De Rham Theorem à la Whitney. Part 1.

Vitaly Smirnov

MAT 477

February 25, 2014

Differential forms on C^{∞} compact n-dim manifolds M:

PofU:
$$\exists \ \phi_i \in C^{\infty}(M) \ , \ \sum_i \phi_i(x) \equiv 1 \ , \ \ Supp(\phi_i) \subset K_i \Subset V_i \xrightarrow{f_i} R^n$$
 $(V_i \text{ coord. nbhds}), \text{ e.g. } f_i(K_i) = \{|y| \leq 1\} \ , \ M = \bigcup_i f_i^{-1}(\{|y| < 1\})$ then $\psi_i(x) := \exp(1/(|f_i(x)|^2 - 1))$ and $\phi_i := \psi_i / \sum_i \psi_i$ will do.

k-forms:
$$\omega \in \Omega^k(M)$$
, $\omega(p) \in \Lambda^k(T_pM)^*$, i.e. $\omega(p) : (T_pM)^k \to R$

antisymmetric and linear in each T_pM , e.g. $d\phi(p):T_pM\ni v\mapsto rac{\partial\phi}{\partial v}(p)$,

or
$$(\omega_1 \wedge ... \wedge \omega_k)(v_1, ..., v_k) := \det(\omega_j(v_i))$$
 for $\omega_j \in (T_p M)^*$, $v_i \in T_p M$

Smooth $f:M \to N$ induce maps $Df_p:T_p(M) \to T_{f(p)}(N)$, e.g. via

Jacobian Matrices in local coordinates, and $f^*: \Omega^k(N) \to \Omega^k(M)$ via $(f^*\omega)(p)(v_1,...,v_k) := \omega(f(p))(Df_p(v_1),...,Df_p(v_k)) \ . \ \text{For} \ U \subset R^n \ \text{and}$ $n\text{-form} \ \omega = gdx_1 \wedge ... \wedge dx_n \ \text{let} \ \int_U \omega := \int_U gdx_1...dx_n \ . \ \text{For} \ f: U \to M \ \text{and}$ $Supp(\omega) \subset f(U) \ \text{we let} \ \int_M \omega := \int_U f^*\omega \ , \ \text{provided that map} \ f \ \text{preserves}$ orientation, i.e. linear maps $Df_p: T_p(U) \to T_{f(p)}(M)$ send positive frames

into positive frames. For an *n*-form ω on M let $\int_M \omega := \sum_{i=1}^k \int_M \phi_i \omega$.

Def: $O(M):=(\vec{n}(\partial M) \text{ , } O(\partial M))$, where $\vec{n}(\partial M)$ is the outward normal to smooth boundary ∂M of M , relates orientations of the latter two.

◆ロト ◆部ト ◆注ト ◆注ト 注 りなべ

Stoke's Thm for oriented M with boundary ∂M smooth.

Theorem: For an (n-1)-form ω on M holds $\int_M d\omega = \int_{\partial M} \omega$, where

$$d:\omega\mapsto d\omega$$
 is additive with $d(gdx_{i_1}\wedge...\wedge dx_{i_k}):=dg\wedge dx_{i_1}\wedge...\wedge dx_{i_k}$.

Ex:
$$\int_{[a,b]} df := \int_a^b f' dt = f(b) - f(a) =: \int_{\partial [a,b]} f$$
 (Fund. Thm of Calc.)

Conventions: *V* coord. charts, if $V \cap \partial M \neq \emptyset$ we choose coord. so that

$$\partial M=\{x_1=0\} \text{ ; set } dx_1\wedge..\hat{}_j.\wedge dx_n:=dx_1\wedge...\wedge dx_{j-1}\wedge dx_{j+1}\wedge...\wedge dx_n$$

Proof: WLOG assume that our coordinate charts V are nbhds of cubes

$$Q:=\{x_i^0\leq x_j\leq x_i^1\}_{1\leq j\leq n}$$
 with $x_1^i=i$ and interiors 'covering' $M\setminus \partial M$;

that $\partial M \cup \operatorname{int} Q \supset Supp(\omega)$ and $\omega := g(x)dx_1 \wedge ..._j \cdot \wedge dx_n$, with "int"

short for interior. Then $g_{|_{\mathbf{x}_j=\mathbf{x}_j^i}}=0\ orall\ (j,i)
eq (1,0)$, where i=1 or 0 ,

and
$$d\omega = (-1)^{j-1} \frac{\partial g}{\partial x_j} dx_1 \wedge ... \wedge dx_n$$
. Let $K := Supp(\omega)$.

Case 1: $j \neq 1$ or $K \subset \mathrm{int} Q$. Then $\int_{\partial Q} \omega = 0$ and $\int_{Q} d\omega =$

$$\int_Q (-1)^{j-1} \frac{\partial g}{\partial x_j} dx_1...dx_n = (-1)^{j-1} \int_Q \frac{\partial g}{\partial x_j} dx_1...dx_n = 0$$
 use FundThmCalc.

Case 2: j=1 , $K\cap\partial M\neq\emptyset$ \Rightarrow $\omega_{|_{\partial Q}}=g(x)_{|_{x_1=0}}dx_2\wedge...\wedge dx_n$ and

$$\int_{Q}d\omega = \int_{Q}\frac{\partial g}{\partial x_{1}}dx_{1}...dx_{n} = -\int_{\{x_{1}=0\}}g(x)dx_{2}...dx_{n} = \int_{\partial Q}\omega . \quad \blacksquare$$

Poincare Lemma for Contractible Manifolds.

Poincare Lemma: Assume M is contractible, i.e. $\exists p_0 \in M$ and map

$$H: \mathit{MxR} \to \mathit{M} \text{ s.th. } H(\mathit{p},0) = \mathit{p}_0 \ , \ H(\mathit{p},1) = \mathit{p} \ \forall \mathit{p} \in \mathit{M} \ ; \ \omega \in \Omega^k(\mathit{M}) \ .$$

Then $d\omega = 0$ iff $\exists \beta$ s.th. $d\beta = \omega$ (in words: ω is closed iff it is exact).

Proof: With
$$\pi: MxR \ni (x,t) \mapsto x \in M$$
, $\omega \in \Omega^k(M)$ set $\bar{\omega} := H^*\omega$

$$=\omega_1+dt\wedge\eta\ ;\ \omega_1\ ,\ \eta\ \text{having no}\ dt\ \Rightarrow {\omega_1}_{|_{t=0}}=0\ \text{and}\ \omega_{1|_{t=1}}=\omega\ .$$

For
$$\{\vec{v}_i\}_{1\leq i\leq k-1}\subset T_pM$$
 let $g(p,t):=\eta(p,t)(\vec{v}_1\;,...,\;\vec{v}_{k-1})$

and
$$I:\Omega^k(MxR) o\Omega^{k-1}(M)$$
 s.th. $(Iar\omega)(ec v_1\ ,...,ec v_{k-1}):=\int_0^1g(p,t)dt$.

Sublemma: $\bar{\omega}_{|_{t=1}} - \bar{\omega}_{|_{t=0}} = d(I\bar{\omega}) + I(d\bar{\omega})$. **Proof:** Suffices to show

Case 1:
$$\omega_1 = f dx_{i_1} \wedge ... \wedge dx_{i_k} \Rightarrow d\omega_1 = \frac{\partial f}{\partial t} dt \wedge dx_{i_1} ... \wedge dx_{i_k} + d_x \omega_1$$
,

$$I(\omega_1)=0$$
 and $I(d\omega_1)=(\int_0^1 rac{\partial f}{\partial t}dt)dx_{i_1}\wedge...\wedge dx_{i_k}=(\omega_1)|_{|_{t=1}}-(\omega_1)|_{|_{t=0}}$.

Case 2:
$$\eta = fdx_{i_1} \wedge ... \wedge dx_{i_{k-1}} \Rightarrow -I(d(dt \wedge \eta)) = I(dt \wedge d\eta) =$$

$$\sum_{lpha} (\int_0^1 rac{\partial f}{\partial x_lpha} dt) dx_lpha \wedge dx_{i_1} \wedge ... \wedge dx_{i_{k-1}} = d[(\int_0^1 f dt) dx_{i_1} \wedge ... \wedge dx_{i_{k-1}}]$$

 $=d(I(dt \wedge \eta))$, which completes the proof.

Since
$$d\omega=0\Rightarrow d\bar{\omega}=0$$
 and due to $\bar{\omega}_{|_{t=1}}=\omega$ and $\bar{\omega}_{|_{t=0}}=0$

Poincare Lemma with $\beta:=I\bar{\omega}$ follows from our sublemma.

Simplices, Complexes and Triangulation of Manifolds M.

Simplex
$$\sigma = v_0...v_m$$
, $v_i \in R^n$ is $\{x : x = \sum b_i v_i, b_i \ge 0, \sum b_i = 1\}$.

Face of σ is a simplex spanned by a subset of vertices of σ . Complex ${\cal K}$ is

a collection of simplices s.th. 1) $\sigma \in K \Rightarrow$ faces of σ are in K ;

2) $\sigma, \tau \in \mathcal{K} \ \Rightarrow \ \sigma \cap \tau$ is face of σ and τ . Ordering vertices orients σ .

Fact: Manifolds admit triangulation T(M), i.e. \exists homeo. $\pi: K \stackrel{onto}{\to} M$

s.th. $\forall \ \sigma \in K \ \exists \ \mathsf{coord.}$ nbhd. $V \supset \pi(\sigma)$ s.th. $f^{-1} \circ \pi$ is affine in σ .

 $\Sigma_r := R$ -vec. space of r-chains $A = \sum_i a_i \sigma_i^r$; cochains $\in \Sigma^r := \Sigma_r^{dual}$.

Boundaries, Coboundaries, Chain Complexes.

$$\begin{array}{l} \partial_{r-1} \sum_i a_i \sigma_i^r := \sum_i a_i \partial_{r-1} \sigma_i^r = \sum_i a_i \sum_{j=0}^r (-1)^j (v_0...\hat{v}_j...v_r) \text{ for } \sigma_i^r := \\ \\ (v_0...v_r) \text{ , defines boundaries map } \partial_{r-1} : \Sigma_r \to \Sigma_{r-1} \text{ and } \partial_{r-1} \circ \partial_r = 0 \ . \end{array}$$

Coboundaries map $\partial_{r-1}^*: \Sigma^{r-1} \to \Sigma^r$ is dual to ∂_{r-1} . Finally, due to the Stokes Thm $Int^r(\omega)(\sum_i a_i \sigma_i^r) := \sum_i a_i \int_{\sigma_i^r} \omega$ defines 'homomorphism' of

complexes $\Omega^r(M) \stackrel{Int^r}{\to} \Sigma^r$, i.e. the following diagram is commutative:

4日 → 4周 → 4 目 → 4 目 → 9 Q (?)

Elementary Forms provide a right inverse to Int^k .

Definition: $St(\sigma) = \bigcup_{\sigma \in F(\tau)} int(\tau)$, $F(\tau) = faces of \tau$.

 $O:=\{St(q_i)\}$ is open cover of M; \exists part. of unity $\{\phi_i\}$ subord. to O.

Let $[\sigma] \in \Sigma^k$ be the dual basis to the one formed by simpleces $\sigma \in \Sigma_k$.

Thm:
$$\Phi^k[q_{\lambda_0},...,q_{\lambda_k}] := k! \sum_{i=0}^k (-1)^i \phi_{\lambda_i} d\phi_{\lambda_0} \wedge ... \hat{i}... \wedge d\phi_{\lambda_k} \in \Omega^k(M)$$

extended to Σ^k as linear satisfies: 1) $supp(\Phi^k[\sigma]) \subset St(\sigma)$;

2)
$$\Phi^k \partial^* X = d\Phi^{k-1} X$$
; 3) $Int^k \circ \Phi^k X = X$; 4) $\Phi^0 I^0 = \mathbf{1}$, $I^0 := \sum_r [q_r]$.

Cor: $\Omega^{\bullet} = ker(Int^{\bullet}) \bigoplus \Phi^k(\Sigma^{\bullet})$ and $\Phi^k : \Sigma^{\bullet} \to \Phi^k(\Sigma^{\bullet})$ is an isomorphism.

Proof: To begin with $Supp(\phi_i) \subset St(q_i)$ implies 1) and

$$\Phi^0 I^0 = \Phi^0(\sum_r [q_r]) = \sum_r (\Phi^0([q_r])) = \sum_r \phi_r = \mathbf{1}$$
 implies 4).

Suffices to show 2) for $X := [\sigma] = [q_{\lambda_0}...q_{\lambda_{\iota}}]$. We'll use:

(i)
$$\partial^*X=\sum_r^*[q_r\sigma]$$
 , where the sum \sum_r^* is over q_r s.th. $(q_r\sigma)\in\Sigma_{k+1}$;

(ii)
$$\forall$$
 q_r in ** , i.e. $(q_r\sigma) \not\in \Sigma_{k+1}$, holds $\cap_{0 \leq i \leq k} St(q_{\lambda_i}) \cap St(q_r) = \emptyset$

$$\Rightarrow \cap_{0 \le i \le k} Supp \phi_{\lambda_i} \cap Supp \phi_{q_r} = \emptyset$$
 . Both proved in the Appendix.

Of course
$$\sum_{i=0}^k d\phi_{\lambda_i} + \sum_{r \neq \lambda_i \ orall i} d\phi_r = 0$$
 , since $d(\sum \phi_i) = 0$, and

$$d\Phi^k[q_{\lambda_0}...q_{\lambda_k}]=(k+1)!d\phi_{\lambda_0}\wedge...\wedge d\phi_{\lambda_k}$$
 . Using all that, we show:

Elementary Forms: proof of property 2) .

$${\textstyle \frac{1}{(k+1)!}} \Phi^{k+1} \partial^* [q_{\lambda_0} ... q_{\lambda_k}] = {\textstyle \frac{1}{(k+1)!}} \textstyle \sum_r^* \Phi^{k+1} [q_r q_{\lambda_0} ... q_{\lambda_k}] =$$

$$\sum_r^* [\phi_{q_r} d\phi_{\lambda_0} \wedge ... \wedge d\phi_{\lambda_k} - \sum_{i=0}^k (-1)^i \phi_{\lambda_i} d\phi_{q_r} \wedge d\phi_{\lambda_0} \wedge ... \hat{i}... \wedge d\phi_{\lambda_k}] =$$

$$\textstyle \sum_r^* \phi_{q_r} d\phi_{\lambda_0} \wedge ... \wedge d\phi_{\lambda_k} + \sum_r^{**} d\phi_{q_r} \wedge \sum_{i=0}^k (-1)^i \phi_{\lambda_i} d\phi_{\lambda_0} \wedge ... \hat{i}... \wedge d\phi_{\lambda_k} +$$

$$\sum_{j=0}^{k} d\phi_{\lambda_{j}} \wedge \sum_{i=0}^{k} (-1)^{i} \phi_{\lambda_{i}} d\phi_{\lambda_{0}} \wedge ... \hat{i}... \wedge d\phi_{\lambda_{k}}$$

$$=(\sum_{r}^{*}+\sum_{r}^{**})\phi_{q_{r}}d\phi_{\lambda_{0}}\wedge...\wedge d\phi_{\lambda_{k}}+\sum_{i=0}^{k}\phi_{\lambda_{i}}d\phi_{\lambda_{0}}\wedge...\wedge d\phi_{\lambda_{k}}=$$

$$d\phi_{\lambda_0}\wedge...\wedge d\phi_{\lambda_k}=rac{1}{(k+1)!}d\Phi^k[q_{\lambda_0}...q_{\lambda_k}]$$
 , which proves 2) .

Proof of 3): Map Φ^k as a right Inverse to Int^k .

Induction on
$$k: k=0$$
, $Int^0(\Phi^0[q_i]) \cdot q_j = (\Phi^0[q_i])(q_j) = \phi_i(q_j) = \delta_{ij}$ (for $i \neq j$ since $q_j \notin St(q_i) \Rightarrow \phi_i(q_j) = 0$, and using $\sum \phi_i(q_j) = 1$ for

$$i=j).$$
 When $k>0$: $\sigma
eq au \ \Rightarrow \ au \subset M \setminus St(\sigma) \ \Rightarrow \ Int^k(\Phi^k[\sigma]) \cdot au = 0$

using 1). When $\sigma = \tau$ let $\partial \sigma = \alpha + [\text{other } (k-1) - \text{faces of } \sigma]$. Then

$$\textstyle \int_{\sigma} \Phi^{k}[\sigma] = \int_{\sigma} \Phi^{k} \partial^{*}[\alpha] = \int_{\sigma} d\Phi^{k-1}[\alpha] = \int_{\partial \sigma} \Phi^{k-1}[\alpha] = \int_{\alpha} \Phi^{k-1}[\alpha] = 1$$

with the last equality due to the inductive assumption, as required.

Appendix: Proof of $\partial^*[\sigma] = \sum_{r=1}^{\infty} [q_r \sigma]$.

It sufficies to show that $\partial^*[\sigma](A) := [\sigma](\partial A) = \sum_r [q_r \sigma](A)$ for any

 $A \in \Sigma_{k+1}$. Of course if σ is not one of the faces of A then

$$[\sigma](\partial A)=0$$
 and $\sum_r^* [q_r\sigma](A)=0$ since then simplex $A
eq q_r\sigma$.

Therefore, it suffices to consider $A = A_s := q_s \sigma \in \Sigma_{k+1}$.

Then for all
$$A_s \in \Sigma_{k+1}$$
 holds $[\sigma](\partial A_s) = 1$ and $\sum_r^* [q_r \sigma](A_s) = 1$.

Therefore $\partial^*[\sigma] = \sum_{r=1}^{\infty} [q_r \sigma]$, as required.

Appendix: Claim (ii) from 2) of page 11.

Appendix: Proof of (ii) from 2) of page 11.

Assume $(q_r q_{\lambda_0} ... q_{\lambda_k}) \notin \Sigma_{k+1}$. If $Z := \bigcap_{0 \le i \le k} St(q_{\lambda_i}) \cap St(q_r) \ne \emptyset$ then set Z consists of a union of simpleces (as each St(q) is) and, moreover, simplex $\tau \subset Z$ iff its vertices include all q_r , q_{λ_o} , ..., q_{λ_k} ! But these vertices then span face $(q_r q_{\lambda_o} ... q_{\lambda_t})$ of τ . By definition of the complex of triangulation then $(q_r q_{\lambda_0} ... q_{\lambda_k}) \in \Sigma_{k+1}$ contrary to our assumption, i.e. $Z = \emptyset$ as claimed in (ii) .

Denote: $\chi(T(M)) := \sum_{k=0}^{n} (-1)^{k} \# \{ \sigma \in T(M) : \dim \sigma = k \}$.

Invariance of $\chi(T(M))$ on triangulation T(M) of M.

Fact: $ker(Int^{\bullet})$ is acyclic subcomplex of Ω^{\bullet} , i.e. $ker(d_{k|ker(Int^k)}) =$

$$\mathit{Im}(d_{k-1|\mathit{ker}(\mathit{Int}^{k-1})})$$
 , \Rightarrow via Cor (from p.10) that $\frac{\mathit{ker}(\partial_k^*)}{\mathit{Im}(\partial_{k-1}^*)} \cong \frac{\mathit{ker}(d_k)}{\mathit{Im}(d_{k-1})}$.

Note: $\#\{\sigma \in T(M) : \dim \sigma = k\} = \dim_R \Sigma_k = \dim_R \Sigma^k$.

Thm: Euler characteristic
$$\chi(M) := \sum_{k=0}^{n} (-1)^k dim_R \frac{ker(d_k)}{Im(d_{k-1})} = \chi(T(M))$$

Corollary: $\chi(T(M))$ does not depend on triangulation T(M) of manifold.

Indeed,
$$dim_R \Sigma^k = dim_R Im(\partial_k^*) + dim_R \frac{ker(\partial_k^*)}{Im(\partial_{k-1}^*)} + dim_R Im(\partial_{k-1}^*)$$
.

Hence
$$\chi(M) = \sum_{k=0}^n (-1)^k dim_R \frac{\ker(\partial_k^*)}{Im(\partial_{k-1}^*)} = \chi(T(M))$$
.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ○

Triangulation of 2-handles:

v.= 18 , e.= 60 , t.= 40
$$\Rightarrow$$
 $\chi(M) = -2$.

