Favourite Theorems of the last year. Students choice (notes unaltered).

Class MAT477 in 2013 - 2014

April, 2014

Class MAT477 in 2013 - 2014 (2014) Favourite Theorems of the last year. Students

April, 2014 1 / 27

Class MAT477 in 2013 - 2014 (2014) Favourite Theorems of the last year. Students

◆□> ◆圖> ◆理> ◆理> 三語

Changho Han. Normalization Theorem (Preliminaries).

Def: Projective Plane Curve is of the form $V(F) \subset \mathbb{CP}^2$ where $F \neq 0$ is a

homogeneous polynomial in 3 variables.

Def: Projective Plane Curve X is irreducible if $\exists F$ irreducible as a

polynomial and X = V(F).

Def: $x \in X$ projective plane curve is singular when X is not smooth at x.

Def: Riemann surface X is a connected 1-dimensional complex manifold.

Fact: Any projective plane curve X has only finitely many singular points.

Normalization Theorem (Statement)

Def: $S_X := \{x \in X : x \text{ singular in } X\}$ for projective plane curve X.

Def: Normalization of projective plane curve X is (Y, σ) where Y is a

compact Riemann surface, $\sigma: Y \rightarrow X$ surjective holomorphic map,

$$\sigma^{-1}(S_X)$$
 is finite, and $\sigma|_{Y\setminus\sigma^{-1}(S_X)}: Y\setminus\sigma^{-1}(S_X) \to X\setminus S_X$ is bijective.

Normalization Theorem: Given projective plane curve X, there exists

normalization (Y, σ) unique upto biholomorphic maps.

・ロト ・四ト ・ヨト ・ヨト ・ ヨ

RongXi Guo Bezout Theorem in dimension 2 .

Def: Given field F and point $P \in F^2$, the ring of rational functions $\frac{f}{g}$,

 $(f, g \in F[x, y], g(P) \neq 0)$ is called the local ring at P, denoted by O_P .

Let A , $B\,$ be two plane curves with corresponding functions

$$f\left(x,y
ight)=0\;,\;g\left(x,y
ight)=0\;\;\mathrm{where}\;\;f,\;g\in C\left[x,y
ight]\;.$$

Def: Let $(f,g)_P$ be the ideal $O_P f + O_P g$ in O_P generated by f and g,

the intersection multiplicity at point P of curves A and B rmis

$$I_P(A,B) \equiv I_P(f,g) \equiv dim_C O_P/(f,g)_P$$
 .

イロト 不得 トイヨト イヨト 二日

Bezout Theorem:

If f, g have no common factor, A, B intersect at precisely mn points, counting all multiplicities and intersections at infinity (short as iai.).

i.e. $\sum_{P\in C^2} I_P(f,g) + N_{inf} = mn$, where N_{inf} is the number of iai.,

i.e. the extra intersections in the extended projective space .

When f, g have common factor(s)

 \Rightarrow All points of common factor(s) are on the curves of both A and B

 $\Rightarrow A,B$ have infinite common points .

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Alex Edmonds. Banach-Tarski Paradox: Beautiful or Disturbing?

Main Thm: For $B \subset \mathbb{R}^n$ open or closed ball, $\exists S_1, \ldots, S_5 \subset B$ disjoint,

 $\exists \varphi_1 \dots \varphi_5$ isometries of \mathbb{R}^n s.th.

 $B = S_1 \cup \cdots \cup S_5 = \varphi_1(S_1) \cup \varphi_2(S_2) = \varphi_3(S_3) \cup \varphi_4(S_4) \cup \varphi_5(S_5)$

Axiom of Choice (AC): Proof uses AC. Cited as reason not to accept AC.

Reconciling Intuition: Intuition says mass of whole should be sum of

mass of parts. This logic fails since S_1, \ldots, S_5 are non-measurable.

Converse (Fact): To construct non-measurable sets requires AC.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Class MAT477 in 2013 - 2014 (2014) Favourite Theorems of the last year. Students

April, 2014 8 / 27

◆□> ◆圖> ◆理> ◆理> 三語

Aaron Crighton. Ultraproducts and Los' Theorem.

Introduction. Preliminaries: With $\mathscr{P}(S) := \{U : U \subset S\}$,

Def 1: Given a set S, an **ultrafilter** is a subset $\mathscr{U} \subset \mathscr{P}(S)$ s.th:

i)
$$\emptyset \notin \mathscr{U}$$
; ii) $X_1, X_2 \in \mathscr{U} \Rightarrow X_1 \cap X_2 \in \mathscr{U}$;

 $\text{iii}) \ X_1 \subset X_2 \ \text{and} \ X_1 \in \mathscr{U} \Rightarrow X_2 \in \mathscr{U} \ ; \quad \text{iv}) \ X \notin \mathscr{U} \Rightarrow X^{\mathsf{c}} \in \mathscr{U} \ .$

Def 2: Given sets $\langle S_{\beta} \rangle_{\beta \in I}$ indexed by a set *I*, and an ultrafilter \mathscr{U} on *I*,

the reduced product of $\langle S_{\beta} \rangle_{\beta \in I}$ is defined as the quotient $(\prod_{\beta \in I} S_{\beta})/\sim$

|▲■▶ ▲ヨ▶ ▲ヨ▶ | ヨ | のへの

where $(\prod_{\beta \in I} S_{\beta})$ is cartesian product and \sim is the equivalence relation: $f \sim g \iff \{\beta : f(\beta) = g(\beta)\} \in \mathscr{U}$. We denote this set by $\prod_{\mathscr{W}} S_{\beta}$. **Def 3:** Given \mathbb{L} a 1st-order language with relation symbols R_{α} , constants c_{α} and functions f_{α} and a class of models $\langle \mathcal{M}_{\beta} \rangle_{\beta \in I}$ for \mathbb{L} indexed by set I, and ultrafilter \mathscr{U} on *I*, the **ultraproduct** of $\langle \mathscr{M}_{\beta} \rangle_{\beta \in I}$, denoted by $\prod_{\mathscr{Y}} \mathscr{M}_{\beta}$ is the model for the language \mathbb{L} defined as:

U.i) $|\prod_{\mathscr{U}} \mathscr{M}_{\beta}| = \prod_{\mathscr{U}} |\mathscr{M}_{\beta}|$ U.ii) $R_{\alpha}^{\prod_{\mathscr{U}} \mathscr{M}_{\beta}} = \prod_{\mathscr{U}} R_{\alpha}^{\mathscr{M}}$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Definition of Ultraproduct continued

U.iii) $c_{\alpha}^{\prod_{\mathscr{U}}\mathscr{M}_{\beta}} = [(c_{\alpha}^{\mathscr{M}_{\beta}})_{\beta \in I}]$ (the equivalence class of the element

 $(c_{\alpha}^{\mathscr{M}_{\beta}})_{\beta\in I}\in\prod_{\beta\in I}\mathscr{M}_{\beta}$ mod the relation \sim)

U.iv) If F_{α} is an n-ary function then $f_{\alpha}^{\prod_{\mathscr{U}} \mathscr{M}_{\beta}}$ is the function from

 $(\prod_{\mathscr{U}} |\mathscr{M}_{\beta}|)^n \to \prod_{\mathscr{U}} |\mathscr{M}_{\beta}| \text{ defined (with } g := (g_1, \dots g_n), g_i \in \prod_{\mathscr{U}} |\mathscr{M}_{\beta}|):$

 $f_{\alpha}^{\prod_{\mathscr{U}} \mathscr{M}_{\beta}}(g) = [(f_{\alpha}^{\mathscr{M}_{\beta}}(g(\beta)))_{\beta \in I}] \text{ (Exercise: this is well-defined)}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

Los' Theorem: Given a formula $\Phi(v)$ ($v := (v_1, \ldots, v_n)$) in

language \mathbb{L} , ultraproduct $\prod_{\mathscr{U}} \mathscr{M}_{\beta}$ and $g := (g_1, \dots, g_n)$ $(g_i \in |\prod_{\mathscr{U}} \mathscr{M}_{\beta}|)$

then,
$$\prod_{\mathscr{U}} \mathscr{M}_{\beta} \models \Phi(v)[g] \iff \{\beta : \mathscr{M}_{\beta} \models \Phi(v)[g(\beta)]\} \in \mathscr{U}$$

Proof: By induction on complexity of Φ Write $\mathscr{M} := \prod_{\mathscr{U}} \mathscr{M}_{\beta}$:

Case 1: $\Phi(v)$ is of the form $t_1(v) = t_2(v)$ for terms t_1, t_2 in \mathbb{L} . Then,

$$\mathscr{M}\models \Phi(\mathsf{v})[g]\iff t_1^{\mathscr{M}}(g)=t_2^{\mathscr{M}}(g)\iff$$

 $\{\beta: t_1^{\mathscr{M}_\beta}(g(\beta)) = t_2^{\mathscr{M}_\beta}(g(\beta))\} \in \mathscr{U} \iff \{\beta: \mathscr{M}_\beta \models \Phi(v)[g(\beta)]\} \in \mathscr{U}$

Case 2: Φ is of the form $\Theta \wedge \Psi$ where the result holds for Ψ and Θ

くぼう くほう くほう しほ

$$\mathscr{M}\models \Phi(v)[g]\iff \mathscr{M}\models \Psi(v)[g] ext{ and } \mathscr{M}\models \Theta(v)[g]$$

 $\iff \{\beta: \mathscr{M}_{\beta} \models \Psi(v)[g(\beta)]\} \in \mathscr{U} \text{ and } \{\beta: \mathscr{M}_{\beta} \models \Theta(v)[g(\beta)]\} \in \mathscr{U}$

And by properties ii) and iii) of ultrafilters,

$$\iff \{\beta: \mathscr{M}_{\beta} \models \Psi(v)[g(\beta)]\} \cap \{\beta: \mathscr{M}_{\beta} \models \Theta(v)[g(\beta)]\}$$

$$= \{\beta : \mathscr{M}_{\beta} \models (\Theta \land \Psi)(v)[g(\beta)]\} = \{\beta : \mathscr{M}_{\beta} \models \Phi(v)[g(\beta)]\} \in \mathscr{U}$$

Case 3: Φ is of the form $\neg \Psi$ where the result holds for Ψ . Then,

 $\mathscr{M} \models \Phi(v)[g] \iff$ It is not the case that $\mathscr{M} \models \Psi(v)[g] \iff$

$$\{eta:\mathscr{M}_eta\models\Psi(v)[g(eta)]\}
ot\in\mathscr{U}\stackrel{byU.iv)}{\Longleftrightarrow}\{eta:\mathscr{M}_eta\models\Phi(v)[g(eta)]\}\in\mathscr{U}$$
 .

E Sac

イロン イヨン イヨン

Case 4: Φ is of the form $(\exists x)\Psi(v,x)$ and result holds for $\Psi(v,x)$. Then,

$$\mathcal{M} \models \Phi(v)[g] \Longrightarrow \mathcal{M} \models \Psi(v, x)[g, h] \text{ for some } h \in |\mathcal{M}| \Longrightarrow$$
$$\{\beta : \mathcal{M}_{\beta} \models \Psi(v, x)[g(\beta), h(\beta)]\} \in \mathcal{U} \Longrightarrow$$
$$\{\beta : \mathcal{M}_{\beta} \models (\exists x)\Psi(v, x)[g(\beta), h(\beta)]\} \in \mathcal{U} \text{ For the other implication,}$$
$$\{\beta : \mathcal{M}_{\beta} \models (\exists x)\Psi(v, x)[g(\beta), h(\beta)]\} \in \mathcal{U} \Longrightarrow \exists S \in \mathcal{U} \text{ s.th.}$$
$$\beta \in S \Rightarrow S_{\beta} := \{a : a \in \mathcal{M}_{\beta} \text{ and } \mathcal{M}_{\beta} \models \Psi(v, x)[g(\beta), h(a)]\} \neq \emptyset$$
By the axiom of choice, we can choose $h \in \prod_{\beta \in I} \mathcal{M}_{\beta}$ so that $h(\beta) \in S_{\beta}$ for $\beta \in S$ so letting $\overline{h} := h/\sim$ we have $\mathcal{M} \models \Psi(v, x)[g, \overline{h}]$ hence, $\mathcal{M} \models (\exists x)\Psi(v, x)[g] \square$

Image: A match a ma

Paul Sacawa. Quillen-Suslin Theorem

Theorem A finitely generated projective module P over a polynomial ring

over a field $R = k[x_1, \ldots, x_k]$ is free.

One studies in K-theory the functor K_0 : Ring \rightarrow Ab given by: for ring R,

consider the set of isomorphism classes of finitely generated projective

modules over *R*. This has a natural semigroup structure under \oplus , direct

sum of modules. Call it $(S_R, +)$. We then take the Grothendieck group

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

G(S), standard extension of semigroup to abelian group: take equivalence

~ on $S \times S$ given by $(a, b) \sim (a', b')$ iff $\exists k : a + b' + k = b + a' + k$.

 $M \times M \setminus \sim$ has natural group structure, and we define $K_0(R) := G(S_R)$.

For field R = k, $S_R = (\mathbb{N}, +)$, because module is determined by dimension

(similar for PID), so $K_0(k) = \mathbb{Z}$. Similarly, Quillen-Suslin theorem states

that $K_0(k[x_1, \ldots, x_n]) = \mathbb{Z}$ for the same reason.

For it, Quillen received Fields' medal.

Vitaly Smirnov. Tychonoff Thm and two applications.

Tychonoff's Theorem (TT): an arbitrary product of compact

topological spaces is compact in the product topology.

Def. 1. For X Banach X^* its dual with operator norm: weak* topology

of X is the coarsest s.th. $\forall x \in X$, $\{T_x(\phi) := \phi(x)\}_{\phi \in X^*}$ are continuous.

Alaoglu Thm: $\{f : ||f|| \le 1\} \subset X^*$ is compact in weak* topology.

Def. 2. Let X be topological space, (Y, d) - metric space, Y^X - set of all

functions mapping X into Y, and $C_{XY} := \{f \in Y^X : f \text{ is cont.}\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Given $f \in Y^X$, $\epsilon > 0$, compact subspace C of X ,

let $B_C(f,\epsilon) := \{g \in Y^X : sup\{d(f(x),g(x)) | x \in C\} < \epsilon \}$.

Topology of compact convergence is topology with basis sets $B_C(f, \epsilon)$.

 $F \subset C_{XY}$ is equicontinuous if, for each $x_0 \in X$, given $\epsilon > 0$,

 \exists nbh. U of x_0 s.th. $\forall x \in U$ and $\forall f \in F$, $d(f(x), f(x_0)) < \epsilon$.

Theorem(Ascoli): Given C_{XY} topology of compact convergence,

if $F \subset C_{XY}$ is equicontinuous and $F_a := \{f(a) : f \in F\}$ has compact

closure for each $a \in X$, then F is contained in compact subspace of C_{XY} .

The converse holds if X is locally compact Hausdorff.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Dylan Butson. Induced Representations of H on G.

Theorem Let G a locally compact topological group with a closed

subgroup $H \subset G$ such that G/H has a G-invariant measure μ . Let \mathcal{H} be a

Hilbert space $\sigma: H \to U(\mathcal{H})$ a unitary representation of H. Then there

exists a natural unitary representation $\pi_{H,\sigma}$: $G \to U(\mathcal{F})$.

Viewing G as a principal H bundle over G/H, we can construct the

associated vector bundle $E = G \times_{\sigma} \mathcal{H}$. Let \mathcal{F} to be the space of L^2

sections on this bundle with respect to $|f|^2 = \int_{G/H} |f(\bar{g})|^2_{\mathcal{H}} d\mu$.

イロト イポト イヨト イヨト

Equivalently, first define \mathcal{F}_0 as the space of continuous functions

 $f: G \to \mathcal{H}$ such that $f(gh) = \sigma(g)^{-1} f(g)$. Then, take the completion of

 \mathcal{F}_0 with respect to the above norm. Note that the above norm is well

defined on \mathcal{F}_0 by the equivariance property above and unitarity of σ .

The representation is then $[\pi(g)f](g') = f(g^{-1}g')$. It is clear that

 $\pi(g): \mathcal{F} \to \mathcal{F}$ for each $g \in G$. Further, this representation is unitary since

$$|\pi(g)f|^2 = \int_{G/H} |\pi(g)f(\bar{g}')|^2_{\mathcal{H}} d\mu(g') = \int_{G/H} |f(\overline{g^{-1}g'})|^2_{\mathcal{H}} d\mu(g') =$$

$$\int_{G/H} |f(g')|^2_{\mathcal{H}} d\mu(g') = |f|^2$$
 by *G*-invariance of μ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シへの

Viktoriya Baydina. Pick's Theorem: $A = I + \frac{B}{2} - 1$, where

A = area of a lattice polygon; I = # of interior lattice points; B = # of

boundary lattice points (vertices included); elementary triangle (ET) =

vertices are lattice points & has no further boundary or interior points.

Lemma 1: Any lattice polygon can be triangulated by ETs.

Lemma 2: Area of any ET in a \mathbb{Z}^2 lattice is $\frac{1}{2}$.

Proof of PT: Partition polygon P into N ETs, by Lemma 1. Idea: sum

internal angles of the ETs in two ways. (1) Angle sum of any triangle is π ,

so total is $T = N \cdot \pi$. (2) At each interior point *i*, angles of ETs having *i*

as a vertex sum to 2π . At each non-vertex boundary point b, angles of

ETs having b as vertex sum to π . If number of vertices is k, interior angles

at the vertices add to $k\pi - 2\pi$ since sum of exterior angles is 2π (walking

along perimeter of polygon, one completes a full turn). Thus sum of

angles at boundary points is $B \cdot \pi - 2\pi$, and sum of angles at internal

points is $I \cdot 2\pi$. Thus $T = I \cdot 2\pi + B \cdot \pi - 2\pi$. (1) + (2) \implies

 $N = I \cdot 2 + B - 2$. By Lemma 2, $A = N \cdot \frac{1}{2} \implies A = I + \frac{1}{2}B - 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Tomas Kojar.1. Hodge Decomposition Theorem for Kahler Manifolds.

Let M be a compact complex manifold of Kahler type. Then there is a direct sum decomposition: $H^r(M, \mathbb{C}) = \bigoplus_{p,q:p+q=r} H^{p,q}(M)$.

 $H^r(M,\mathbb{C})$ is the deRham group of r-forms on M (for related details see

Vitali's and Dylan's talks). $H^{p,q}(M)$ is the cohomology of complex

differential forms of degree (p,q) on M (called Doulbeaut group).

In local coordinates **Hermitian metric** is $h := \sum h_{ij} dz^i \wedge d\bar{z}^j$, where h_{ij}

are entries of a positive definite Hermitian matrix ($H = \overline{H^{tr}}$). The

Hermitian form is $\omega := \frac{i}{2}(h - \bar{h}) = \frac{i}{2}\sum_{i,j}h_{ij}dz^i \wedge d\bar{z}^j$. A Kahler

manifold is a complex manifold with Hermitian metric and the associated

Hermitian form closed ($d\omega = 0$), in which case it is called Kahler metric.

2. Given a Morse-Smale pair on a compact smooth manifold M. Then the homology of the Morse-Smale complex is isomorphic to the singular homology of this manifold: $H^k_{Morse}(f,\mathbb{Z}) \simeq H^k_{sing}(M)$.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

About Morse functions see "Morse Generic and Thm" presentation. Next

Stable and Unstable manifolds: Consider for Morse function f on M

the flow $\phi : \mathbb{R} \times M \to M$ of the vector field $- \bigtriangledown f(x)$ with respect

to a Riemmanian metric g. For critical points p of f (shortly $p \in Cr(f)$):

Stable $W_p^s = \{x \in M : lim_{t \to +\infty}\phi(t, x) = p\}$ and has $dim(W_p^s) = lnd_pf$

Unstable $W_p^u = \{x \in M : \lim_{t \to -\infty} \phi(t, x) = p\}$ and has $\dim(W_p^u) =$

 $dim(M) - Ind_p f$. Morse-Smale condition (M-S): For any $p, q \in Cr(f)$),

 $T_x M = T_x W_p^s + T_x W_p^u$. We say that (f,g) is a Morse-Smale pair.

Towards Explaining Morse Homology $H^k_{Morse}(f,\mathbb{Z})$.

A flow line between $p, q \in Cr(f)$ is a path $\gamma : \mathbb{R} \to M$ s.th.

$$\gamma(s)' = - \bigtriangledown f(\gamma(s))$$
, $\mathit{lim}_{s
ightarrow -\infty} \gamma(s) = p$ and $\mathit{lim}_{s
ightarrow +\infty} \gamma(s) = q$. Let

 $M(p,q):=(W^s_q\cap W^u_p)/\mathbb{R}$, i.e. the moduli space of flow lines btw p,q

 $\stackrel{M-S}{\Rightarrow} M(p,q)$ is a submanifold with $dim(M(p,q)) = Ind_pf - Ind_qf - 1$.

Orientation of M(p,q): For each W_p^u we choose an orientation

$$\Rightarrow TW_p^u \stackrel{M-S}{\simeq} T(W_p^u \cap W_q^s) \oplus (TM/TW_q^s) \simeq T_{\gamma}M(p,q) \oplus T_{\gamma} \oplus T_qW_q^u ,$$

where $(TM/TW_q^s) \simeq T_q W_q^u$ follows from translating W_q^u

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ • の � @

Morse-Smale complex

to the complement \Rightarrow we pick orientation for M(p,q) accordingly .

Consider the module
$$C_k(f) := \bigoplus_{p \in Cr_k(f)} \mathbb{Z}[p]$$
 , where

$$\mathit{Cr}_k(f) = \{p \in M : p \in \mathit{Cr}(f) ext{ and } \mathit{Ind}_p f = k\}$$
 . And operator:

$$\partial^k_{\mathit{Morse}}: \mathit{C}_k o \mathit{C}_{k-1}$$
 as $\partial_{\mathit{Morse}}(p) := \sum_{\mathit{Ind}_q(f) = k-1} \mathit{orient}(\mathit{M}(p,q)) \cdot q$.

This gives you an exact sequence

$$0 \to C_n(f) \stackrel{\partial_n}{\to} ... C_{k+1}(f) \stackrel{\partial_{k+1}}{\to} C_k(f) \stackrel{\partial_k}{\cdot} .. \stackrel{\partial_2}{\to} C_1(f) \to 0$$

and thus homology $H^k_{Morse}(f,\mathbb{Z}) := rac{Ker(\partial_k)}{Im(\partial_{k-1})}$.