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Plane C-Algebraic Curves

[£0: &1: &;] homog coord. on CIP? Projective Curves:

C:={F(&,¢&,&) =0} c CP? F homog.reduced degC = degF

Affine: Cy := {f(x,y) = 0} c C?, reduced f € C[x,y] degC, = deg f

OF OF 0F

p € sing(C) &

= 9| _ 0 affine case )

oF| _ 0F| _ 4 of
axp ayp azp axp ayp

Canonical embedding C? < Cy 3 (x,y) — [x:y:1] € C & CP?

Irreducible curves <« irreducible polynomials



Riemann surfaces C are Connected C 1-Manifolds

Riemann surfaces are oriented 2-manifolds. Topological classification

of compact Riemann surfaces by (topological) genus g = 0,1, ...

Theorem(Pliicker): For smooth Curves g = (d_l)z(d_z)

with notation degree d and genus g for the respective curve.

Let P(y,a) = yP + 30 a;yP™" and Q(y,b) = y? + X7_, by~



The Resultant of P(y,a) and Q(y, b)

Dy, )=y + Xt ay®*:=P(y,a)-Q(y,b) (d=p+q)

define map ¢: C? x €23 (a,b) — c € C* then % and % =

0 0 i
Y150y F = yP7iQ(y,b) and X 162"yd K =yiIP(y,a)

aal

PPl x PI-1 5 (F,G)+— F-Q+G-P

i.e. Respg = a(a >

respo(a,b) := detResp 4(a,b), Discriminant: Dp(a) = resp p (a)



Note: 3(F,G) # 0,Resp o(F,G) =0 iff respqy(a,b) =0.
Cor.1: P and Q have acommonroot iff respg(a,b) = 0.

Cor. 2: Z# common root P(y, ay), Q(y,by) = o~ at ¢y == @(ay, by)

Claim: C[x,y] 2 P(y,a(x)) irred = Dp(a(x)) # 0 (see Slide 15).

Cor. 3: Sing(V(P)) S VPN 1({Dp(x) = 0}) and

is finite if P reduced, where 1 is the projection onto the x-axis.



Irred. Curves “are” Compact Riemann Surfaces
Cor. 3 plus Chow’s Theorem (Mitsuru’s talk) = C™* := C\sing(C) is

connected whenever C irred. ie. is a Riemann surface.
When sing(C) # @ 3C and 6: C —» C < CIP? proper holomorphic s.th.
1) o(C)=C 2)a (sing(C)) finite

3) a:C\o~(sing(C)) = C* biholomorphic.
By desingularization (Will/llia’s talks)

~

Most important: C is a compact Riemann surface



Holomorphic f: C — C'of Riemann Surfaces
Prop: Vp € C 3 local coordinates s.th. not constant f:w = z™

mult,(f) := munique ; if m > 1, p ramification f (p) branch points.

Proof: say f:w = h(z) € C{z} in local coord centred at p and f(p)
=> h(z)=(a-2)™ g(z) withg(0) =1, g e C{z} =

zw— a-z-g(z)Y™ isacoord. change = the result. m

dh(z)
dz )

If in local coord. f:w = h(z), h € C{z} then mult,(f) =1+ ord,(



Compact Riemann Surfaces of Genus g, g’
For holomorphic f: C — C’

Cor: degf = Zpef—l(q) mult,(f) Vq € C' (from Mustazee’s talk)

For compact C and C’ there are finitely many branch/ramifiction points

Theorem (Hurwitz): 2g — 2 = deg f (29" — 2) + X,ec[mult, (f) — 1].

Proof: Pick a triangulation of C’ s.th. branch points are vertices



Proof of Hurwitz Formula

P Py o
!/ . !/ !/
say U vertices, e edges, t faces. \/ ; /
<
- _R\

e ~
ﬁ g// \f-"s

branched coveting

3

f a ‘branched covering map’ = triangulation lifts via f to C

with v vertices, e = deg f - e’ edges and t =degf -t' faces.

FH @l =degf+ ) [L-multy(f)] Vg€ C

pef~1(q)

=V = Zq vertex of C’lf_l(q)l =degf -v' — Zpec[multp(f) — 1]



2g —2=—x(C) (for details see below)

—x(C) = —degf (v'— €'+ ¢) + ) [mult, ()~ 1] m

pecC

[ - =i

b b

S%:g=0 _ N

v=4e=61t=4 - :
Sz =2=2-=-2 . g =
X( ) g v=9,e=27’t:18
X(T2)=0=2—Zg C (2 — handles): g = 2

v =10,e = 36,t = 24
x(€)=-2=2-2g

Assignment: for g > 2 it follows that y(C) = 2 — 2g.




Proof of Plucker’s Formula
C affine: f(x,y) = 0andletE = {%f(x,y) = O}. f irreducible =

(C-E):=Y,mult,(CNE)=d(d—1) (Bezout Thm on Slide 16).

Exercise: given finite # lines ¢ €33 plane~ C? ? any of these lines

=—> can choose coordinates s.th.C N L, = d (Bezout Thm on Slide 16).
T:CP2 D> C3[x:y:z] — [x:z] ECP! =>degm=d

Lemma: p € Cy/sing(C,) then g—f] = 0 & p ramification point of
P

Proof:." ... = ---" Z_i # 0. IFThm = exists x = x(y) s.th. f(x(y),y) =0
p




0= 5o fEO),Y) = = fxO),Y)*' ) +5- f(x(3), ¥) near p

centred at (0,0) = x'(0) = 0 <p ramification point of .

Conversely if Z—f] # 0 then T provides a chart at p. Done.
p

(E-C)y =mult,(ENC)=ord, (%f(x(y),y)) (see Slide 18)

= mult,(r) =1 then (E-C)= ) (F-C)= ) [multy(m) 1]

peETram(m) pEC
Hurwitz Thm  (Slide 7 with f = m,degm =d,g' = 0) =

(d-1)(d—2)

did—-1)=2g—-2+2d = g="=




Types of Singular Points
p € C choose coord. on CPP? s.th. p = [0: 0: 1] = £(0,0) = 0.

Then f(x,y) = fi(x,y) + -+ fa(x,¥), ff homog, degf; =j
fx £0,p € sing(C) © mult,f =k >1 (fork =1:f,(x,y) = ax + by)

Ordinary singular point means k distinct tangents at p.

x3—x1+y1=[l xs-x‘+yi-ﬂ

7 (x,p) = -x* + y= (yxxy ) B x,/\

Ordinary Double Point Not Ordinary Double Point
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Pliicker with n ordinary double points

Replace m with ¥ = o 0: C — CP. Choose coordinates s.th.
1)CNL,=d 2) no vertical tangents in sing (C).

p & sing(C) = (E-C), =mult,(ip) —1 (seeSlide 11).

Say {pj }n .

=€ double points (k = 2). In local coord centred at p;:

f(XIy) = ax? + bey_l_ Cyz +f3(xiy) + +fd(x'y)

af (x,y)
dy

= ac — b* # 0 and = 2bx + 2cy + -+ and



af (x,y(x))
ay

2)>c#0atp;. 3 y(x) = —%x + -+ s.th. =0 (IFThm)

ac—b?
xz _|_ cee

flx,y(x)) = ax? + 2bxy(x) + cy(x)? + -+ =

Cc

As before (C - E)pj = ordy, (f(x,y(x))) = 2 (in total 2n)

d(d—1)=(C-E)=2g—2+2d+2n (obtained using Slide7)

_(d-1(d-2)
_d-ve-a

=g n u



Proof of P irreducible = Dp(a(x)) * 0

Assume Dp =0, K := C(x) = 3y, € K s.th. P(y,) = P'(y.) = 0.
K[y] isaPID. 30 € K[y] of min. degree, monic with Q(y,) = 0
= degQ < degP' <degP. C([x,y]cK[y]=>P€eQ -K[y] =
P(y,x) = Q(,x)G(y,x). 39,9 € C[x] and Q,G € (C[x])[y] s.th.

Q =qQ,G = gG and gcd = 1 (in C[x] for coeff’s of Q and of G)

= q(x)g(x)P(y,x) = Q(y,x)G(y,x) = g,q € C (?!). Done.



Bezout Thm: Proof (C - E) = d(d — 1)

F(x,y,z) =y%+--and D20 = JalineinC?s.th.Dr # 0
Pick coord (x, z) with {z = 0} being this line = Dg|,-, # 0.

Lf(x,y) =F(x,y,0) =[li<j<a(y —4jx). Choose y-axis with only single
points of C N E on lines parallel to y-axis = |C N E| = |{Df = 0}| < degy Df

= degy Dy (use Drr = Dplz=0 % 0)

d
Say y%+ 2 ajxly®) = Lf(x,y)
j=1



PP~Lx PI71 3 (F,G) — F-Q + G- P with P(y,a(x) = Lf(x,y) and Q =P,

d 0 : 0 1 0 : 0
((d —Daqx d : : a; x 1 ; : \
' (d—1)a;x : : ax {0
: : : : : : 1
0 : : P aqX
Respg =| az_qx%? : E d '
0 ag_1x%71 (d—-1a;x agx®
0 : : 0 agx?
: : , : 0
\ 0 0 P oag_qx?? 0 0 adxd}
d d-1

= d(d —1) = deg, Dr(x) = |C NE| (assignment for Joho... m)

Hint: with @ := (F,F’,Z) = O|,-o = (Lf,Lfy’) and ¢ := (f,fy') are proper
(using uo(Y) = dimc O/(Y) = d(d —1) = (C-E) :=degp = deg®
= Ho(®) = po(Pl,=0) = d(d — 1) dueto O/(Dry) © Oy /(LF, LE) ).



Proof (C - E), = ord,(g(x(y),y)

From Joho's talk: dim¢ 0,,/(g, f) = u, (g, f) = |U, N (f, g)~ (D),

for generic points b near 0 € C and U,, a ‘small’ neighbourhood of p.

If df (p) #0 IFThm= f =~ X = x — y(x) locally =
0p/(9, 1) = Cy}/glix=0) = P*=1  whenever

gl =gt y) =y @ +-)
(x=0}

= dim¢ O0,/(9g, f) = ordp(g(x(y),y) =



