Algebraic Curves and Riemann Surfaces

Matthew Baxter
MAT477: Professor P. Milman
March 12, 2010

Plane C-Algebraic Curves

 $[\xi_0:\xi_1:\xi_2]$ homog coord. on \mathbb{CP}^2

Projective Curves:

$$C \coloneqq \{ F(\xi_0, \xi_1, \xi_2) = 0 \} \subset \mathbb{CP}^2$$
, F homog. reduced $\deg C = \deg F$

Affine:
$$C_0 \coloneqq \{f(x,y) = 0\} \subset \mathbb{C}^2$$
, reduced $f \in \mathbb{C}[x,y]$ deg $C_0 = \deg f$

$$p \in sing(C) \Leftrightarrow \frac{\partial F}{\partial x}\Big|_p = \frac{\partial F}{\partial y}\Big|_p = \frac{\partial F}{\partial z}\Big|_p = 0$$
 $\left(\frac{\partial f}{\partial x}\Big|_p = \frac{\partial f}{\partial y}\Big|_p = 0$ affine case $\right)$.

Canonical embedding $\mathbb{C}^2 \leftrightarrow \mathcal{C}_0 \ni (x,y) \mapsto [x:y:1] \in \mathcal{C} \hookrightarrow \mathbb{CP}^2$

Irreducible curves \leftrightarrow irreducible polynomials

Riemann surfaces C are Connected $\mathbb C$ 1-Manifolds

Riemann surfaces are oriented 2-manifolds. Topological classification

of compact Riemann surfaces by (topological) genus g=0.1,...

Theorem(Plücker): For smooth Curves
$$g = \frac{(d-1)(d-2)}{2}$$

with notation degree d and genus g for the respective curve.

Let
$$P(y,a) \coloneqq y^p + \sum_{i=1}^p a_i y^{p-i}$$
 and $Q(y,b) \coloneqq y^q + \sum_{j=1}^q b_j y^{q-j}$

The Resultant of P(y, a) and Q(y, b)

$$D(y,c) := y^d + \sum_{k=1}^d c_k y^{d-k} := P(y,a) \cdot Q(y,b) \quad (d = p + q)$$

define map
$$\varphi : \mathbb{C}^p \times \mathbb{C}^q \ni (a,b) \mapsto c \in \mathbb{C}^d$$
 then $\frac{\partial}{\partial a_i}$ and $\frac{\partial}{\partial b_j} \Rightarrow$

$$\sum_{k=1}^{d} \frac{\partial c_k}{\partial a_i} y^{d-k} = y^{p-i} Q(y, b) \text{ and } \sum_{k=1}^{d} \frac{\partial c_k}{\partial b_j} y^{d-k} = y^{q-j} P(y, a)$$

i.e.
$$Res_{P,Q} \coloneqq \frac{\partial c}{\partial (a,b)} \colon \mathcal{P}^{p-1} \times \mathcal{P}^{q-1} \ni (F,G) \longmapsto F \cdot Q + G \cdot P$$

 $res_{P,Q}(a,b) \coloneqq \det Res_{P,Q}(a,b)$, Discriminant: $\mathcal{D}_P(a) \coloneqq res_{P,P'_V}(a)$

Note: $\exists (F,G) \neq 0, Res_{P,O}(F,G) = 0 \ iff \ res_{P,O}(a,b) = 0.$

Cor. 1: P and Q have a common root iff $res_{P,Q}(a,b)=0$.

Cor. 2: $\not\exists$ common root $P(y, a_0), Q(y, b_0) \Rightarrow \exists \varphi^{-1} \ at \ c_0 := \varphi(a_0, b_0)$

<u>Claim</u>: $\mathbb{C}[x,y] \ni P(y,a(x))$ irred $\Rightarrow \mathcal{D}_P(a(x)) \not\equiv 0$ (see Slide 15).

Cor. 3: $sing(V(P)) \hookrightarrow V(P) \cap \pi^{-1}(\{\mathcal{D}_P(x) = 0\})$ and

is finite if P reduced, where π is the projection onto the x-axis.

Irred. Curves "are" Compact Riemann Surfaces

Cor. 3 plus Chow's Theorem (Mitsuru's talk) $\Rightarrow C^* = C \setminus sing(C)$ is

connected whenever C irred. ie. is a Riemann surface.

When $sing(C) \neq \emptyset \ \exists \tilde{C}$ and $\sigma: \tilde{C} \to C \hookrightarrow \mathbb{CP}^2$ proper holomorphic s.th.

1)
$$\sigma(\tilde{C}) = C$$
 2) $\sigma^{-1}(sing(C))$ finite

3) $\sigma: \tilde{C} \setminus \sigma^{-1}(sing(C)) \to C^*$ biholomorphic.

By desingularization (Will/Ilia's talks)

Most important: \tilde{C} is a compact Riemann surface

Holomorphic $f: C \rightarrow C'$ of Riemann Surfaces

Prop: $\forall p \in C \exists$ local coordinates s.th. not constant $f: w = z^m$

 $mult_p(f) \coloneqq m$ unique; if m > 1, p ramification f(p) branch points.

<u>Proof</u>: say $f: w = h(z) \in \mathbb{C}\{z\}$ in local coord centred at p and f(p)

$$\Rightarrow h(z) = (a \cdot z)^m \cdot g(z)$$
 with $g(0) = 1$, $g \in \mathbb{C}\{z\} \Rightarrow$

 $z \mapsto a \cdot z \cdot g(z)^{1/m}$ is a coord. change \Longrightarrow the result.

If in local coord. $f: w = h(z), h \in \mathbb{C}\{z\}$ then $mult_p(f) = 1 + ord_p(\frac{dh(z)}{dz})$

Compact Riemann Surfaces of Genus g, g'

For holomorphic $f: C \to C'$

<u>Cor</u>: $\deg f \coloneqq \sum_{p \in f^{-1}(q)} mult_p(f) \ \forall q \in C'$ (from Mustazee's talk)

For compact C and C' there are finitely many branch/ramifiction points

Theorem (Hurwitz): $2g - 2 = \deg f (2g' - 2) + \sum_{p \in C} [mult_p(f) - 1].$

<u>Proof</u>: Pick a triangulation of C' s.th. branch points are vertices

Proof of Hurwitz Formula

say v' vertices, e' edges, t' faces.

f a 'branched covering map' \Longrightarrow triangulation lifts via f to C

with v vertices, $e = \deg f \cdot e'$ edges and $t = \deg f \cdot t'$ faces.

$$|f^{-1}(q)| = \deg f + \sum_{p \in f^{-1}(q)} [1 - mult_p(f)] \quad \forall q \in C'$$

$$\Rightarrow v = \sum_{q \ vertex \ of \ C'} |f^{-1}(q)| = \deg f \cdot v' - \sum_{p \in C} [mult_p(f) - 1]$$

$$2g - 2 = -\chi(C)$$

(for details see below)

$$-\chi(\mathcal{C}) = -\deg f\left(v' - e' + t'\right) + \sum_{p \in \mathcal{C}} \left[mult_p(f) - 1\right] \blacksquare$$

 $S^{2}: g = 0$ v = 4, e = 6, t = 4 $\chi(S^{2}) = 2 = 2 - 2g$

$$T^2$$
: $g = 1$
 $v = 9$, $e = 27$, $t = 18$
 $\chi(T^2) = 0 = 2 - 2g$

$$C (2 - handles): g = 2$$

 $v = 10, e = 36, t = 24$
 $\chi(C) = -2 = 2 - 2g$

Assignment: for g > 2 it follows that $\chi(C) = 2 - 2g$.

Proof of Plücker's Formula

C affine:
$$f(x,y) = 0$$
 and let $E \coloneqq \left\{ \frac{\partial}{\partial y} f(x,y) = 0 \right\}$. f irreducible \Longrightarrow

$$(C \cdot E) \coloneqq \sum_{p} mult_{p}(C \cap E) = d(d-1)$$
 (Bezout Thm on Slide 16).

Exercise: given finite # lines $\subset \mathbb{C}^3\exists$ plane $\approx \mathbb{C}^2 \not\ni$ any of these lines

 \Rightarrow can choose coordinates $s.th.C \cap L_{\infty} = d$ (Bezout Thm on Slide 16).

$$\pi \colon \mathbb{CP}^2 \supset C \ni [x\colon y\colon z] \longmapsto [x\colon z] \in \mathbb{CP}^1 \quad \Rightarrow \deg \pi = d \quad .$$

<u>Lemma</u>: $p \in C_0/sing(C_0)$ then $\frac{\partial f}{\partial y}\Big|_p = 0 \iff p$ ramification point of π

Proof:" ...
$$\Rightarrow$$
 ... " $\frac{\partial f}{\partial x}\Big|_p \neq 0$. IFThm \Rightarrow exists $x = x(y)$ s. th. $f(x(y), y) = 0$

$$0 = \frac{\partial}{\partial y} f(x(y), y) = \frac{\partial}{\partial x} f(x(y), y) x'(y) + \frac{\partial}{\partial y} f(x(y), y) \text{ near } p$$

centred at $(0,0) \Rightarrow x'(0) = 0 \Leftrightarrow p$ ramification point of π .

Conversely if $\frac{\partial f}{\partial y}\Big|_p \neq 0$ then π provides a chart at p. Done.

$$(E \cdot C)_p \coloneqq mult_p(E \cap C) = ord_p\left(\frac{\partial}{\partial y}f(x(y), y)\right)$$
 (see Slide 18)

$$= mult_p(\pi) - 1$$
 then $(E \cdot C) = \sum_{p \in ram(\pi)} (E \cdot C)_p = \sum_{p \in C} [mult_p(\pi) - 1]$

Hurwitz Thm (Slide 7 with $f = \pi$, $\deg \pi = d$, g' = 0) \Longrightarrow

$$d(d-1) = 2g - 2 + 2d \Longrightarrow g = \frac{(d-1)(d-2)}{2}$$
.

Types of Singular Points

 $p \in C$ choose coord. on \mathbb{CP}^2 s.th. $p = [0:0:1] \Rightarrow f(0,0) = 0$.

Then
$$f(x,y) = f_k(x,y) + \cdots + f_d(x,y)$$
, f_j homog, $\deg f_j = j$

$$f_k \not\equiv 0, p \in sing(C) \Leftrightarrow mult_p f = k > 1 \text{ (for } k = 1: f_1(x, y) = ax + by)$$

Ordinary singular point means k distinct tangents at p.

12

Plücker with *n* ordinary double points

Replace π with $\psi = \pi \circ \sigma : \tilde{C} \to \mathbb{CP}^1$. Choose coordinates s.th.

1)
$$C \cap L_{\infty} = d$$
 2) no vertical tangents in $sing(C)$.

$$p \notin sing(C) \Rightarrow (E \cdot C)_p = mult_p(\psi) - 1$$
 (see Slide 11).

Say $\{p_j\}_{j=1}^n$ are double points (k=2). In local coord centred at p_j :

$$f(x,y) = ax^2 + 2bxy + cy^2 + f_3(x,y) + \dots + f_d(x,y)$$

$$\Rightarrow$$
 $ac - b^2 \neq 0$ and $\frac{\partial f(x,y)}{\partial y} = 2bx + 2cy + \cdots$ and

2)
$$\Rightarrow c \neq 0$$
 at p_j . $\exists y(x) = -\frac{b}{c}x + \cdots \text{ s.th. } \frac{\partial f(x,y(x))}{\partial y} = 0$ (IFThm)

$$f(x,y(x)) = ax^2 + 2bxy(x) + cy(x)^2 + \dots = \frac{ac-b^2}{c}x^2 + \dots$$

As before
$$(C \cdot E)_{p_j} = ord_{p_j}(f(x, y(x))) = 2$$
 (in total 2n)

$$d(d-1) = (C \cdot E) = 2g - 2 + 2d + 2n$$
 (obtained using Slide7)

$$\Rightarrow g = \frac{(d-1)(d-2)}{2} - n \quad \blacksquare$$

Proof of P irreducible $\Rightarrow \mathcal{D}_P(a(x)) \not\equiv 0$

Assume $\mathcal{D}_P \equiv 0$, $\mathbb{K} \coloneqq \mathbb{C}(x) \Rightarrow \exists y_* \in \overline{\mathbb{K}} \ s.th. \ P(y_*) = P'(y_*) = 0$. $\mathbb{K}[y]$ is a PID. $\exists \tilde{Q} \in \mathbb{K}[y]$ of min. degree, monic with $\tilde{Q}(y_*) = 0$ $\Rightarrow \deg \tilde{Q} \leq \deg P' < \deg P.$ $\mathbb{C}[x,y] \subset \mathbb{K}[y] \Rightarrow P \in \tilde{Q} \cdot \mathbb{K}[y] \Rightarrow P \in \tilde{Q} \cdot \mathbb{K}[y]$ $P(y,x) = \tilde{Q}(y,x)\tilde{G}(y,x)$. $\exists g,q \in \mathbb{C}[x]$ and $Q,G \in (\mathbb{C}[x])[y]$ s.th. $Q = q\tilde{Q}, G = g\tilde{G}$ and gcd = 1 (in $\mathbb{C}[x]$ for coeff's of Q and of G) $\Rightarrow q(x)g(x)P(y,x) = Q(y,x)G(y,x) \Rightarrow g,q \in \mathbb{C}$ (?!). Done.

Bezout Thm: Proof $(C \cdot E) = d(d-1)$

 $F(x,y,z)=y^d+\cdots \text{ and } \mathcal{D}_F\not\equiv 0 \implies \exists \text{ a line in } \mathbb{C}^2 \text{ s. } th.\mathcal{D}_F\not\equiv 0$

Pick coord (x, z) with $\{z = 0\}$ being this line $\Rightarrow \mathcal{D}_F|_{z=0} \not\equiv 0$.

 $\mathcal{L}f(x,y)\coloneqq F(x,y,0)=\prod_{1\leq j\leq d}(y-\lambda_jx)$. Choose y-axis with only single

points of $C \cap E$ on lines parallel to y-axis $\Rightarrow |C \cap E| = |\{\mathcal{D}_f = 0\}| \leq \deg_{\mathcal{X}} \mathcal{D}_f$

$$=\deg_{\mathcal{X}}\mathcal{D}_{\mathcal{L}f}$$
 (use $\mathcal{D}_{\mathcal{L}f}=\mathcal{D}_F|_{z=0}\not\equiv 0$)

Say
$$y^d + \sum_{j=1}^d a_j x^j y^{d-j} \coloneqq \mathcal{L}f(x,y)$$

$$\mathcal{P}^{p-1} \times \mathcal{P}^{q-1} \ni (F,G) \mapsto F \cdot Q + G \cdot P \text{ with } P(y,a(x) \coloneqq \mathcal{L}f(x,y) \text{ and } Q \coloneqq P'_y$$

$$\begin{pmatrix} d & 0 & \vdots & 0 & 1 & 0 & \vdots & 0 \\ (d-1)a & x & d & \vdots & \vdots & a & 1 & \vdots & \vdots \end{pmatrix}$$

 $\Rightarrow d(d-1) = \deg_{\mathcal{X}} \mathcal{D}_{\mathcal{L}f}(\mathcal{X}) \ge |\mathcal{C} \cap \mathcal{E}|$ (assignment for Joho...

<u>Hint</u>: with $\Phi \coloneqq (F, F_{\mathcal{V}}', z) \Rightarrow \Phi|_{z=0} = (\mathcal{L}f, \mathcal{L}f_{\mathcal{V}}')$ and $\varphi \coloneqq (f, f_{\mathcal{V}}')$ are proper (using $\mu_0(\psi) = \dim_{\mathbb{C}} \mathcal{O}/(\psi) \Rightarrow d(d-1) \geq (C \cdot E) := \deg \varphi = \deg \Phi$ $=\mu_0(\Phi)=\mu_0(\Phi|_{z=0})\geq d(d-1)$ due to $\mathcal{O}_\chi/(\mathcal{D}_{\mathcal{L}f})\hookrightarrow \mathcal{O}_{\chi,\gamma}/(\mathcal{L}f,\mathcal{L}f_\gamma')$).

Proof $(C \cdot E)_p = ord_p(g(x(y), y))$

From Joho's talk: $\dim_{\mathbb{C}} \mathcal{O}_p/(g,f) = \mu_p(g,f) = |U_p \cap (f,g)^{-1}(b)|$,

for generic points b near $0 \in \mathbb{C}$ and U_p a 'small' neighbourhood of p.

If
$$df(p) \neq 0$$
 IFThm $\Rightarrow f \approx X = x - y(x)$ locally \Rightarrow

$$\mathcal{O}_p/(g,f) \cong \mathbb{C}\{y\}/g|_{\{X=0\}} \cong \mathcal{P}^{k-1}$$
 whenever

$$g \Big|_{\{X=0\}} \coloneqq g(x(y), y) = y^k (1 + \cdots)$$

$$\Rightarrow \dim_{\mathbb{C}} \mathcal{O}_{p}/(g,f) = ord_{p}(g(x(y),y))$$