Favourite Theorems of the last year. Students choice (notes unaltered).

Class MAT477 in 2013-2014

April, 2014

Changho Han.
 Normalization Theorem (Preliminaries).

Def: Projective Plane Curve is of the form $V(F) \subset \mathbb{C P}^{2}$ where $F \neq 0$ is a homogeneous polynomial in 3 variables.

Def: Projective Plane Curve X is irreducible if $\exists F$ irreducible as a
polynomial and $X=V(F)$.

Def: $x \in X$ projective plane curve is singular when X is not smooth at x.

Def: Riemann surface X is a connected 1-dimensional complex manifold.

Fact: Any projective plane curve X has only finitely many singular points.

Normalization Theorem (Statement)

Def: $S_{X}:=\{x \in X: x$ singular in $X\}$ for projective plane curve X.

Def: Normalization of projective plane curve X is (Y, σ) where Y is a compact Riemann surface, $\sigma: Y \rightarrow X$ surjective holomorphic map, $\sigma^{-1}\left(S_{X}\right)$ is finite, and $\left.\sigma\right|_{Y \backslash \sigma^{-1}\left(S_{X}\right)}: Y \backslash \sigma^{-1}\left(S_{X}\right) \rightarrow X \backslash S_{X}$ is bijective.

Normalization Theorem: Given projective plane curve X, there exists
normalization (Y, σ) unique upto biholomorphic maps.

RongXi Guo
 Bezout Theorem in dimension 2.

Def: Given field F and point $P \in F^{2}$, the ring of rational functions $\frac{f}{g}$,
$(f, g \in F[x, y], g(P) \neq 0)$ is called the local ring at P , denoted by O_{P}.
Let A, B be two plane curves with corresponding functions
$f(x, y)=0, g(x, y)=0$ where $f, g \in C[x, y]$.
Def: Let $(f, g)_{P}$ be the ideal $O_{P} f+O_{P} g$ in O_{P} generated by fand g,
the intersection multiplicity at point P of curves A and B rmis
$I_{P}(A, B) \equiv I_{P}(f, g) \equiv \operatorname{dim}_{C} O_{P} /(f, g)_{P}$.

Bezout Theorem:

If f, g have no common factor, A, B intersect at precisely $m n$ points, counting all multiplicities and intersections at infinity (short as iai.) .
i.e. $\sum_{P \in C^{2}} I_{P}(f, g)+N_{\text {inf }}=m n$, where $N_{\text {inf }}$ is the number of iai.,
i.e. the extra intersections in the extended projective space .

When f, g have common factor(s)
\Rightarrow All points of common factor(s) are on the curves of both A and B
$\Rightarrow A, B$ have infinite common points .

Alex Edmonds.

Banach-Tarski Paradox: Beautiful or Disturbing?

Main Thm: For $B \subset \mathbb{R}^{n}$ open or closed ball, $\exists S_{1}, \ldots, S_{5} \subset B$ disjoint,
$\exists \varphi_{1} \ldots \varphi_{5}$ isometries of \mathbb{R}^{n} s.th.

$$
B=S_{1} \cup \cdots \cup S_{5}=\varphi_{1}\left(S_{1}\right) \cup \varphi_{2}\left(S_{2}\right)=\varphi_{3}\left(S_{3}\right) \cup \varphi_{4}\left(S_{4}\right) \cup \varphi_{5}\left(S_{5}\right)
$$

Axiom of Choice (AC): Proof uses AC. Cited as reason not to accept AC.

Reconciling Intuition: Intuition says mass of whole should be sum of mass of parts. This logic fails since S_{1}, \ldots, S_{5} are non-measurable.

Converse (Fact): To construct non-measurable sets requires AC.

Aaron Crighton.
 Ultraproducts and Los' Theorem.

Introduction. Preliminaries: With $\mathscr{P}(S):=\{U: U \subset S\}$,
Def 1: Given a set S, an ultrafilter is a subset $\mathscr{U} \subset \mathscr{P}(S)$ s.th:
i) $\emptyset \notin \mathscr{U}$;
ii) $X_{1}, X_{2} \in \mathscr{U} \Rightarrow X_{1} \cap X_{2} \in \mathscr{U}$;
iii) $X_{1} \subset X_{2}$ and $X_{1} \in \mathscr{U} \Rightarrow X_{2} \in \mathscr{U} ; \quad$ iv) $X \notin \mathscr{U} \Rightarrow X^{c} \in \mathscr{U}$.

Def 2: Given sets $\left\langle S_{\beta}\right\rangle_{\beta \in I}$ indexed by a set I, and an ultrafilter \mathscr{U} on I, the reduced product of $\left\langle S_{\beta}\right\rangle_{\beta \in I}$ is defined as the quotient $\left(\prod_{\beta \in I} S_{\beta}\right) / \sim$
where $\left(\prod_{\beta \in I} S_{\beta}\right)$ is cartesian prodcut and \sim is the equivalence relation:
$f \sim g \Longleftrightarrow\{\beta: f(\beta)=g(\beta)\} \in \mathscr{U}$. We denote this set by $\prod_{\mathscr{U}} S_{\beta}$.
Def 3: Given \mathbb{L} a $1^{\text {st }}$-order language with relation symbols R_{α}, constants
c_{α} and functions f_{α} and a class of models $\left\langle\mathscr{M}_{\beta}\right\rangle_{\beta \in I}$ for \mathbb{L} indexed by set I,
and ultrafilter \mathscr{U} on I, the ultraproduct of $\left\langle\mathscr{M}_{\beta}\right\rangle_{\beta \in I}$, denoted by $\prod_{\mathscr{U}} \mathscr{M}_{\beta}$
is the model for the language \mathbb{L} defined as:
U.i) $\left|\prod_{\mathscr{U}} \mathscr{M}_{\beta}\right|=\prod_{\mathscr{U}}\left|\mathscr{M}_{\beta}\right|$
U.ii) $R_{\alpha}^{\prod_{\mathscr{U}} \mathscr{M}_{\beta}}=\prod_{\mathscr{U}} R_{\alpha}^{\mathscr{M}}$

Definition of Ultraproduct continued

U.iii) $c_{\alpha}^{\Pi_{\mathscr{U}} \cdot \mathscr{M}_{\beta}}=\left[\left(c_{\alpha}^{\mathscr{L}_{\beta}}\right)_{\beta \in I}\right]$ (the equivalence class of the element
$\left(c_{\alpha}^{\mathscr{M}_{\beta}}\right)_{\beta \in I} \in \prod_{\beta \in I} \mathscr{M}_{\beta} \bmod$ the relation $\left.\sim\right)$
U.iv) If F_{α} is an n -ary function then $f_{\alpha}^{\prod_{\mathscr{U}} \mathscr{M}_{\beta}}$ is the function from
$\left(\prod_{\mathscr{U}}\left|\mathscr{M}_{\beta}\right|\right)^{n} \rightarrow \Pi_{\mathscr{U}}\left|\mathscr{M}_{\beta}\right|$ defined $\left(\right.$ with $\left.g:=\left(g_{1}, \ldots g_{n}\right), g_{i} \in \prod_{\mathscr{U}}\left|\mathscr{M}_{\beta}\right|\right)$:
$f_{\alpha}^{\Pi_{\mathscr{U}}} \mathscr{M}_{\beta}(g)=\left[\left(f_{\alpha}^{\mathscr{N}_{\beta}}(g(\beta))\right)_{\beta \in I}\right]$ (Exercise: this is well-defined)

Los' Theorem: Given a formula $\Phi(v)\left(v:=\left(v_{1}, \ldots, v_{n}\right)\right)$ in language \mathbb{L}, ultraproduct $\Pi_{\mathscr{U}} \mathscr{M}_{\beta}$ and $g:=\left(g_{1}, \ldots, g_{n}\right)\left(g_{i} \in\left|\Pi_{\mathscr{U}} \mathscr{M}_{\beta}\right|\right)$ then, $\prod_{\mathscr{U}} \mathscr{M}_{\beta} \vDash \Phi(v)[g] \Longleftrightarrow\left\{\beta: \mathscr{M}_{\beta} \vDash \Phi(v)[g(\beta)]\right\} \in \mathscr{U}$

Proof: By induction on complexity of Φ Write $\mathscr{M}:=\prod_{\mathscr{U}} \mathscr{M}_{\beta}$:
Case 1: $\Phi(v)$ is of the form $t_{1}(v)=t_{2}(v)$ for terms t_{1}, t_{2} in \mathbb{L}. Then,
$\mathscr{M} \models \Phi(v)[g] \Longleftrightarrow t_{1}^{\prime \prime}(g)=t_{2}^{\prime \prime}(g) \Longleftrightarrow$
$\left\{\beta: t_{1}^{\mathscr{\mu}_{\beta}}(g(\beta))=t_{2}^{\mathscr{\mu}_{\beta}}(g(\beta))\right\} \in \mathscr{U} \Longleftrightarrow\left\{\beta: \mathscr{M}_{\beta} \models \Phi(v)[g(\beta)]\right\} \in \mathscr{U}$
Case 2: Φ is of the form $\Theta \wedge \Psi$ where the result holds for ψ and Θ
$\mathscr{M} \models \Phi(v)[g] \Longleftrightarrow \mathscr{M} \models \Psi(v)[g]$ and $\mathscr{M} \models \Theta(v)[g]$
$\Longleftrightarrow\left\{\beta: \mathscr{M}_{\beta} \models \Psi(v)[g(\beta)]\right\} \in \mathscr{U}$ and $\left\{\beta: \mathscr{M}_{\beta} \models \Theta(v)[g(\beta)]\right\} \in \mathscr{U}$
And by properties ii) and iii) of ultrafilters,

$$
\begin{aligned}
& \Longleftrightarrow\left\{\beta: \mathscr{M}_{\beta} \models \Psi(v)[g(\beta)]\right\} \cap\left\{\beta: \mathscr{M}_{\beta} \models \Theta(v)[g(\beta)]\right\} \\
& =\left\{\beta: \mathscr{M}_{\beta} \models(\Theta \wedge \Psi)(v)[g(\beta)]\right\}=\left\{\beta: \mathscr{M}_{\beta} \models \Phi(v)[g(\beta)]\right\} \in \mathscr{U}
\end{aligned}
$$

Case 3: Φ is of the form $\neg \psi$ where the result holds for Ψ. Then,
$\mathscr{M} \models \Phi(v)[g] \Longleftrightarrow \mathrm{It}$ is not the case that $\mathscr{M} \models \Psi(v)[g] \Longleftrightarrow$ $\left\{\beta: \mathscr{M}_{\beta} \models \Psi(v)[g(\beta)]\right\} \notin \mathscr{U} \stackrel{\text { by } U . i v)}{\Longleftrightarrow}\left\{\beta: \mathscr{M}_{\beta} \models \Phi(v)[g(\beta)]\right\} \in \mathscr{U}$.

Case 4: Φ is of the form $(\exists x) \Psi(v, x)$ and result holds for $\Psi(v, x)$. Then,
$\mathscr{M} \models \Phi(v)[g] \Longrightarrow \mathscr{M} \models \Psi(v, x)[g, h]$ for some $h \in|\mathscr{M}| \Longrightarrow$
$\left\{\beta: \mathscr{M}_{\beta}=\Psi(v, x)[g(\beta), h(\beta)]\right\} \in \mathscr{U} \Longrightarrow$
$\left\{\beta: \mathscr{M}_{\beta} \vDash(\exists x) \Psi(v, x)[g(\beta), h(\beta)]\right\} \in \mathscr{U}$. For the other implication,
$\left\{\beta: \mathscr{M}_{\beta} \vDash(\exists x) \Psi(v, x)[g(\beta), h(\beta)]\right\} \in \mathscr{U} \Longrightarrow \exists S \in \mathscr{U}$ s.th.
$\beta \in S \Rightarrow S_{\beta}:=\left\{a: a \in \mathscr{M}_{\beta}\right.$ and $\left.\mathscr{M}_{\beta} \models \Psi(v, x)[g(\beta), h(a)]\right\} \neq \emptyset$
By the axiom of choice, we can choose $h \in \prod_{\beta \in I} \mathscr{M}_{\beta}$ so that $h(\beta) \in S_{\beta}$ for $\beta \in S$ so letting $\bar{h}:=h / \sim$ we have $\mathscr{M} \models \Psi(v, x)[g, \bar{h}]$ hence, $\mathscr{M} \models(\exists x) \Psi(v, x)[g] \square$

Paul Sacawa.
 Quillen-Suslin Theorem

Theorem A finitely generated projective module P over a polynomial ring over a field $R=k\left[x_{1}, \ldots, x_{k}\right]$ is free.

One studies in K-theory the functor $K_{0}:$ Ring \rightarrow Ab given by: for ring R, consider the set of isomorphism classes of finitely generated projective modules over R. This has a natural semigroup structure under \oplus, direct
sum of modules. Call it $\left(S_{R},+\right)$. We then take the Grothendieck group
$G(S)$, standard extension of semigroup to abelian group: take equivalence
\sim on $S \times S$ given by $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ iff $\exists k: a+b^{\prime}+k=b+a^{\prime}+k$.
$M \times M \backslash \sim$ has natural group structure, and we define $K_{0}(R):=G\left(S_{R}\right)$.

For field $R=k, S_{R}=(\mathbb{N},+)$, because module is determined by dimension
(similar for PID), so $K_{0}(k)=\mathbb{Z}$. Similarly, Quillen-Suslin theorem states
that $K_{0}\left(k\left[x_{1}, \ldots, x_{n}\right]\right)=\mathbb{Z}$ for the same reason.

For it, Quillen received Fields' medal.

Vitaly Smirnov. Tychonoff Thm and two applications.

Tychonoff's Theorem (TT): an arbitrary product of compact
topological spaces is compact in the product topology.

Def. 1. For X Banach X^{*} its dual with operator norm: weak* topology
of X is the coarsest s.th. $\forall x \in X,\left\{T_{x}(\phi):=\phi(x)\right\}_{\phi \in X^{*}}$ are continuous.

Alaoglu Thm: $\{f:\|f\| \leq 1\} \subset X^{*}$ is compact in weak* topology.

Def. 2. Let X be topological space, (Y, d) - metric space, Y^{X} - set of all
functions mapping X into Y, and $C_{X Y}:=\left\{f \in Y^{X}: f\right.$ is cont. $\}$.

Given $f \in Y^{X}, \epsilon>0$, compact subspace C of X, let $B_{C}(f, \epsilon):=\left\{g \in Y^{X}: \sup \{d(f(x), g(x)) \mid x \in C\}<\epsilon\right\}$.

Topology of compact convergence is topology with basis sets $B_{C}(f, \epsilon)$.
$F \subset C_{X Y}$ is equicontinuous if, for each $x_{0} \in X$, given $\epsilon>0$,
\exists nbh. U of x_{0} s.th. $\forall x \in U$ and $\forall f \in F, d\left(f(x), f\left(x_{0}\right)\right)<\epsilon$.
Theorem(Ascoli): Given $C_{X Y}$ topology of compact convergence,
if $F \subset C_{X Y}$ is equicontinuous and $F_{a}:=\{f(a): f \in F\}$ has compact closure for each $a \in X$, then F is contained in compact subspace of $C_{X Y}$.

The converse holds if X is locally compact Hausdorff.

Dylan Butson. Induced Representations of H on G.

Theorem Let G a locally compact topological group with a closed subgroup $H \subset G$ such that G / H has a G-invariant measure μ. Let \mathcal{H} be a

Hilbert space $\sigma: H \rightarrow U(\mathcal{H})$ a unitary representation of H. Then there exists a natural unitary representation $\pi_{H, \sigma}: G \rightarrow U(\mathcal{F})$.

Viewing G as a principal H bundle over G / H, we can construct the associated vector bundle $E=G \times_{\sigma} \mathcal{H}$. Let \mathcal{F} to be the space of L^{2}
sections on this bundle with respect to $|f|^{2}=\int_{G / H}|f(\bar{g})|_{\mathcal{H}}^{2} d \mu$.

Equivalently, first define \mathcal{F}_{0} as the space of continuous functions
$f: G \rightarrow \mathcal{H}$ such that $f(g h)=\sigma(g)^{-1} f(g)$. Then, take the completion of
\mathcal{F}_{0} with respect to the above norm. Note that the above norm is well defined on \mathcal{F}_{0} by the equivariance property above and unitarity of σ.

The representation is then $[\pi(g) f]\left(g^{\prime}\right)=f\left(g^{-1} g^{\prime}\right)$. It is clear that $\pi(g): \mathcal{F} \rightarrow \mathcal{F}$ for each $g \in G$. Further, this representation is unitary since
$|\pi(g) f|^{2}=\int_{G / H}\left|\pi(g) f\left(\bar{g}^{\prime}\right)\right|_{\mathcal{H}}^{2} d \mu\left(g^{\prime}\right)=\int_{G / H}\left|f\left(\overline{g^{-1} g^{\prime}}\right)\right|_{\mathcal{H}}^{2} d \mu\left(g^{\prime}\right)=$
$\int_{G / H}\left|f\left(g^{\prime}\right)\right|_{\mathcal{H}}^{2} d \mu\left(g^{\prime}\right)=|f|^{2}$ by G-invariance of μ.

Viktoriya Baydina. Pick's Theorem: $A=I+\frac{B}{2}-1$, where $A=$ area of a lattice polygon; $I=\#$ of interior lattice points; $B=\#$ of boundary lattice points (vertices included); elementary triangle $(E T)=$ vertices are lattice points \& has no further boundary or interior points.

Lemma 1: Any lattice polygon can be triangulated by ETs.
Lemma 2: Area of any ET in a \mathbb{Z}^{2} lattice is $\frac{1}{2}$.

Proof of PT: Partition polygon P into N ETs, by Lemma 1. Idea: sum internal angles of the ETs in two ways. (1) Angle sum of any triangle is π,
so total is $T=N \cdot \pi$. (2) At each interior point i, angles of ETs having i
as a vertex sum to 2π. At each non-vertex boundary point b, angles of

ETs having b as vertex sum to π. If number of vertices is k, interior angles
at the vertices add to $k \pi-2 \pi$ since sum of exterior angles is 2π (walking
along perimeter of polygon, one completes a full turn). Thus sum of
angles at boundary points is $B \cdot \pi-2 \pi$, and sum of angles at internal
points is $I \cdot 2 \pi$. Thus $T=I \cdot 2 \pi+B \cdot \pi-2 \pi$. (1) $+(2) \Longrightarrow$
$N=I \cdot 2+B-2$. By Lemma 2, $A=N \cdot \frac{1}{2} \Longrightarrow A=I+\frac{1}{2} B-1$.

Tomas Kojar.

1. Hodge Decomposition Theorem for Kahler Manifolds.

Let M be a compact complex manifold of Kahler type. Then there is a direct sum decomposition: $H^{r}(M, \mathbb{C})=\underset{p, q: p+q=r}{\bigoplus} H^{p, q}(M)$.
$H^{r}(M, \mathbb{C})$ is the deRham group of r-forms on M (for related details see

Vitali's and Dylan's talks). $H^{p, q}(M)$ is the cohomology of complex
differential forms of degree (p, q) on M (called Doulbeaut group).
In local coordinates Hermitian metric is $h:=\sum h_{i j} d z^{i} \wedge d \bar{z}^{j}$, where $h_{i j}$
are entries of a positive definite Hermitian matrix $\left(H=\overline{H^{t r}}\right)$. The Hermitian form is $\omega:=\frac{i}{2}(h-\bar{h})=\frac{i}{2} \sum_{i, j} h_{i j} d z^{i} \wedge d \bar{z}^{j}$. A Kahler manifold is a complex manifold with Hermitian metric and the associated Hermitian form closed $(d \omega=0)$, in which case it is called Kahler metric.
2. Given a Morse-Smale pair on a compact smooth manifold M. Then the homology of the Morse-Smale complex is isomorphic to the singular homology of this manifold: $H_{\text {Morse }}^{k}(f, \mathbb{Z}) \simeq H_{\text {sing }}^{k}(M)$.

About Morse functions see "Morse Generic and Thm" presentation. Next

Stable and Unstable manifolds: Consider for Morse function f on M
the flow $\phi: \mathbb{R} \times M \rightarrow M$ of the vector field $-\nabla f(x)$ with respect
to a Riemmanian metric g. For critical points p of $\mathrm{f}($ shortly $p \in \operatorname{Cr}(f))$:

Stable $W_{p}^{s}=\left\{x \in M: \lim _{t \rightarrow+\infty} \phi(t, x)=p\right\}$ and has $\operatorname{dim}\left(W_{p}^{s}\right)=\operatorname{Ind}_{p} f$
Unstable $W_{p}^{u}=\left\{x \in M: \lim _{t \rightarrow-\infty} \phi(t, x)=p\right\}$ and has $\operatorname{dim}\left(W_{p}^{u}\right)=$
$\operatorname{dim}(M)-\operatorname{Ind} d_{p}$. Morse-Smale condition (M-S): For any $\left.p, q \in \operatorname{Cr}(f)\right)$,
$T_{x} M=T_{x} W_{p}^{s}+T_{x} W_{p}^{u}$. We say that (f, g) is a Morse-Smale pair.

Towards Explaining Morse Homology $H_{\text {Morse }}^{k}(f, \mathbb{Z})$.

A flow line between $p, q \in \operatorname{Cr}(f)$ is a path $\gamma: \mathbb{R} \rightarrow M$ s.th.
$\gamma(s)^{\prime}=-\nabla f(\gamma(s)), \lim _{s \rightarrow-\infty} \gamma(s)=p$ and $\lim _{s \rightarrow+\infty} \gamma(s)=q$. Let
$M(p, q):=\left(W_{q}^{s} \cap W_{p}^{u}\right) / \mathbb{R}$, i.e. the moduli space of flow lines btw p, q
$\stackrel{M-S}{\Rightarrow} M(p, q)$ is a submanifold with $\operatorname{dim}(M(p, q))=\operatorname{Ind}_{p} f-\operatorname{Ind}_{q} f-1$.
Orientation of $M(p, q)$: For each W_{p}^{u} we choose an orientation
$\Rightarrow T W_{p}^{u} \stackrel{M-S}{\simeq} T\left(W_{p}^{u} \cap W_{q}^{s}\right) \oplus\left(T M / T W_{q}^{s}\right) \simeq T_{\gamma} M(p, q) \oplus T_{\gamma} \oplus T_{q} W_{q}^{u}$,
where $\left(T M / T W_{q}^{s}\right) \simeq T_{q} W_{q}^{u}$ follows from translating W_{q}^{u}

Morse-Smale complex

to the complement \Rightarrow we pick orientation for $M(p, q)$ accordingly .

Consider the module $C_{k}(f):=\bigoplus_{p \in C_{r_{k}}(f)} \mathbb{Z}[p]$, where
$\operatorname{Cr}_{k}(f)=\left\{p \in M: p \in \operatorname{Cr}(f)\right.$ and $\left.\operatorname{Ind}_{p} f=k\right\}$. And operator:
$\partial_{\text {Morse }}^{k}: C_{k} \rightarrow C_{k-1}$ as $\partial_{\text {Morse }}(p):=\sum_{\text {Ind }_{q}(f)=k-1} \operatorname{orient}(M(p, q)) \cdot q$.
This gives you an exact sequence
$0 \rightarrow C_{n}(f) \xrightarrow{\partial_{n}} \ldots C_{k+1}(f) \xrightarrow{\partial_{k+1}} C_{k}(f)^{\partial_{k}} . . \xrightarrow{\partial_{2}} C_{1}(f) \rightarrow 0$
and thus homology $H_{\text {Morse }}^{k}(f, \mathbb{Z}):=\frac{\operatorname{Ker}\left(\partial_{k}\right)}{\operatorname{Im}\left(\partial_{k-1}\right)}$.

