Hilbert Polynomials and Dimension Theory for Abelian Rings

April 17, 2016

Graded rings $A = \bigoplus_{n=0}^{\infty} A_n$ and A-modules M:

Def.: A graded if A_n are abelian groups and $A_n \cdot A_m \subseteq A_{n+m}$, so A_0 is subring. $M = \bigoplus_{n=0}^{\infty} M_n$ is graded if $A_m \cdot M_n \subseteq M_{m+n}$.

Lemma 1: A noetherian iff A_0 is and A is A_0 -finitely generated.

Proof : \Leftarrow is via Hilbert's Basis Thm. To show \Rightarrow pick $x_j \in A_{m_j}$, $1 \le j \le s$, that generate ideal $A_+ := \bigoplus_{i>0} A_i$ over A and show $A_n \subseteq A_0[x_1,...,x_s]$ by induction on n: true for n=0 and say for i < n. If $x \in A_n$ then $x = \sum_{i=1}^s a_i x_i$ with $a_i \in A_{n-m_i}$ or = 0 and since $n - m_i < n \Rightarrow a_i \in A_0[x_1,...,x_s] \Rightarrow x \in A_0[x_1,...,x_s]$.

Part I: Hilbert series P(M, t) for noetherian A.

Def.: λ is additive if $\lambda(N) = \lambda(M) + \lambda(L)$ when L = N/M.

Below all graded A-modules are A-finite i.e. finitely generated.

Thm. 2: Let $M = \bigoplus M_n$ be $A_0[x_1,...,x_s]$ -module, $x_i \in A_{k_i}$. Then

$$P(M,t) := \sum_{n \geq 0} \lambda(M_n) t^n = f(t) / \prod_{i=1}^s (1-t^{k_i}) \text{ for } f \in \mathbb{Z}[t]$$
 .

Proof: Induction on s. For s=0, M A_0 -finite \Rightarrow

$$M_n=0$$
 for $n\gg 0$. Say true for $s-1$. Let $x_s:M_n o M_{n+k_s}$ be

'times x_s ' homomorphism, $K_n := \ker x_s$, $L_{n+k_s} := \operatorname{coker} x_s$, i.e.

$$0 o K_n o M_n \stackrel{\chi_{\S}}{ o} M_{n+k_s} o L_{n+k_s} o 0$$
 is exact $\forall \ n$.Then

 $\lambda(K_n) - \lambda(M_n) + \lambda(M_{n+k_n}) - \lambda(L_{n+k_n}) = 0$ (*). So $L := \bigoplus L_n$ $K := \bigoplus K_n$ are graded A/x_sA -modules as x_s annihilates each.

M is A-finite module $\Rightarrow K$ and L are A/x_sA -finite and $A/x_sA =$

 $A_0[\overline{x_1},...,\overline{x_{s-1}}]$. Summation over n of (*) times t^{n+k_s} gives

gives $(1 - t^{k_s})P(M, t) = P(L, t) - t^{k_s}P(K, t) + g(t)$, for a g(t)

in $\mathbb{Z}[t]$. By induction: $P(L,t) = f_L(t)/\prod_{i=1}^{s-1}(1-t^{k_i})$, P(K,t) = $f_K(t)/\prod_{i=1}^{s-1}(1-t^{k_i})$ with f_L and $f_K\in\mathbb{Z}[t]$. Therefore

$$P(M,t) = [f_L - t^{k_s} f_K + g(t) \prod_{i=1}^{s-1} (1 - t^{k_i})] / \prod_{i=1}^{s} (1 - t^{k_i})$$
.

Hilbert polynomial g(n)

Corollary 3 : Let $k_i=1 \ \forall \ i$, $b_n:=\lambda(M_n)$, and $f(1)\neq 0$. Then

 $\exists \ g \in \mathbb{Q}[t] \ \text{s.th.} \ g(n) = b_n \ \text{for} \ n \gg 0 \ \text{and} \ \deg g = s-1 =: d-1 \ .$

Proof: Let $f(t) = \sum_{k=0}^{N} a_k t^k$ with $a_k \in \mathbb{Z}$. As $(1-t)^{-d} =$

$$\sum_{k\geq 0} {d+k-1\choose d-1} t^k$$
 , then $b_n=\sum_{k=0}^n a_k {d+n-k-1\choose d-1}$. Take $g(n):=$

$$\sum_{k=0}^{N} a_k {d+n-k-1 \choose d-1}$$
. Then $g(n) = b_n \ orall \ n \geq N$, and leading

coefficient is
$$\sum a_k/(d-1)!
eq 0$$
 so $\deg g = d-1$. \blacksquare

Def.: g is the Hilbert polynomial of M with respect to λ . We will use this for $\lambda(M) = I(M) := \text{length of a composition series,}$ which we will define now.

Definitions; below \mathfrak{a} an ideal of A

Def.: \mathfrak{a} is a primary ideal if $xy \in \mathfrak{a}$ and $x \notin \mathfrak{a}$, then $y \in \sqrt{\mathfrak{a}}$.

Example: Every prime ideal is primary.

Fact : If \mathfrak{a} is primary, then $\sqrt{\mathfrak{a}}$ is prime (easy exercise).

Def. : If $\mathfrak a$ is primary, then $\mathfrak a$ is $\mathfrak p\text{-primary}$ for $\sqrt{\mathfrak a}=\mathfrak p$.

Def.: A module M is artin if $M_0\supseteq M_1\supseteq ...$ is a descending chain of submodules, then it stabilizes. Equivalently, every nonempty set of submodules has a minimal element, e.g. $A=\mathbb{C}$, $\dim_A M<\infty$

Def.: A ring B is artin if it is artin as a B-module.

Examples : i) A finite (as a set) \mathbb{Z} -module is artin, but \mathbb{Z} is not

ii) If k is a field, then $k[t]/(t^n)$ is artin for all n>1 .

iii) $\mathbb{Z}[1/p]/\mathbb{Z}$ (p prime) is not noetherian, but artin \mathbb{Z} -module.

Fact: If M is artin, then its sub- and quotient modules are artin.

Fact : If B is artin and M is B-finite, then M is artin.

Def.: A composition series is a chain $M = M_0 \supseteq M_1 \supseteq ... \supseteq$

 $M_n = (0)$ s. th. $\forall \ i$, the only proper submodule of M_i/M_{i+1} is 0 .

Example : Let V be a vector space with basis $\{x_1, ..., x_k\}$. Then $\{M_{k-n} := \text{span } (x_1, ..., x_{k-n})\}_{n=0}^k$ is a composition series for V .

Fact (A&M, 6.7): Any two composition series have same length.

Fact (A&M 6.8): M has a composition series iff M is artin and noetherian (it is an easy exercise).

Def.: Let I(M) denote the length of a composition series of M.

Example: In the previous example, length would be dimension.

Fact (A&M, 6.9): Length of a module is an additive function.

Def.: A sequence of submodules $\{M_n\}$ of M is an \mathfrak{a} -filtration on

M if $M=M_0\supseteq M_1\supseteq ...$ and $\mathfrak{a}M_i\subseteq M_{i+1}$. Filtration is called stable if $\mathfrak{a}M_i=M_{i+1}$ for $i\gg 0$.

Example : $M_n := \mathfrak{a}^n M$ is a stable \mathfrak{a} -filtration on M .

Def.: Krull dim $A := \sup\{n : \exists \mathfrak{p}_0 \subsetneq ... \subsetneq \mathfrak{p}_n, \mathfrak{p}_i \text{ prime}\}$.

Fact: If k is a field and domain A is a finitely generated k-algebra, then dim $A = tr.d._k$ of the fraction field of A.

Def.: $x \in A$ is regular if xy = 0 for some $y \in A$, then y = 0.

Def.: Let $\mathfrak p$ be a prime ideal. The height of $\mathfrak p$ is $ht(\mathfrak p) :=$

 $\sup\{r:\exists\;\mathfrak{p}_0\subsetneq...\subsetneq\mathfrak{p}_r=\mathfrak{p},\;\mathfrak{p}_i\;\mathsf{prime}\}\;\mathsf{and}\;\mathsf{height}\;\mathsf{of}\;\mathsf{any}\;\mathsf{ideal}\;\mathfrak{a}\;\mathsf{is}\;$

 $ht(\mathfrak{a}) := \min\{ht(\mathfrak{q}) : \mathfrak{a} \subseteq \mathfrak{q} \text{ prime}\}$.

Example : If A is local with max. ideal \mathfrak{m} , then $ht(\mathfrak{m}) = \dim A$.

Note : If $\mathfrak{a}\subseteq\mathfrak{b}$ are ideals, then $\mathit{ht}(\mathfrak{a})\leq\mathit{ht}(\mathfrak{b})$.

Def.: $\mathfrak p$ is a minimal prime if it is among all primes and $\mathfrak p$ is a minimal prime for an ideal $\mathfrak a$ if it is minimal among all primes containing $\mathfrak a$.

Stable α -filtrations $\{M_n\}$ on M:

Lemma 4: If $\{M'_n\}$ another stable \mathfrak{a} -filtration, then $\exists n_0 \geq 0$ s. th. $M_{n+n_0} \subseteq M'_n$ and $M'_{n+n_0} \subseteq M_n \ \forall \ n \geq 0$.

Proof : Wlog, $M'_n:=\mathfrak{a}^nM$. By induction on n, it is easy to see that $\mathfrak{a}^nM\subseteq\mathfrak{a}M_{n-1}\subseteq M_n$. As $\{M_n\}$ stable, $\exists \ n_0$ s. th. $\mathfrak{a}M_n=M_{n+1}\ \forall\ n\geq n_0 \Rightarrow M_{n+n_0}=\mathfrak{a}^nM_{n_0}\subseteq\mathfrak{a}^nM$.

Artin-Rees Lemma : Let $M' \subseteq M$ be a submodule. Then $(M' \cap M_n)$ is a stable \mathfrak{a} -filtration on M'.

Proof: $(M' \cap M_n)$ is an \mathfrak{a} -filtration: $\mathfrak{a}(M' \cap M_n) \subseteq \mathfrak{a}M' \cap \mathfrak{a}M_n \subseteq \mathfrak{a}M'$

 $M' \cap M_{n+1}$. Let $N_n := M' \cap M_n$, $A^* := \bigoplus_{n > 0} \mathfrak{a}^n$, $M^* :=$

 $\bigoplus_{n\geq 0} M_n$, $N^*:=\bigoplus_{n\geq 0} N_n\subseteq M^*$, and $\mathfrak{a}=(x_1,...,x_r)$. Then

 $A^* = A[x_1, ..., x_r]$ is noetherian. $\{M_n\}$ stable $\Rightarrow M^*$ is A^* -finite

so N^* is A^* -finite, say generated by $igoplus_{i=0}^k N_j$. For $n \geq k$, $m \in N_n$ and n_{ij} generators in N_j , $j \leq k$, $\Rightarrow m = \sum a_{ii} n_{ij}$ with $a_{ij} \in \mathfrak{a}^{n-j}$. Thus $m \in \mathfrak{a}^{n-k} N_k$ as $\mathfrak{a}^{n-j} \subset \mathfrak{a}^{n-k}$.

Part II: Applications for local noetherian A.

Below $\mathfrak m$ is the maximal ideal of A, $\{M_n\}$ stable $\mathfrak q$ -filtration, $\mathfrak q$ an $\mathfrak m$ -primary ideal, $G(A):=\bigoplus \mathfrak q^n/\mathfrak q^{n+1}$ and $G(M):=\bigoplus M_n/M_{n+1}$.

Prop. 5: i) $g(n) := I(M/M_n) < \infty \ \forall \ n$;

ii) $g \in \mathbb{Q}[\mathit{n}]$ for $\mathit{n} \gg 0$ of deg. $\leq \mathit{s} := \mathsf{least} \ \#$ of generators of \mathfrak{q} ;

iii) $\deg g$ and its leading coeff. depend only on M and $\mathfrak q$.

Proof : i) As M_{n-1}/M_n is A-finite and annihilated by \mathfrak{q} , it is A/\mathfrak{q} -finite. As A/\mathfrak{q} is noetherian and artin, M_{n-1}/M_n has finite length so $g(n):=I(M/M_n)=\sum_{r=1}^nI(M_{r-1}/M_r)<\infty$.

ii) Let $\mathfrak{q}=(x_1,...,x_s)$ and $\overline{x_i}$ image of x_i in $\mathfrak{q}/\mathfrak{q}^2$. Then $G(A)=(A/\mathfrak{q})[\overline{x_1},...,\overline{x_s}]$ so $f(n):=I(M_n/M_{n+1})\in\mathbb{Q}[n]$ of deg. $\leq s-1$

for $n \gg 0$ (Cor. 3). Fix k large.

Fact: $\sum_{i=0}^{n} i^{m}$ is a polynomial in n of deg. $\leq m+1$ (Faulhaber).

We have
$$g(n) - g(k) = \sum_{i=k}^{n-1} (g(i+1) - g(i)) = \sum_{i=k}^{n-1} f(i) = g(i)$$

We have
$$g(n) - g(k) = \sum_{i=k}^{n} (g(i+1) - g(i)) = \sum_{i=k}^{n} f(i) = \sum_{i=k}^{n} f(i)$$

$$\sum_{i=k}^{n-1} \sum_{m=0}^{s-1} a_m i^m = \sum_{m=0}^{s-1} a_m \sum_{i=k}^{n-1} i^m \in \mathbb{Q}[n] \text{ , of degree } \le s .$$

iii) Let
$$\{M_n'\}$$
 be a stable \mathfrak{q} -filtration. Then \exists n_0 s.th. $M_{n+n_0}\subseteq$

$$M_n'$$
 , $M_{n+n_0}'\subseteq M_n$ (Lem. 4). Then $g(n+n_0)\geq g'(n):=I(M/M_n')$

and
$$g'(n+n_0) \geq g(n)$$
 . Then $\lim_{n \to \infty} g(n)/g'(n) = 1$.

Dimension Theory: $d(A) = \delta(A) = \dim(A)$

Def. : $\delta(A) := \min\{s : \exists \text{ an } \mathfrak{m}\text{-primary ideal with } s \text{ generators}\}$.

Lemma 6 : Let \mathfrak{q} be an \mathfrak{m} -primary ideal and $g_{\mathfrak{q}}(n):=I(A/\mathfrak{q}^n)$.

Then $\deg g_{\mathfrak{q}} = \deg g_{\mathfrak{m}}$.

Proof : For some r , $\mathfrak{m}^r \subseteq \mathfrak{q} \subseteq \mathfrak{m}$ so $\mathfrak{m}^{rn} \subseteq \mathfrak{q}^n \subseteq \mathfrak{m}^n \ \forall \ n$. Then $g_{\mathfrak{m}}(n) \leq g_{\mathfrak{q}}(n) \leq g_{\mathfrak{m}}(rn)$ for $n \gg 0$ but these are polynomials. \blacksquare

Def. : The common degree of the $g_{\mathfrak{q}}$ for an \mathfrak{m} -primary ideal \mathfrak{q} is denoted by d(A) .

Note: Prop. 5ii) $\Rightarrow \delta(A) \geq d(A)$.

Lemma 7 : If $x \in \mathfrak{m}$ is regular, then $d(M/xM) \leq d(M) - 1$.

Proof : Let M' := M/xM and $N_n := xM \cap \mathfrak{q}^nM$. Then

Artin-Rees \Rightarrow (N_n) is stable \mathfrak{q} -filtration of $xM\cong M$. We have

$$0 \to xM/N_n \to M/\mathfrak{q}^nM \to M'/\mathfrak{q}^nM' \to 0 \text{ exact } \Rightarrow$$

$$(g_{_{\mathit{X\!M}}}-g_{_{\mathit{M}}}+g_{_{\mathit{M'}}})(n)=0$$
 . As $g_{_{\mathit{X\!M}}}$, $g_{_{\mathit{M}}}$ have the same degree

and leading coefficient (Prop. 5iii), we have $\deg g_{M'} < \deg g_M$.

Prop. 8 :
$$d(A) \ge \dim A$$
 .

Proof: Induction on d(A). d(A) = 0 implies $I(A/\mathfrak{m}^n)$ const.

 $\Rightarrow \mathfrak{m}^n = \mathfrak{m}^{n+1}$ for $n \gg 0$ so $\mathfrak{m}^n = 0$ (Nakayama Lemma). Then

 $\dim A = 0$. Assume true for $d(A) \leq d$. Let d(A) = d + 1, $\mathfrak{p}_0 \subsetneq$

... $\subsetneq \mathfrak{p}_r$ chain of primes in A and $A' := A/\mathfrak{p}_0$. Then $I(A'/\overline{\mathfrak{m}^n}) \leq$

 $I(A/\mathfrak{m}^n) \Rightarrow d(A') \leq d(A)$. Let $x \in \mathfrak{p}_1 \setminus \mathfrak{p}_0$. $0 \neq \overline{x} \in A'$ domain

 $\Rightarrow d(A'/\overline{x}A') \leq d(A') - 1$ (Lem. 7). Induction $\Rightarrow \dim(A'/\overline{x}A') \leq$

 $d \Rightarrow r-1 \leq d$ as $\overline{\overline{\mathfrak{p}_1}} \subsetneq ... \subsetneq \overline{\overline{\mathfrak{p}_r}}$ chain of primes in A'/xA'.

Corollary 9 : dim $A < \infty$.

Prop. 10 : $\dim(A) \ge \delta(A)$.

Proof: Let $d := \dim(A)$. It suffices to find $x_1, ..., x_d \in \mathfrak{m}$ s. th.

$$ht((x_1,...,x_i)) \geq i \; orall \; i$$
 , since then $ht(x_1,...,x_d) \geq d = ht(\mathfrak{m}) \Rightarrow$

 $(x_1,...,x_d)$ is \mathfrak{m} -primary $\Rightarrow \delta(A) \leq d$. Construct x_i inductively.

Choose $x_1 \in \mathfrak{m} \setminus \cup_i \mathfrak{p}_{i,0}$ where $\mathfrak{p}_{i,0}$ are the minimal primes. Then

$$ht((x_1)) \geq 1$$
 . Assume $x_1,...,x_{i-1}$ are constructed. Let $\mathfrak{p}_1,...,\mathfrak{p}_k$

be all the minimal primes of $(x_1, ..., x_{i-1})$ of height i-1 (if any).

Choose $x_i \in \mathfrak{m} \setminus \cup_j \mathfrak{p}_j$. Let \mathfrak{q} be a minimal prime of $(x_1,...,x_i)$.

Then \mathfrak{q} contains a minimal prime of $(x_1,...,x_{i-1})$, say \mathfrak{p} . If $\mathfrak{p}=\mathfrak{p}_j$, for some j, then $x_i\notin\mathfrak{p}\Rightarrow ht(\mathfrak{q})\geq i$. If $\mathfrak{p}\neq\mathfrak{p}_j$ \forall j then $ht(\mathfrak{p})\geq i$ so $ht(\mathfrak{q})\geq i$.

Summary: We have just proved that all three notions of dimension are equal. In relation to our studies, if we localize $k[x_1,...,x_n]$, then the trascendence degree of the fraction field is equal to any of the above three notions of dimension. This theory can also be extended to modules where dim $M:=\dim \operatorname{Supp} M$.