Hilbert Polynomials and Dimension Theory for Abelian Rings

April 17, 2016

Graded rings $A=\bigoplus_{n=0}^{\infty} A_{n}$ and A-modules M :

Def. : A graded if A_{n} are abelian groups and $A_{n} \cdot A_{m} \subseteq A_{n+m}$, so
A_{0} is subring. $M=\bigoplus_{n=0}^{\infty} M_{n}$ is graded if $A_{m} \cdot M_{n} \subseteq M_{m+n}$.
Lemma 1 : A noetherian iff A_{0} is and A is A_{0}-finitely generated.
Proof : \Leftarrow is via Hilbert's Basis Thm. To show \Rightarrow pick $x_{j} \in A_{m_{j}}$,
$1 \leq j \leq s$, that generate ideal $A_{+}:=\bigoplus_{i>0} A_{i}$ over A and show
$A_{n} \subseteq A_{0}\left[x_{1}, \ldots, x_{s}\right]$ by induction on n : true for $n=0$ and say for
$i<n$. If $x \in A_{n}$ then $x=\sum_{i=1}^{s} a_{i} x_{i}$ with $a_{i} \in A_{n-m_{i}}$ or $=0$ and since $n-m_{i}<n \Rightarrow a_{i} \in A_{0}\left[x_{1}, \ldots, x_{s}\right] \Rightarrow x \in A_{0}\left[x_{1}, \ldots, x_{s}\right]$.

Part I: Hilbert series $P(M, t)$ for noetherian A.

Def. : λ is additive if $\lambda(N)=\lambda(M)+\lambda(L)$ when $L=N / M$.
Below all graded A-modules are A-finite i.e. finitely generated.
Thm. 2: Let $M=\bigoplus M_{n}$ be $A_{0}\left[x_{1}, \ldots, x_{s}\right]$-module, $x_{i} \in A_{k_{i}}$. Then
$P(M, t):=\sum_{n \geq 0} \lambda\left(M_{n}\right) t^{n}=f(t) / \prod_{i=1}^{s}\left(1-t^{k_{i}}\right)$ for $f \in \mathbb{Z}[t]$.
Proof : Induction on s. For $s=0, M A_{0}$-finite \Rightarrow
$M_{n}=0$ for $n \gg 0$. Say true for $s-1$. Let $x_{s}: M_{n} \rightarrow M_{n+k_{s}}$ be 'times x_{s} ' homomorphism, $K_{n}:=\operatorname{ker} x_{s}, L_{n+k_{s}}:=$ coker x_{s}, i.e. $0 \rightarrow K_{n} \rightarrow M_{n} \xrightarrow{x_{s}} M_{n+k_{s}} \rightarrow L_{n+k_{s}} \rightarrow 0$ is exact $\forall n$.Then
$\lambda\left(K_{n}\right)-\lambda\left(M_{n}\right)+\lambda\left(M_{n+k_{s}}\right)-\lambda\left(L_{n+k_{s}}\right)=0(*)$. So $L:=\bigoplus L_{n}$,
$K:=\bigoplus K_{n}$ are graded $A / x_{s} A$-modules as x_{s} annihilates each.
M is A-finite module $\Rightarrow K$ and L are $A / x_{s} A$-finite and $A / x_{s} A=$
$A_{0}\left[\overline{x_{1}}, \ldots, \overline{\bar{x}_{s-1}}\right]$. Summation over n of $(*)$ times $t^{n+k_{s}}$ gives gives $\left(1-t^{k_{s}}\right) P(M, t)=P(L, t)-t^{k_{s}} P(K, t)+g(t)$, for a $g(t)$ in $\mathbb{Z}[t]$. By induction: $P(L, t)=f_{L}(t) / \prod_{i=1}^{s-1}\left(1-t^{k_{i}}\right), P(K, t)=$ $f_{K}(t) / \prod_{i=1}^{s-1}\left(1-t^{k_{i}}\right)$ with f_{L} and $f_{K} \in \mathbb{Z}[t]$. Therefore $P(M, t)=\left[f_{L}-t^{k_{s}} f_{K}+g(t) \prod_{i=1}^{s-1}\left(1-t^{k_{i}}\right)\right] / \prod_{i=1}^{s}\left(1-t^{k_{i}}\right) . \square$

Hilbert polynomial $g(n)$

Corollary 3 : Let $k_{i}=1 \forall i, b_{n}:=\lambda\left(M_{n}\right)$, and $f(1) \neq 0$. Then $\exists g \in \mathbb{Q}[t]$ s.th. $g(n)=b_{n}$ for $n \gg 0$ and $\operatorname{deg} g=s-1=: d-1$.

Proof : Let $f(t)=\sum_{k=0}^{N} a_{k} t^{k}$ with $a_{k} \in \mathbb{Z}$. As $(1-t)^{-d}=$
$\sum_{k \geq 0}\binom{d+k-1}{d-1} t^{k}$, then $b_{n}=\sum_{k=0}^{n} a_{k}\binom{d+n-k-1}{d-1}$. Take $g(n):=$ $\sum_{k=0}^{N} a_{k}\binom{d+n-k-1}{d-1}$. Then $g(n)=b_{n} \forall n \geq N$, and leading coefficient is $\sum a_{k} /(d-1)!\neq 0$ so $\operatorname{deg} g=d-1$.

Def. : g is the Hilbert polynomial of M with respect to λ. We will use this for $\lambda(M)=I(M):=$ length of a composition series, which we will define now.

Definitions ; below \mathfrak{a} an ideal of A

Def. : \mathfrak{a} is a primary ideal if $x y \in \mathfrak{a}$ and $x \notin \mathfrak{a}$, then $y \in \sqrt{\mathfrak{a}}$.
Example : Every prime ideal is primary.
Fact : If \mathfrak{a} is primary, then $\sqrt{\mathfrak{a}}$ is prime (easy exercise).
Def. : If \mathfrak{a} is primary, then \mathfrak{a} is \mathfrak{p}-primary for $\sqrt{\mathfrak{a}}=\mathfrak{p}$.
Def. : A module M is artin if $M_{0} \supseteq M_{1} \supseteq \ldots$ is a descending chain of submodules, then it stabilizes. Equivalently, every nonempty set
of submodules has a minimal element, e.g. $A=\mathbb{C}, \operatorname{dim}_{A} M<\infty$
Def. : A ring B is artin if it is artin as a B-module.

Examples: i) A finite (as a set) \mathbb{Z}-module is artin, but \mathbb{Z} is not
ii) If k is a field, then $k[t] /\left(t^{n}\right)$ is artin for all $n>1$.
iii) $\mathbb{Z}[1 / p] / \mathbb{Z}$ (p prime) is not noetherian, but artin \mathbb{Z}-module.

Fact: If M is artin, then its sub- and quotient modules are artin.
Fact: If B is artin and M is B-finite, then M is artin.
Def. : A composition series is a chain $M=M_{0} \supsetneq M_{1} \supsetneq \ldots \supsetneq$
$M_{n}=(0)$ s. th. $\forall i$, the only proper submodule of M_{i} / M_{i+1} is 0.

Example : Let V be a vector space with basis $\left\{x_{1}, \ldots, x_{k}\right\}$. Then $\left\{M_{k-n}:=\operatorname{span}\left(x_{1}, \ldots, x_{k-n}\right)\right\}_{n=0}^{k}$ is a composition series for V.

Fact (A\&M, 6.7): Any two composition series have same length.
Fact (A\&M 6.8): M has a composition series iff M is artin and noetherian (it is an easy exercise).

Def. : Let $I(M)$ denote the length of a composition series of M.
Example: In the previous example, length would be dimension.
Fact (A\&M, 6.9): Length of a module is an additive function.

Def. : A sequence of submodules $\left\{M_{n}\right\}$ of M is an \mathfrak{a}-filtration on M if $M=M_{0} \supseteq M_{1} \supseteq \ldots$ and $\mathfrak{a} M_{i} \subseteq M_{i+1}$. Filtration is called stable if $\mathfrak{a} M_{i}=M_{i+1}$ for $i \gg 0$.

Example : $M_{n}:=\mathfrak{a}^{n} M$ is a stable \mathfrak{a}-filtration on M.
Def. : Krull $\operatorname{dim} A:=\sup \left\{n: \exists \mathfrak{p}_{0} \subsetneq \ldots \subsetneq \mathfrak{p}_{n}, \mathfrak{p}_{i}\right.$ prime $\}$.
Fact: If k is a field and domain A is a finitely generated
k-algebra, then $\operatorname{dim} A=t r . d_{\cdot k}$ of the fraction field of A.
Def. : $x \in A$ is regular if $x y=0$ for some $y \in A$, then $y=0$.

Def. : Let \mathfrak{p} be a prime ideal. The height of \mathfrak{p} is $h t(\mathfrak{p}):=$ $\sup \left\{r: \exists \mathfrak{p}_{0} \subsetneq \ldots \subsetneq \mathfrak{p}_{r}=\mathfrak{p}, \mathfrak{p}_{i}\right.$ prime $\}$ and height of any ideal \mathfrak{a} is $h t(\mathfrak{a}):=\min \{h t(\mathfrak{q}): \mathfrak{a} \subseteq \mathfrak{q}$ prime $\}$.

Example: If A is local with max. ideal \mathfrak{m}, then $h t(\mathfrak{m})=\operatorname{dim} A$.
Note: If $\mathfrak{a} \subseteq \mathfrak{b}$ are ideals, then $h t(\mathfrak{a}) \leq h t(\mathfrak{b})$.
Def. : \mathfrak{p} is a minimal prime if it is among all primes and \mathfrak{p}
is a minimal prime for an ideal \mathfrak{a} if it is minimal among all primes
containing \mathfrak{a}.

Stable \mathfrak{a}-filtrations $\left\{M_{n}\right\}$ on M :

Lemma 4: If $\left\{M_{n}^{\prime}\right\}$ another stable \mathfrak{a}-filtration, then $\exists n_{0} \geq 0$
s. th. $M_{n+n_{0}} \subseteq M_{n}^{\prime}$ and $M_{n+n_{0}}^{\prime} \subseteq M_{n} \forall n \geq 0$.

Proof: Wlog, $M_{n}^{\prime}:=\mathfrak{a}^{n} M$. By induction on n, it is easy to see that $\mathfrak{a}^{n} M \subseteq \mathfrak{a} M_{n-1} \subseteq M_{n}$. As $\left\{M_{n}\right\}$ stable, $\exists n_{0}$ s. th. $\mathfrak{a} M_{n}=$
$M_{n+1} \forall n \geq n_{0} \Rightarrow M_{n+n_{0}}=\mathfrak{a}^{n} M_{n_{0}} \subseteq \mathfrak{a}^{n} M$.
Artin-Rees Lemma : Let $M^{\prime} \subseteq M$ be a submodule. Then
$\left(M^{\prime} \cap M_{n}\right)$ is a stable \mathfrak{a}-filtration on M^{\prime}.

Proof : $\left(M^{\prime} \cap M_{n}\right)$ is an \mathfrak{a}-filtration: $\mathfrak{a}\left(M^{\prime} \cap M_{n}\right) \subseteq \mathfrak{a} M^{\prime} \cap \mathfrak{a} M_{n} \subseteq$ $M^{\prime} \cap M_{n+1}$. Let $N_{n}:=M^{\prime} \cap M_{n}, A^{*}:=\bigoplus_{n \geq 0} \mathfrak{a}^{n}, M^{*}:=$
$\bigoplus_{n \geq 0} M_{n}, N^{*}:=\bigoplus_{n \geq 0} N_{n} \subseteq M^{*}$, and $\mathfrak{a}=\left(x_{1}, \ldots, x_{r}\right)$. Then $A^{*}=A\left[x_{1}, \ldots, x_{r}\right]$ is noetherian. $\left\{M_{n}\right\}$ stable $\Rightarrow M^{*}$ is A^{*}-finite so N^{*} is A^{*}-finite, say generated by $\bigoplus_{j=0}^{k} N_{j}$. For $n \geq k, m \in N_{n}$ and $n_{i j}$ generators in $N_{j}, j \leq k, \Rightarrow m=\sum a_{i j} n_{i j}$ with $a_{i j} \in \mathfrak{a}^{n-j}$. Thus $m \in \mathfrak{a}^{n-k} N_{k}$ as $\mathfrak{a}^{n-j} \subseteq \mathfrak{a}^{n-k}$.

Part II: Applications for local noetherian A.

Below \mathfrak{m} is the maximal ideal of $A,\left\{M_{n}\right\}$ stable \mathfrak{q}-filtration, \mathfrak{q} an \mathfrak{m}-primary ideal, $G(A):=\bigoplus \mathfrak{q}^{n} / \mathfrak{q}^{n+1}$ and $G(M):=\bigoplus M_{n} / M_{n+1}$.

Prop. 5 : i) $g(n):=I\left(M / M_{n}\right)<\infty \forall n$;
ii) $g \in \mathbb{Q}[n]$ for $n \gg 0$ of deg. $\leq s:=$ least \# of generators of \mathfrak{q};
iii) $\operatorname{deg} g$ and its leading coeff. depend only on M and \mathfrak{q}.

Proof : i) As M_{n-1} / M_{n} is A-finite and annihilated by \mathfrak{q}, it is
A / \mathfrak{q}-finite. As A / \mathfrak{q} is noetherian and artin, M_{n-1} / M_{n} has finite length so $g(n):=I\left(M / M_{n}\right)=\sum_{r=1}^{n} I\left(M_{r-1} / M_{r}\right)<\infty$.
ii) Let $\mathfrak{q}=\left(x_{1}, \ldots, x_{s}\right)$ and $\overline{x_{i}}$ image of x_{i} in $\mathfrak{q} / \mathfrak{q}^{2}$. Then $G(A)=$ $(A / \mathfrak{q})\left[\overline{\bar{x}_{1}}, \ldots, \overline{x_{s}}\right]$ so $f(n):=I\left(M_{n} / M_{n+1}\right) \in \mathbb{Q}[n]$ of deg. $\leq s-1$ for $n \gg 0$ (Cor. 3). Fix k large.

Fact : $\sum_{i=0}^{n} i^{m}$ is a polynomial in n of deg. $\leq m+1$ (Faulhaber).
We have $g(n)-g(k)=\sum_{i=k}^{n-1}(g(i+1)-g(i))=\sum_{i=k}^{n-1} f(i)=$ $\sum_{i=k}^{n-1} \sum_{m=0}^{s-1} a_{m} i^{m}=\sum_{m=0}^{s-1} a_{m} \sum_{i=k}^{n-1} i^{m} \in \mathbb{Q}[n]$, of degree $\leq s$.
iii) Let $\left\{M_{n}^{\prime}\right\}$ be a stable \mathfrak{q}-filtration. Then $\exists n_{0}$ s.th. $M_{n+n_{0}} \subseteq$ $M_{n}^{\prime}, M_{n+n_{0}}^{\prime} \subseteq M_{n}$ (Lem. 4). Then $g\left(n+n_{0}\right) \geq g^{\prime}(n):=I\left(M / M_{n}^{\prime}\right)$ and $g^{\prime}\left(n+n_{0}\right) \geq g(n)$. Then $\lim _{n \rightarrow \infty} g(n) / g^{\prime}(n)=1$.

Dimension Theory: $d(A)=\delta(A)=\operatorname{dim}(A)$

Def. : $\delta(A):=\min \{s: \exists$ an \mathfrak{m}-primary ideal with s generators $\}$.
Lemma 6 : Let \mathfrak{q} be an \mathfrak{m}-primary ideal and $g_{\mathfrak{q}}(n):=I\left(A / \mathfrak{q}^{n}\right)$.
Then $\operatorname{deg} g_{\mathfrak{q}}=\operatorname{deg} g_{\mathfrak{m}}$.
Proof : For some $r, \mathfrak{m}^{r} \subseteq \mathfrak{q} \subseteq \mathfrak{m}$ so $\mathfrak{m}^{r n} \subseteq \mathfrak{q}^{n} \subseteq \mathfrak{m}^{n} \forall n$. Then $g_{\mathfrak{m}}(n) \leq g_{\mathfrak{q}}(n) \leq g_{\mathfrak{m}}(r n)$ for $n \gg 0$ but these are polynomials.

Def. : The common degree of the $g_{\mathfrak{q}}$ for an \mathfrak{m}-primary ideal \mathfrak{q} is denoted by $d(A)$.

Note: Prop. 5 ii) $\Rightarrow \delta(A) \geq d(A)$.

Lemma 7 : If $x \in \mathfrak{m}$ is regular, then $d(M / x M) \leq d(M)-1$.
Proof: Let $M^{\prime}:=M / x M$ and $N_{n}:=x M \cap \mathfrak{q}^{n} M$. Then
Artin-Rees $\Rightarrow\left(N_{n}\right)$ is stable \mathfrak{q}-filtration of $x M \cong M$. We have
$0 \rightarrow x M / N_{n} \rightarrow M / \mathfrak{q}^{n} M \rightarrow M^{\prime} / \mathfrak{q}^{n} M^{\prime} \rightarrow 0$ exact \Rightarrow
$\left(g_{x M}-g_{M}+g_{M^{\prime}}\right)(n)=0$. As $g_{x M}, g_{M}$ have the same degree and leading coefficient (Prop. 5iii), we have $\operatorname{deg} g_{M^{\prime}}<\operatorname{deg} g_{M}$.

Prop. $8: d(A) \geq \operatorname{dim} A$.
Proof: Induction on $d(A) . d(A)=0$ implies $I\left(A / \mathfrak{m}^{n}\right)$ const.
$\Rightarrow \mathfrak{m}^{n}=\mathfrak{m}^{n+1}$ for $n \gg 0$ so $\mathfrak{m}^{n}=0$ (Nakayama Lemma). Then $\operatorname{dim} A=0$. Assume true for $d(A) \leq d$. Let $d(A)=d+1, \mathfrak{p}_{0} \subsetneq$ $\ldots \subsetneq \mathfrak{p}_{r}$ chain of primes in A and $A^{\prime}:=A / \mathfrak{p}_{0}$. Then $I\left(A^{\prime} / \overline{\mathfrak{m}^{n}}\right) \leq$ $I\left(A / \mathfrak{m}^{n}\right) \Rightarrow d\left(A^{\prime}\right) \leq d(A)$. Let $x \in \mathfrak{p}_{1} \backslash \mathfrak{p}_{0} .0 \neq \bar{x} \in A^{\prime}$ domain $\Rightarrow d\left(A^{\prime} / \bar{x} A^{\prime}\right) \leq d\left(A^{\prime}\right)-1$ (Lem. 7). Induction $\Rightarrow \operatorname{dim}\left(A^{\prime} / \bar{x} A^{\prime}\right) \leq$ $d \Rightarrow r-1 \leq d$ as $\overline{\overline{\mathfrak{p}_{1}}} \subsetneq \ldots \subsetneq \overline{\overline{\mathfrak{p}_{r}}}$ chain of primes in $A^{\prime} / x A^{\prime}$

Corollary $9: \operatorname{dim} A<\infty$.

Prop. $10: \operatorname{dim}(A) \geq \delta(A)$.
Proof : Let $d:=\operatorname{dim}(A)$. It suffices to find $x_{1}, \ldots, x_{d} \in \mathfrak{m}$ s. th. $h t\left(\left(x_{1}, \ldots, x_{i}\right)\right) \geq i \forall i$, since then $h t\left(x_{1}, \ldots, x_{d}\right) \geq d=h t(\mathfrak{m}) \Rightarrow$ $\left(x_{1}, \ldots, x_{d}\right)$ is \mathfrak{m}-primary $\Rightarrow \delta(A) \leq d$. Construct x_{i} inductively.

Choose $x_{1} \in \mathfrak{m} \backslash \cup_{i} \mathfrak{p}_{i, 0}$ where $\mathfrak{p}_{i, 0}$ are the minimal primes. Then $h t\left(\left(x_{1}\right)\right) \geq 1$. Assume x_{1}, \ldots, x_{i-1} are constructed. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{k}$ be all the minimal primes of $\left(x_{1}, \ldots, x_{i-1}\right)$ of height $i-1$ (if any).

Choose $x_{i} \in \mathfrak{m} \backslash \cup_{j} \mathfrak{p}_{j}$. Let \mathfrak{q} be a minimal prime of $\left(x_{1}, \ldots, x_{i}\right)$.

Then \mathfrak{q} contains a minimal prime of $\left(x_{1}, \ldots, x_{i-1}\right)$, say \mathfrak{p}. If
$\mathfrak{p}=\mathfrak{p}_{j}$, for some j, then $x_{i} \notin \mathfrak{p} \Rightarrow h t(\mathfrak{q}) \geq i$. If $\mathfrak{p} \neq \mathfrak{p}_{\mathfrak{j}} \forall j$ then
$h t(\mathfrak{p}) \geq i$ so $h t(\mathfrak{q}) \geq i . \square$
Summary: We have just proved that all three notions of dimension are equal. In relation to our studies, if we localize $k\left[x_{1}, \ldots, x_{n}\right]$, then the trascendence degree of the fraction field is equal to any of the above three notions of dimension. This theory can also be extended to modules where $\operatorname{dim} M:=\operatorname{dim} \operatorname{Supp} M$.

