Morse Genericity and Morse's Theorem for compact smooth manifolds.

Tomas Kojar

MAT 477Y

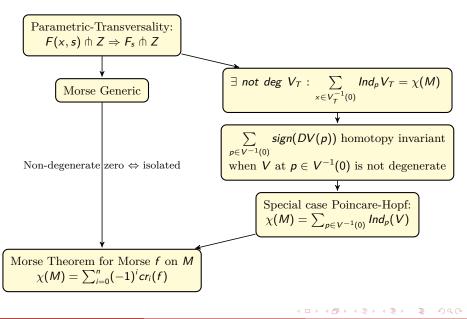
March 25-th, 2014

Tomas Kojar (2014)

Morse Genericity and Morse's Theorem for co

March 25-th, 2014 1 / 16

Supplementary : Storyline



Statements of Main Theorems and Lemmas:

- 1. Constructive proof: Morse functions are dense in $C^{\infty}(M)$;
- 2. Parametric Transversality: If $F \pitchfork Z \subset N$ for $F : M \times S \to N$ and

 $F_s(x):=F(x,s)$, then $F_s\pitchfork Z$ for a.e. s, shortly almost every s ;

3. Construction of vector field V_T with $\sum_{p \in V_T^{-1}(0)} Ind_p(V_T) = \chi(M)$;

4.
$$deg(\partial U_p \ni x \mapsto rac{V(x)}{|V(x)|}) = sign(det[DV](p))$$
 at n-d $p \in V^{-1}(0)$;

5. Poincare-Hopf via a homotopy between V_T and a v.f V_1 , e.g. $\bigtriangledown f$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Regular/Critical points, Transversality, Index, Morse funct

Here $F \in C^{\infty}(M, N)$, $Z \hookrightarrow N$, map F is **transversal** to Z, shortly $F \oplus Z$, when $(DF)(p)T_pM + T_{F(p)}Z = T_{F(p)}N$ for $p \in F^{-1}(Z)$ and if $F(M) \supset Z = \{y\}$ then y is called **regular**. Our $f \in C^{\infty}(M, \mathbb{R})$, **critical** points $Cr(f) := \{p : df_p = 0\}$ are **non-degenerate**, shortly n-d, when $det(Hess_p(f)) \neq 0$ and $Ind_p(f) := \#$ of negative eigenvalues of $Hess_p(f)$; $0^*_M := 0$ -section of $T^*M \ni (p, df(p)) =: j^1f(p)$. Finally, $x = (x_1, ..., x_m)$ are local coordinates on M and f is **Morse** when all $p \in Cr(f)$ are n-d's.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - ののべ

Examples of Morse functions: $f(x) = x_1^2 - x_2^2$ and $f: S^{n-1} \ni x \to x_n$.

Claim: f is Morse iff $j^1 f \oplus 0^*_M$.

Proof: Say $\psi: M \times \mathbb{R}^m \to \mathbb{R}^m$ is the natural projection. Locally $0^*_M =$

 $M \times \{0\} \hookrightarrow M \times \mathbb{R}^m$. Therefore $j^1 f \pitchfork 0^*_M \Leftrightarrow$ for $p \in (j^1 f)^{-1}(0^*_M)$ linear

maps $\psi D(j^1 f)_p = Hess_p f : T_p M \to \mathbb{R}^m$ are surjective.

Morse property is generic: $\forall \{f_j\}_{0 \leq j \leq N} \subset C^{\infty}(M, \mathbb{R})$, all $T^*_p(M) =$

 $Span_{\mathbb{R}} \{ df_j(p) \}_{1 \le j} \Rightarrow f_s(p) := f_0(p) + \sum_{1 \le j} s_j f_j(p)$ is Morse for a.e. s

Proof: Via PTL with $F(p,s) := (p, df_s(p))$ since $F \oplus O_M^*$ because maps

 $\psi DF_{(x,s)}(\xi,\eta) = \sum_{1 \le j} \eta_j df_j(x) + Hess_x f_s(\xi) \in R^m$ are onto.

PTL = Parametric Transversality Lemma: If $F \in C^{\infty}(M \times S, N)$ and

 $F\pitchfork Z\subset N$, then $F_{s}\pitchfork Z$, where $F_{s}(x):=F(x,s)$, for almost every s .

Main Theorem, Morse: for f Morse $\chi(M) = \sum_{i=0}^{n} (-1)^{i} cr_{i}(f)$, where

 $cr_i(f) := \#\{p \in Cr(f) : Ind_p(f) = i\}$ and $m = \dim M$.

Proof of PTL: Let $W := F^{-1}(Z)$ and π be the restriction to W of

projection $M \times S \rightarrow S$. Using Sard's Thm suffices to show that if b is a

regular value for $\pi \ \Rightarrow \ F_b \pitchfork Z$. So, $DF_{(x,b)}(T_{(x,b)}(M imes S)) + T_z Z = T_z N$

for $z := F_b(x) \in Z$ and we assume $D\pi_{x,b} : T_{(x,b)}W \to T_bS$ is onto. Then $\forall v_N \in T_zN \exists (v_M, v_S) \in T_{(x,b)}(M \times S)$ and $w \in T_xM$ s.th. both

 $v_N - DF_{(x,b)}(v_M, v_S)$, $DF_{(x,b)}(w, v_S) \in T_z Z$ with $(w, v_S) \in T_{(x,b)} W$.

Then
$$v_N - D(F_b)_x(v_M - w) = v_N - DF_{(x,b)}[(v_M, v_S) - (w, v_S)] \in T_z Z$$

Corollary: Restriction of generic height functions to $M \hookrightarrow \mathbb{R}^n$ are Morse.

・ロト ・酒 ト ・ヨト ・ヨト ・ヨー うゆう

Application. Finding χ visually for surfaces $M_g \hookrightarrow \mathbb{R}^3$ of genus g:

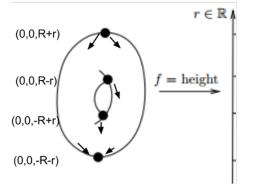
For Morse function f(x, y, z) = z

 $Ind_{maxima} = 2$, $Ind_{minima} = 0$, $Ind_{saddle} = 1 \Rightarrow \chi(M_g) = (-1)^0 + (-1)^1 \cdot 2g + (-1)^2 \cdot 1 = 2 - 2 \cdot g$

For a vector field V on

contractible nbd U with

 $U \cap V^{-1}(0) = \{p\}$ let



 $\phi_{V,p}$ is homotopic to $x \mapsto \frac{DV(p)x}{|DV(p)x|} \Rightarrow deg(\phi_{V,p}) = sign(det[DV](p))$.

Lemma: Non-degenerate $p \in Cr(f)$ are isolated.

Indeed, $\nabla f(p) = 0$ and $det(Hess_p(f)) \neq 0 \stackrel{Inv Map Thm}{\Rightarrow} \exists$ nbhd U of p

s.th. $\nabla f|_U$ is a diffeo $\Rightarrow \nabla f(x) \neq \nabla f(p) = 0 \ \forall \ x \in U \setminus \{p\}$.

Morse Theorem follows from Poincare-Hopf degree Thm:

 $\#V^{-1}(0) < \infty$ for vec. fields V on $M \Rightarrow \chi(M) = \sum_{p \in V^{-1}(0)} Ind_p(V)$

Proof: $sign(det[D(\bigtriangledown f)](p)) = (-1)^{Ind_p(f)}$ for f Morse, $p \in Cr(f)$

$$\stackrel{P-H \text{ deg Thm}}{\Rightarrow} \quad \chi(M) = \sum_{x \in (\bigtriangledown f)^{-1}(0)} \operatorname{Ind}_x(\bigtriangledown f) = \sum_i (-1)^i \operatorname{cr}_i(f) \ . \blacksquare$$

Exists V_T s.th. $Ind(V_T) := \sum_{p \in V_T^{-1}(0)} Ind_p(V_T) = \chi(M)$

and $det([DV_T](p)) \neq 0$ for $p \in V_T^{-1}(0)$. Construction of vec. f. V_T :

We start with a triangulation T(M) of M (as in Vitali's talk, page 8).

Denote c_{σ} the centers and U_{σ} nbhds of simplexes σ with coordinates (u, v)

centered at c_{σ} s.th. $c_{\sigma} \in U_{\sigma} \not\ni c_{\tau}$ for simplexes τ , dim $\tau \geq \dim \sigma$ and

 $au
eq \sigma$; $\{v = 0\} \supset \sigma$, while $\dim\{v = 0\} = \dim \sigma$. On U_σ we define

vector fields $V_\sigma := igtriangleup (|u|^2 - |v|^2)$. We then inductively construct V_k on

'small' nbds \mathcal{U}_k of the k-skeletons of $\mathcal{T}(M)$, $k\geq 1$, by extending V_{k-1}

・ロト ・酒 ト ・ヨト ・ヨト ・ヨー うゆう

from nbhds \mathcal{U}_{k-1} (perhaps shrinking the latter), and set $V_T := V_m$,

m=dimM , namely: using the PofU we construct nonnegative C^∞

functions ψ_{k-1} and ϕ_k with supports in U_{k-1} and U_k s.th $\psi_{k-1} \equiv 1$

and $\psi_{k-1} + \phi_k \equiv 1$ on nbds of the (k-1) and of the k-skeletons of T(M)

and define
$$V_k := \psi_{k-1} \cdot V_{k-1} + \phi_k \sum_{\{\sigma: \dim \sigma = k\}} V_\sigma \Rightarrow V_T^{-1}(0) = \cup_\sigma \{c_\sigma\}$$

(at $p \in \sigma$ with $\dim \sigma = k$, $\psi_{k-1}(p) \cdot \phi_k(p) \neq 0$ we use that $-V_k(p) \notin$

 $\mathbb{R}_+ \cdot \{V_{k-1}(p)\} \) \ \Rightarrow \ \textit{Ind}_{c_\sigma} V_T = \textit{det}(DV_T(c_\sigma) = (-1)^{\textit{dim }\sigma} \ \text{ for all } \ \sigma \ \Rightarrow$

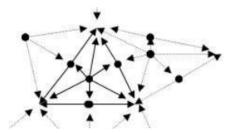
$$Ind(V_T) = \sum_{0 \le k \le m} (-1)^k s_k =: \chi(M)$$
 , where $s_k := \#\{\sigma : dim \ \sigma = k\}$, as

claimed. (Pict. below illustrates our construction.) \blacksquare Let $V_0 := V_T$.

Next, constructions and proofs:

- 1. homotopy of V_0 to V_1 ,
- 2. then $Ind(V_0) = Ind(V_1)$.

Note. We'll use Riemanian metric



on M , functions $\{f_j\}_{j\geq 1}$ from

"Morse property is generic" (page 6) and $\Sigma_s(p) := \sum_{j>1} s_j(\bigtriangledown f_j)(p)$ in a

similar way: using PT Lemma we conclude for a.e. $s \in \mathbb{R}^N$, $\Phi_s :=$

$$(1-t)V_0(p)+tV_1(p)+t(1-t)\cdot\Sigma_s(p)$$
 and map $F_s(p,t):=(p,\Phi_s(p,t))$

from M imes [0.1] o TM , that $F_s \pitchfork 0_M$, where 0_M is the 0-section of TM .

Consequently: at $(p, t) \in \Phi_s^{-1}(0)$ maps $D\Phi_s(p, t)$ are onto $\Rightarrow \Phi_s^{-1}(0)$

is a finite union of smooth arcs γ closed, or with ends in and tangents $\ \xi_\gamma$

transversal to $M imes \{t\}$, $t=0,1~(\Rightarrow~\xi_\gamma(p,t)\in \ker[D\Phi_s](p,t)$). Pick

continuous $T^{\perp}\gamma_{p,t} \not\ni \xi_{\gamma}(p,t)$, $(p,t) \in \gamma$, equal $T_pM \times \{0\}$ at t = 0, 1

 $\Rightarrow \Lambda_{p,t} := D\Phi_s(p,t)_{T^{\perp}\gamma_{p,t}} \text{ are isomorphisms equal } DV_t(p) \text{ for } t = 0,1 .$ $(D^{\perp})_{T^{\perp}\gamma_{p,t}} = 0 \text{ for } t = 0,1 .$ $(D^{\perp})_{T^{\perp}\gamma_{p,t}} = 0 \text{ for } t = 0,1 .$ $(D^{\perp})_{T^{\perp}\gamma_{p,t}} = 0 \text{ for } t = 0,1 .$ $(D^{\perp})_{T^{\perp}\gamma_{p,t}} = 0 \text{ for } t = 0,1 .$ $(D^{\perp})_{T^{\perp}\gamma_{p,t}} = 0 \text{ for } t = 0,1 .$ $(D^{\perp})_{T^{\perp}\gamma_{p,t}} = 0 \text{ for } t = 0,1 .$ $(D^{\perp})_{T^{\perp}\gamma_{p,t}} = 0 \text{ for } t = 0,1 .$ $(D^{\perp})_{T^{\perp}\gamma_{p,t}} = 0 \text{ for } t = 0,1 .$ $(D^{\perp})_{T^{\perp}\gamma_{p,t}} = 0 \text{ for } t = 0,1 .$ $(D^{\perp})_{T^{\perp}\gamma_{p,t}} = 0 \text{ for } t = 0,1 .$ $(D^{\perp})_{T^{\perp}\gamma_{p,t}} = 0 \text{ for } t = 0,1 .$ $(D^{\perp})_{T^{\perp}\gamma_{p,t}} = 0 \text{ for } t = 0,1 .$ $(D^{\perp})_{T^{\perp}\gamma_{p,t}} = 0 \text{ for } t = 0,1 .$ $(D^{\perp})_{T^{\perp}\gamma_{p,t}} = 0 \text{ for } t = 0,1 .$ $(D^{\perp})_{T^{\perp}\gamma_{p,t}} = 0 \text{ for } t = 0,1 .$ $(D^{\perp})_{T^{\perp}\gamma_{p,t}} = 0 \text{ for } t = 0,1 .$ $(D^{\perp})_{T^{\perp}\gamma_{p,t}} = 0 \text{ for } t = 0,1 .$ $(D^{\perp})_{T^{\perp}\gamma_{p,t}} = 0 \text{ for } t = 0,1 .$ $(D^{\perp})_{T^{\perp}\gamma_{p,t}} = 0 \text{ for } t = 0,1 .$

We next show 2 for vector field V_1 not degenerate at all $p \in V_1^{-1}(0)$.

Moving along arc γ positive at γ 's end continuous frame $\mathcal{F}_{p,t}$ in $T^{\perp}\gamma_{p,t}$,

 $(p,t)\in\gamma$, results in the oppositely or similarly oriented frame at the other

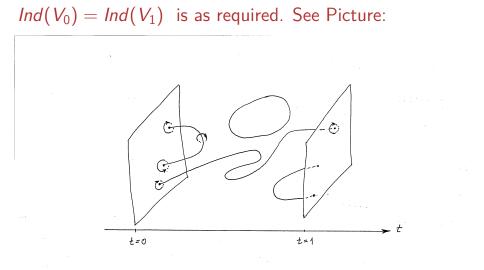
end of γ depending on γ returning to the same value of t , i.e. 0 or 1 , or

not. But orientation of continuous $\Psi_{p,t} := \Lambda_{p,t}(\mathcal{F}_{p,t})$ in *TM* is preserved.

Hence, due to the index being the sign of det of the tangent map (p. 9) it

follows that the indexes at the ends of the 'returning' arcs cancel, while at

the ends of the 'other' arcs equal \Rightarrow $Ind(V_0) = Ind(V_1)$.



References

Lectures on Morse Homology by Augustin Banyaga and David Hurtubise

Poincare-Hopf Degree

proof:http://math.uchicago.edu/ amwright/PoincareHopf.pdf

Partition of Unity Theorem:

http://isites.harvard.edu/fs/docs/icb.topic134696.files/Partitions_of_Unity.pdf

Morse Genericity:http://www.math.toronto.edu/mgualt/Morse

・ロト ・酒 ト ・ヨト ・ヨト ・ヨー うゆう