Hilbert Nullstellensatz for ideals $/ \hookrightarrow \mathcal{P}:=K[x]$ or $\mathbb{Z}[x], x:=\left(x_{1}, \ldots, x_{n}\right)$ and K a field, called geometric or arithmetic case.

Viktoriya Baydina

$$
\text { MAT } 477
$$

March 11, 2014

Below $F:=\mathcal{P} / m$ is a field, sets $\operatorname{Spec}(A), \operatorname{Specm}(A)$ are prime, resp. maximal ideals of $A:=\mathcal{P} / I$ and $\mathcal{M}_{A}(I):=$

$$
I \subseteq m \in \operatorname{Specm}(A)
$$

Main Thm: (1) $\sqrt{I}:=\left\{f \in \mathcal{P} \mid f^{N} \in I\right\}=\mathcal{M}(I):=\mathcal{M}_{\mathcal{P}}(I)$;
(2) $F=\mathcal{P} / m \Rightarrow$ geom case $[F: K]:=\operatorname{dim}_{K} F<\infty$, arith $\#(F)<\infty$;
(3) $\exists F$ as in (2) s.th. $\mathcal{V}_{F}(I):=\left\{\xi \in F^{n}: f(\xi)=0, \forall f \in I\right\} \neq \emptyset$;

Classical: $\mathcal{P}=K[x]$ and algebraic closure $\bar{K}=K$. Let $\mathcal{V}(I):=\mathcal{V}_{\bar{K}}(I)$.
(4) $\mathcal{I}(\mathcal{V}(I))=\sqrt{I}$ for $\mathcal{I}(\mathcal{V}):=\left\{f \in \mathcal{P}: f_{\mid \mathcal{V}}=0\right\} \Rightarrow \mathcal{V}(\mathcal{I}(\mathcal{V}(I)))=\mathcal{V}(I)$

Easy Thm: $\mathcal{P}_{R}(I):=\bigcap \quad P=\sqrt{I}$ for ideals I in arbitrary rings R $I \subseteq P \in \operatorname{Spec}(R)$

Indeed, $f \in \mathcal{P}_{R}(I) / I \subset B:=R / I \Rightarrow f \in \sqrt{0} \hookrightarrow B:$ using $f \in \mathcal{M}_{B\left[x_{0}\right]}(0)$
$\Rightarrow \exists\left(1+f x_{0}\right)^{-1}=\sum_{0 \leq j \leq d} c_{j} x_{0}^{j} \in B\left[x_{0}\right] \Rightarrow c_{j}=(-f)^{j}$, i.e. $f^{d+1}=0$
Def: domains are rings without zero divisors and $A \hookleftarrow K$ is K-algebraic when every $a \in A \backslash\{0\}$ is, i.e. $\exists f \in K[z] \backslash\{0\}$ with $f(a)=0$.

Lemma 1: K-algebraic domains $A \hookleftarrow K$ are fields. \Rightarrow With F as in (2)
Corollary 1: for $\xi \in F^{n}$ ideals $m_{\xi}:=\{f \in \mathcal{P}: f(\xi)=0\}$ are maximal.
Proof of L1: $K[z]$ is a PID $\Rightarrow \forall a \in A \backslash\{0\} \exists$ irreducible f s.th. $m_{a}:=$
$\{g \in K[z]: g(a)=0\}=(f) \Rightarrow m_{a}$ maximal, $K[a]$ field. For $\phi: \mathcal{P} \rightarrow A$,
$a_{i}:=\phi\left(x_{i}\right)$ ring $A=K\left[a_{1}, \ldots a_{n}\right] \Rightarrow$ all $K\left[a_{1}, \ldots a_{k}\right]$ fields, by induction.

Key to HN. Lemma 2: Fields $F=K[x] / I$ are K-algebraic.

Remarks: $[A: K]<\infty$ for fields A from Lemma 1. Hence Lemma 2 proves geometric case of Main Thm (2) \Rightarrow all $m \in \operatorname{Specm}(\mathcal{P})$ are as in Cor. 1 with $\xi:=\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)\right)$ and $\phi: \mathcal{P} \rightarrow F:=\mathcal{P} / m$. So (3) follows with $F=\mathcal{P} / m, \xi \in \mathcal{V}_{F}(I)$ and $m_{\xi}=m$ being maximal among ideals $J \neq \mathcal{P}$ s.th. $J \supset I$ (via Zorn's lemma). Of course then also (1) \Rightarrow (4).

Plan: We'll show how $(2) \Rightarrow(1)$, then Lemma 2, then arithm case of (2).

Detour: $\bar{K}=K \Rightarrow \mathcal{V}(I) \rightarrow\{m \in \operatorname{Specm}(K[x]): I \subset m\}$ is bijective: let
$\xi:=\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)\right) \in \mathcal{V}(I)$ then $m=m_{\xi}=\left(x_{1}-\xi_{1}, \ldots, x_{n}-\xi_{n}\right)$.
Lemma4 ' $(2) \Rightarrow(1)$ ': $M \in \operatorname{Specm}\left(\mathcal{P}\left[x_{0}\right]\right) \Rightarrow m:=M \cap \mathcal{P} \in \operatorname{Specm}(\mathcal{P})$

Proof: With $k:=K$ in geometric and $k:=\phi(\mathbb{Z})=\mathbb{Z} / p \mathbb{Z}$ in arithmetic case field $F:=\mathcal{P}\left[x_{0}\right] / M=k\left[a_{0}, a_{1}, \ldots, a_{n}\right] \hookleftarrow R:=\mathcal{P} / m=k\left[a_{1}, \ldots, a_{n}\right]$, where a_{i} 's are the classes of x_{i} 's in F. So, as in Lemma $1, R$ is a field.
$\operatorname{Prf}(2) \Rightarrow(1):$ Suffices to show $f \in \mathcal{M}(I) / I \subset \mathcal{P} / I=: A \Rightarrow f \in \sqrt{0} \hookrightarrow A$
But f, due to Lemma4, is in every maximal ideal of $A\left[x_{0}\right]$ implying exists
$\left(1+f x_{0}\right)^{-1}=\sum_{0 \leq j \leq d} c_{j} x_{0}^{j} \in A\left[x_{0}\right] \Rightarrow c_{j}=(-f)^{j}$, i.e. $f^{d+1}=0$.

Proof of Lemma 2: Fields $F=K[x] / I$ are K-algebraic.

Proof: Let $\overrightarrow{\mathbf{a}}_{j}:=\left(a_{1}, \ldots, a_{j}\right), j \leq n$, where a_{i} 's are the images of x_{i} 's in
$F=K\left[\overrightarrow{\mathbf{a}}_{n}\right]$. If F is not K-algebraic then not all of a_{i} 's are. Then reorder a_{i} 's and choose maximal $r \leq n$ so that a_{j} is not $K\left[\overrightarrow{\mathbf{a}}_{j-1}\right]$-algebraic for $j \leq r$. Then $K\left[x_{1}, \ldots, x_{r}\right] \rightarrow R:=K\left[\overrightarrow{\mathbf{a}}_{r}\right]$ is an isomorphism, i.e. R is UFD with ∞ many irreducible elements and a_{j} 's for $r<j \leq n$ are R-algebraic (and (R)-integral) $\Rightarrow m=[F: L]:=\operatorname{dim}_{L} F<\infty\left(L:=K\left(\overrightarrow{\mathbf{a}}_{r}\right)=(R)\right.$ $\left.\hookrightarrow F=K\left[\overrightarrow{\mathbf{a}}_{n}\right]\right)$. Pick an L-basis of F and $\phi: F \ni b \mapsto$ the matrix of the

L-linear endomorphism of multiplication by b in F. Let $g \in R$ be common denominator of all matrix entries of all $\phi\left(a_{i}\right) \in L^{m \times m}, i \leq n$ (for $i \leq r$ matrix $\phi\left(a_{i}\right)$ is diagonal with a_{i} on diagonal). So $\phi\left(a_{i}\right) \in R\left[g^{-1}\right]^{m \times m} \Rightarrow$ for each $b \in F \exists s \in \mathbb{Z}^{+}$s.th. $\phi(b) \in g^{-s} R^{m \times m} . R$ is UFD, so let p_{j}, j
$\leq k$, be the irreducible factors of g in R and $p \in R \hookrightarrow L$ any irreducible element. Then $\phi\left(p^{-1}\right)$ is diagonal with all entries p^{-1} and exists $d \in \mathbb{Z}^{+}$,
$f \in R$ s.th. $p^{-1}=g^{-d} f$ or $g^{d}=p f \Rightarrow$ irreducible p is one of the p_{i} 's, but there are ∞ many choices for irreducible $p \in R:=K\left[\overrightarrow{\mathbf{a}}_{r}\right]$, ?! \square

Proof of (2) in the arithmetic case:

then $F:=A=B[x] / J$ with $B:=\phi(\mathbb{Z})$, where $\phi: \mathcal{P} \rightarrow A:=\mathcal{P} / I, \Rightarrow$ either $p:=\operatorname{char} F<\infty,[F: \mathbb{Z} / p \mathbb{Z}]<\infty \quad$ (then $\#(F)<\infty$ and done) or $B=\mathbb{Z}, A=\mathbb{Q}[x] / J \mathbb{Q}[x] \Rightarrow$ each $a_{j}:=\phi\left(x_{j}\right)$ is algebraic over \mathbb{Q} and is integral over $R:=\mathbb{Z}\left[\frac{1}{N}\right]$ for an $N \in \mathbb{Z}$. Then (using Claim that integral elements form a ring) $A:=\mathbb{Z}\left[a_{1}, \ldots, a_{n}\right]$ is integral over R and
$\forall r \in \mathbb{Z} \backslash\{0\}$ exist $b_{i} \in \mathbb{Z}\left[\frac{1}{N}\right]$ s.th. $\left(\frac{1}{r}\right)^{d}=b_{1}\left(\frac{1}{r}\right)^{d-1}+\ldots+b_{d} \Rightarrow$
$\frac{1}{r} \in \mathbb{Z}\left[\frac{1}{N}\right] \Rightarrow \exists s$ s.th. $\frac{N^{s}}{r} \in \mathbb{Z}$, but $\exists \infty$ many primes $r \in \mathbb{Z}$, ?! \square

Claim: Integral closure \bar{R} of a noetherian $R \hookrightarrow S$

in domain S is a subring. Lemma below implies Claim since both
$R[f+g]$ and $R[f \cdot g]$ are R-submodules of $\operatorname{Span}_{R}(R[f] \cdot R[g])$.
Lemma: $f \in S$ is integ. over $R \hookrightarrow S$ iff $R[f] \subset S$ is a fin. gen. R-module.
Proof of Lemma: "only if" is straightforward. To show " \Rightarrow " let
$R[f]=\sum_{1 \leq j \leq m} R \cdot e_{j}, e_{j} \in R[f]$. Then $f \cdot e_{i}=\sum_{1 \leq j \leq m} a_{i j} \cdot e_{j}$ with
entries $a_{i j}$ of matrix \mathcal{A} in $R \Rightarrow \forall i$ holds $\operatorname{det}(f \cdot I-\mathcal{A}) \cdot e_{i}=0 \Rightarrow$
$\operatorname{det}(f \cdot I-\mathcal{A})=0$, i.e. $\quad R[z] \ni P(z):=\operatorname{det}(z \cdot I-\mathcal{A})=z^{m}+$ lower order
terms and $P(f)=0$, as required. \square We use $T^{\text {adj }} \cdot T=\operatorname{det} T \cdot \mid$!

Claim Rab: $\sqrt{I}=\sqrt{I}^{R a b}:=\quad \bigcap \quad P$, where $P \in \operatorname{Spec}_{\text {Rab }}(R): I \subseteq P$

I ideal in R and $\operatorname{Spec}_{R a b}(R):=\{R \cap m \mid m \in \operatorname{Specm}(R[z])\} \subseteq \operatorname{Spec}(R)$.

Proof: $\sqrt{I} \subseteq \mathcal{P}(I):=\bigcap_{S \mathcal{P}(I)} P$ if $\operatorname{SP}(I):=\{P \in \operatorname{Spec}(R): I \subseteq P\} \neq \emptyset$
So, suffices to show " \supseteq ". Say $a \in \sqrt{I}^{R a b}$ and ideal J in $R[z]$ is generated by $(I \cup\{a z-1\})$. If $J \neq R[z] \Rightarrow J \subset m \in \operatorname{Specm}(R[z]) \Rightarrow$
$I \subseteq R \cap J \subseteq R \cap m \in \operatorname{Spec}_{R a b}(R) \Rightarrow a \in m$ and, since
$(a z-1) \in J \subset m, \Rightarrow 1 \in m \neq R[z]$?! Therefore $J=R[z]$. Then
$(\star) 1=\sum_{j=1}^{N} g_{j} b_{j}+g_{0}(a z-1)$ for some $g_{j} \in R[z]$ and $b_{j} \in I$.

Applying map $\phi: R[z] \ni f \mapsto f\left(z^{-1}\right) \in R\left[z, z^{-1}\right]$ to both sides of $\star \Rightarrow$
$(\diamond) \quad 1=\sum_{j=1}^{N} \phi\left(g_{j}\right) b_{j}+\phi\left(g_{0}\right)\left(a \frac{1}{z}-1\right)$.
Say $k \geq \max \left\{\operatorname{deg}\left(g_{1}\right), \ldots, \operatorname{deg}\left(g_{n}\right), \operatorname{deg}\left(g_{0}\right)+1\right\}$. Then multiplying (\diamond) by z^{k} yields $z^{k}=\sum_{j=1}^{N} h_{j}(z) b_{j}+z^{k-1} \phi\left(g_{0}\right)(a-z)$ with $h_{j}(z):=z^{k} \phi\left(g_{j}\right)$,
and $z^{k-1} \phi\left(g_{0}\right)$ in $R[z] \Rightarrow a^{k}=\sum_{j=1}^{N} h_{j}(a) b_{j} \in I \Rightarrow a \in \sqrt{I}$.
\Rightarrow Easy Thm: $\sqrt{I} \subseteq \mathcal{P}(I) \subseteq \sqrt{I}^{R a b} \subseteq \sqrt{I}$.
Proposition 1: If $\phi: K \hookrightarrow B \rightarrow A=K[x] / I$ is a ring homomorphism linear over K and $m \in \operatorname{Specm}(A)$ then $n:=\phi^{-1}(m) \in \operatorname{Specm}(B)$.

Proof of Prop. 1: Kernel of map $\psi: B / n \rightarrow A / m$ induced by ϕ is $\{0\}$
$\Rightarrow B / n$ is isomorphic to K-subalgebra $R:=\psi(B / n)$ of A / m. Then field
A / m is K-algebraic (Lemma 2) and R being K-algebraic domain \Rightarrow
(Lemma 1) R and with it B / n are fields. So $n \in \operatorname{Specm}(B)$.
Hilbert Nullstellensatz revisited: $\sqrt{I}=\mathcal{M}(I):=$ $\bigcap_{m \in \operatorname{Spec} m(A): I \subseteq m} m$.
Proof: Suffices to show " \supseteq ". Say $P \in \operatorname{Spec}_{R a b}(A)$, i.e. $P=A \cap m$ with $m \in \operatorname{Specm}(A[z])$. Applying Proposition $1 \Rightarrow P \in \operatorname{Specm}(A)$ and $\operatorname{Spec}_{R a b}(A) \subseteq \operatorname{Specm}(A)$. Hence $\sqrt{I} \supseteq=\sqrt{I}^{R a b} \supseteq \mathcal{M}(I)$.

