 x_2 \dots x_r$,

the second part forces the first state to be q_0 , and the third forces the

tape head to be at the first cell.

So, the length of the formula $\Phi_{initial}$ is bounded by O(n).

Construction of Φ_{final} .

 $\Phi_{\textit{final}}\,$ encodes the appropriate ending conditions. Since we want

V(x, y) to accept, we just need the final $p(n)^{th}$ step of the

computation to be in state q_{accept} . Therefore we set

$$\Phi_{\textit{final}} := Q_{p(r) \ q_{accept}} \ , \ \textit{for} \ r = n \ .$$

So, the length of the formula Φ_{final} is bounded by O(1) .

E SQA

Construction of $\Phi_{\textit{unique}}$.

Here we simply must ensure that tape cells will not have simultaneously multiple values of symbols and that at each step our TM has a unique

state and a unique position of the tape head. Therfore we set

$$\begin{array}{lll} \Phi_{unique} & := & \bigwedge_{i,j \leq p(n)} \bigwedge_{\lambda \in \Gamma} \bigwedge_{\kappa \in \Gamma \setminus \lambda} (T_{ij\lambda} \to \neg T_{ij\kappa}) \wedge \bigwedge_{i \leq p(n)} \bigwedge_{q_1, q_2 \in Q} (Q_{iq_1} \to \neg Q_{iq_2}) \\ & \wedge & \bigwedge_{i \leq p(n)} \bigwedge_{j_1, j_2 \leq p(n)} (H_{ij_1} \to \neg H_{ij_2}) \end{array}$$

The lengths of the 1^{st} , 2^{nd} and 3^{rd} blocks of the formula Φ_{unique} are bounded by $O(p(n)^2)$, O(p(n)) and $O(p(n)^3)$.

This forces an assignment satisfying Φ_{unique} to generate at every step of

our TM a choice of the tape contents, the state, and the head position.

Our formula says that for each step of our TM "true" values of $T_{ij\lambda}$,

 Q_{iq} , H_{ij} are set to be unique, i.e. "false" is set for any other values

of the secondary variables.

So, the length of the formula Φ_{unique} is bounded by $O(p(n)^3)$.

Construction of $\Phi_{compute}$ of the size $O(p(n)^2)$.

Most important and difficult is to demonstrate how $\Phi_{compute}$ relates the states to the $T_{ij\lambda}$, Q_{iq} , H_{ij} in correspondence with the code of the TM expressed by means of the transition function δ . We express $T_{ij\lambda}$, Q_{iq} , H_{ii} as boolean functions of the same (for whatever *i*) number of variables $T_{i-1 \ i\kappa}$, $Q_{i-1 \ q}$ and $H_{i-1 \ i}$; and consequently, as an O(1) size formula. We then express $\Phi_{compute}$ as the conjunction of all of them over all tape

cells and steps of our TM. Then the length of $\Phi_{compute}$ is $O(p(n)^2)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

$\Phi_x \in \mathbf{SAT} \iff \exists y : V(x, y) \text{ accepts:}$

Based on the construction of the formula Φ_x , it follows that a "satisfying" assignment of $\mathcal{T}_{ij\lambda}$, \mathcal{Q}_{iq} , \mathcal{H}_{ij} corresponds exactly to a choice of $\langle x, y \rangle$ in the tape cells $T_{1i\lambda}$ that represent the tape in the 1^{st} step of our TM and the following this step consistent computation that ends in "acceptance". Such string $y \in \Sigma^*$ exists iff $x \in A$ because of the "verifier" role of our Turing Machine V, i.e.

 $x \in A \iff \exists |y| \le |x|^k : V(x,y) \text{ accepts } \iff \Phi_x \text{ satisfiable }.$

End of Proof.

Moreover, formula Φ_x has size $O(p(n)^3)$. Consequently,

constructed function $f_A : x \to \Phi_x$ is polytime computable and

$$x \in A \iff f_A(x) = \Phi_x \in \mathsf{SAT}$$
 .

Therefore $A \leq_p SAT$ for arbitrary $A \in NP$, i.e. **SAT** is in **NPC**,

as required.

E SQA

If $\mathbf{P} \neq \mathbf{NP}$ then $\mathbf{NPC} \Rightarrow$ impractical

Def. Say a sentential logic formula Φ is in 3-CNF form if it has the form

 $\Phi = (c_{11} \vee c_{12} \vee c_{13}) \wedge \cdots (c_{k1} \vee c_{k2} \vee c_{k3}) \wedge \cdots \wedge (c_{n1} \vee c_{n2} \vee c_{n3}), \text{ where }$

each c_{jk} is either x or $\neg x$, for a variable x.

Def. 3-SAT = { $\langle \Phi \rangle$: Φ is a satisfiable 3-CNF formula}

Thm. (left without proof) $3\text{-SAT} \in NPC$.

In a graph G, a k-clique is a subset C of k vertices which are all

connected to each other by edges.

Thm. CLIQUE := { $\langle G, k \rangle$: *G* has a *k*-clique} \in **NPC**.

Proof. **CLIQUE** \in **NP** (the clique can be the certificate), so it suffices to

show **3-SAT** \leq_p **CLIQUE**. Then, given $\Phi = \bigwedge_{j=1}^r (c_{j1} \lor c_{j2} \lor c_{j3})$

o 3-CNF formula n variables x_1, \ldots, x_n , we set k = r and consider

graph $G_{\Phi} = (V_{\Phi}, E_{\Phi})$ with vertex set

 $V_{\Phi} = \{(\sigma, i) : \sigma \text{ is either } x_m \text{ or } \neg x_m \text{ and } \sigma \text{ appears as some } c_{ik}\}$ and

 $E_{\Phi} = \{((\sigma, i), (\delta, j)) : i \neq j \text{ and } \sigma \neq \neg \delta\}$ Then a clique in graph G_{Φ} is

exactly a choice of k values for c_{ij} , one for each triple, which sets Φ true.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで