Computational Complexity and the Cook-Levin
Theorem

Paul Sacawa

MAT 477

February 11, 2014

Paul Sacawa (2014)

o F
Computational Complexity and the Cook-Levi

Our Goals from a Naive Perspective

A Turing Machine (shortly TM) is an algorithm which takes an input and
either solves a decision problem (answering 'yes' or 'no’, depending on

the input) or computes a function. The class P contains decision problems
which can be solved in a number of steps polynomial in the size of the
input (shortly, by a polytime algorithm). The class NP contains problems
for which to a 'yes’ response can be given a proof verifiable by means of

polytime TM (shortly, certified in polytime). Therefore, P C NP.

Paul Sacawa (2014) Computational Complexity and the Cook-Lev February 11, 2014 2 /20

A Million Dollar Problem: Is P = NP ?

In other words, if there is a proof verifiable in polytime that a property
holds (NP), could we have computed in polytime whether it holds (P),
i.e. perhaps without a proof ?

We say a decision problem A is reducible to a decision problem B if a
polytime TM computes a function f translating inputs of A into inputs of
B in a way that preserves the response 'yes’ or 'no’. We write A <, B.

If B>, NP, NP # P then B is not polytime = impractical to compute.

Paul Sacawa (2014) Computational Complexity and the Cook-Lev February 11, 2014 3 /20

NPH = NP-hard are the problems that all of NP are reducible to,

i.e. shortly, problems at least as hard as each problem of NP.

Finally, NPC = NP-complete = NP-hard N NP, i.e. NP problems that

are the hardest in all of NP in the sense of the <, ordering. It is possible

that the set of maximums of this very broad class NP in terms of

computational difficulty is empty. But, we'll prove otherwise:

Paul Sacawa (2014) Computational Complexity and the Cook-Lev February 11, 2014 4/20

The big picture

The following picture (dependent on the unproven hypothesis P # NP)

shows the relation of the complexity classes discussed.

\ NP-Hard

P = NP

Paul Sacawa (2014)

QPR xity

Computational Complexity and the Cook-Levi

February 11, 2014

5/20

Def : SAT is the problem of determining, given ® a formula built from
variables Var = {v1,v», v3...} and connectives VV := or, A := and,

— := negation, if there is a truth assignment 7 : Var — {True, False}
that makes ®[7] true. (shortly, 'satisfying’ truth assignment).

Main Theorem (Cook, Levin) SAT € NPC, so NPC is nonempty.
Remark. NP > SAT := {(®) : ¢ is a satisfiable sentential formula},
where (®) is a string in L* representing here ®, or later other data.

Proof. A formula ® can be certified as satisfiable by giving a truth

Paul Sacawa (2014) Computational Complexity and the Cook-Lev February 11, 2014 6 /20

assignment that makes it true. So, let the machine V take some
assignment 7 and verifiy whether ®[7] is true. It is a fact in the subject
that in the formal model of Turing Machines this can be done in polytime
and the proof has polynomial length. W

So, to prove SAT € NPC it suffices to show A <, SAT for any A€ NP .
This means that given a polytime verifier machine V for A , we need to
make a polytime computable translation f : ¥* — ¥* from A to SAT (in

terms of strings of £* of symbols in X) satisfying x € A <= f(x) € SAT

Paul Sacawa (2014) Computational Complexity and the Cook-Lev February 11, 2014 7 /20

Rigor begins here : Claim. SAT € NP-hard.

Proof. For any A € NP there is a polytime machine V and j € N with

X =Xx1X0...X, € A iff 3 certificate of "true” y € ¥* satisfying |y| < |x}/
such that V/(x, y) accepts. So, given x , we must exhibit a formula &, for
which assignments of its variables indicate possible computations of V',
and a satisfying assignment corresponds exactly to an accepting
computation. This f : x — ®, will be our reduction showing A <, SAT .

With n the size of the input and p(n) € N running time of V (# of steps)

Paul Sacawa (2014) Computational Complexity and the Cook-Lev February 11, 2014 8 /20

we construct f starting with variables appearing in ®, :

For each i,j < p(n) and X € X we consider a sentential variable T\

representing Tj; = A , namely: the j™ tape cell at the it step has A €T .

For each i < p(n) and state g € Q we consider a sentential variable Qj,

representings that at the i* step of the computation our V is in state g .

For each i,j < p(n) we consider a variable Hj; representing that at the

it step of the computation, the tape head is at the j cell.

Paul Sacawa (2014) Computational Complexity and the Cook-Lev February 11, 2014

9/20

The Structure of P, :

We construct our formula ®, on the variables Ty , Qiq , Hjj as

(Dx = (Dinitial A (Dfinal A (Dunique A d>compute) where

@ ®;.;1ia asserts that the machine is appropriately set in the first

step of computation: (x,-) is on the tape and the state is qq , etc.

@ &y, asserts that the computation of V on input (x, -) accepts

(here our final state is Gaccept)-

Paul Sacawa (2014) Computational Complexity and the Cook-Lev February 11, 2014 10 / 20

@ &, nique asserts that we have not set the values of the variables

inconsistently, i.e. for each i, j we can assign "true” only to one

Tiix , since the tape cell j at any step / has only one value.

@ ®ompute asserts that the assignments of the tape cells follow

in accordance with the transition function § in order that the

assignment of the variables will represent a valid computation.

Paul Sacawa (2014) Computational Complexity and the Cook-Lev February 11, 2014 11 /20

Construction of ®;,sja/ .

Initially we need the tape contents to be (x, y) for arbitrary y , the

initial state to be gp and the head of the tape to be at cell 1 . So we set

,
Dinitial = /\ Ti1x; N Qugo A Hi1
i—1

The first part sets the first characters of the input to x = x1x2 ... x, ,
the second part forces the first state to be qp , and the third forces the

tape head to be at the first cell.

So, the length of the formula ® ;.. is bounded by O(n) .

Paul Sacawa (2014) Computational Complexity and the Cook-Lev February 11, 2014 12 /20

Construction of &4, .

®4na1 encodes the appropriate ending conditions. Since we want

V(x,y) to accept, we just need the final p(n)t" step of the

computation to be in state gaccepr - T herefore we set

q)f,'na/ = Qp(r) Qaccept forr=n.

So, the length of the formula ®4,, is bounded by O(1) .

Paul Sacawa (2014) Computational Complexity and the Cook-Lev February 11, 2014

13 / 20

Construction of ® g -

Here we simply must ensure that tape cells will not have simultaneously
multiple values of symbols and that at each step our TM has a unique
state and a unique position of the tape head. Therfore we set

Suige = N AN N\ Tin=-TidA A N (Qay = ~Qig,)

ij<p(n) A€l keMA i<p(n) q1,92€Q

A NN (Hi = -Hg)

i<p(n) j1.j2<p(n)

The lengths of the 15t | 2"¢ and 3" blocks of the formula D ynique are

bounded by O(p(n)?) , O(p(n)) and O(p(n)3) .

Paul Sacawa (2014) Computational Complexity and the Cook-Lev February 11, 2014 14 /20

This forces an assignment satisfying ®pique to generate at every step of
our TM a choice of the tape contents, the state, and the head position.
Our formula says that for each step of our TM "true” values of Tjy ,
Qiq , Hijj are set to be unique, i.e. "false” is set for any other values

of the secondary variables.

So, the length of the formula ®,pique is bounded by O(p(n)?) .

Paul Sacawa (2014) Computational Complexity and the Cook-Lev February 11, 2014 15 / 20

Construction of ® ompute Of the size O(p(n)?) .

Most important and difficult is to demonstrate how ®compute relates the
states to the T\ , Qig , Hjj in correspondence with the code of the TM
expressed by means of the transition function § . We express Tjx , Qjq ,
Hjj as boolean functions of the same (for whatever i) number of variables
Ti—1jr » Qi—1 g and H;j_1 j ; and consequently, as an O(1) size formula.
We then express @ ompute as the conjunction of all of them over all tape

cells and steps of our TM. Then the length of ®compute is O(p(n)?) .

Paul Sacawa (2014) Computational Complexity and the Cook-Lev February 11, 2014 16 / 20

o, € SAT <= dJy: V(x,y) accepts:

Based on the construction of the formula ®, , it follows that a
"satisfying” assignment of T\ , Qig , Hjj corresponds exactly to a
choice of (x,y) in the tape cells Ty;, that represent the tape in the
15t step of our TM and the following this step consistent computation
that ends in "acceptance”. Such string y € ¥* exists iff x € A

because of the "verifier" role of our Turing Machine V , i.e.

xeA <= Tyl <|xF: V(x,y) accepts < b, satisfiable .

Paul Sacawa (2014) Computational Complexity and the Cook-Lev February 11, 2014 17 / 20

End of Proof.

Moreover, formula ®, has size O(p(n)3) . Consequently,

constructed function f4 : x — ® is polytime computable and

x €A < fa(x) =, € SAT .

Therefore A <, SAT for arbitrary A€ NP , i.e. SAT isin NPC

as required. W

Paul Sacawa (2014) Computational Complexity and the Cook-Lev February 11, 2014

18 / 20

If P # NP then NPC = impractical

Def. Say a sentential logic formula ® is in 3-CNF form if it has the form
®=(cr1VeaVas)A-(ck1VekaVeks) A A(ca1 Ven2 V cp3), where
each cji is either x or —x, for a variable x.

Def. 3-SAT = {(®) : ® is a satisfiable 3-CNF formula}

Thm. (left without proof) 3-SAT € NPC .

In a graph G, a k-clique is a subset C of k vertices which are all

connected to each other by edges.

Paul Sacawa (2014) Computational Complexity and the Cook-Lev February 11, 2014 19 /20

Thm. CLIQUE := {(G,k) : G has a k-clique} € NPC .
Proof. CLIQUE € NP (the clique can be the certificate), so it suffices to
show 3-SAT <, CLIQUE. Then, given ® = A\’_;(cj1 V ¢j2 V ¢j3)

o 3-CNF formula n variables x1,...,x, , we set kK = r and consider

graph Go = (Vo, Ee) with vertex set

Vo = {(0,i) : o is either x, or =xn, and o appears as some cj} and

Eo ={((0,i),(6,4)) : i #j and o # =0} Then a clique in graph Go is

exactly a choice of k values for cjj, one for each triple, which sets ® true.

Paul Sacawa (2014) Computational Complexity and the Cook-Lev February 11, 2014 20 / 20

