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Graded rings A = P, , A, and A-modules M :

Def. : A graded if A, are abelian groups and A, - A C Apim , SO
A is subring. M = @,070:0 M, is graded if Ap, - M, C My .
Lemma 1 : A noetherian iff Ag is and A is Ap-finitely generated.
Proof : < is via Hilbert's Basis Thm. To show = pick x; € A, ,
1 <j <'s, that generate ideal A, := ;. A; over A and show
An C Ao[x1, ..., Xs] by induction on n : true for n = 0 and say for
i<n.lIfxeA,then x = Zle aix; with a; € Ap—m, or =0 and

since n —m; < n = a; € Ao[x1,...,xs] = x € Aoglx1,...,xs] . I



Part I: Hilbert series P(M, t) for noetherian A .

Def. : X is additive if A(N) = A(M) + A(L) when L=N/M .
Below all graded A-modules are A-finite i.e. finitely generated.
Thm. 2: Let M = @ M, be Ag[xi, ..., xs]-module, x; € Ay,. Then
P(M,t) := 3" 50 MMan)t" = f(t)/ [Tio,(1 — th) for f € Z[t] .
Proof : Induction on s . For s =0, M Ap-finite =

Mp =0 for n> 0. Say true for s — 1 . Let xs : M, = M4, be
‘times xs' homomorphism, K, := kerxs , Ly, := coker xs , i.e.

0— Ky— M, 5 My, — Lnik, — 0is exact V n .Then



A(Kn) = A(Ma) + A(Mys1,) ~ A(Lnii) =0 (). So L= @ Ly,

K := @ K, are graded A/xsA-modules as xs annihilates each.

M is A-finite module = K and L are A/xs;A-finite and A/x;A =

Ao[X1, ..., Xs—1] . Summation over n of (%) times t"**s gives

gives (1 — t)P(M,t) = P(L,t)— tP(K,t) + g(t) , for a g(t)

in Z[t] . By induction: P(L,t) = f,(t)/T[3=1 (1 — tk) , P(K,t) =
fic(t)/ TIZ1(1 — t) with f, and fx € Z[t] . Therefore

P(M. 1) = [f — tofic + g(O) [T (1 - )]/ TIy (1 - ¢%) .



Hilbert polynomial g(n)

Corollary 3 : Let ki =1V i, b, :=AX(M,), and f(1) #0 . Then
Jg € Q[t] sth. g(n) =b,forn>0anddegg=s—1=:1d—1.
Proof : Let f(t) = SN o axtX with ay € Z . As (1 —t) 9 =

> k>0 (dj;le) tk | then b, = >"7_, ak (d+g:/1‘_1) . Take g(n) :=
SV 0 3k (d+” k= 1) Then g(n) = b, ¥V n> N, and leading
coefficient is >~ ax/(d —1)! #0sodegg=d—1. W

Def. : g is the Hilbert polynomial of M with respect to A . We
will use this for A(M) = /(M) := length of a composition series,

which we will define now.



Definitions ; below a an ideal of A

Def. : ais a primary ideal if xy € a and x ¢ a, then y € \/a .
Example : Every prime ideal is primary.

Fact : If a is primary, then \/a is prime (easy exercise).

Def. : If a is primary, then a is p-primary for \/a =p .

Def. : A module M is artin if My © M; D ... is a descending chain
of submodules, then it stabilizes. Equivalently, every nonempty set
of submodules has a minimal element, e.g. A=C , dimg M < o0

Def. : A ring B is artin if it is artin as a B-module.



Examples : i) A finite (as a set) Z-module is artin, but Z is not
ii) If k is a field, then k[t]/(t") is artin for all n > 1 .

i) Z[1/p]/Z (p prime) is not noetherian, but artin Z-module.
Fact : If M is artin, then its sub- and quotient modules are artin.
Fact : If B is artin and M is B-finite, then M is artin.

Def. : A composition series is a chain M = My 2 My D ... D

M, = (0) s. th. ¥V i, the only proper submodule of M;/M;,; is 0 .



Example : Let V be a vector space with basis {xi,...,xx} . Then
{My_p = span (x1, ..., xk_n)}5_, is a composition series for V' .
Fact (A&M, 6.7): Any two composition series have same length.
Fact (A&M 6.8): M has a composition series iff M is artin and
noetherian (it is an easy exercise).

Def. : Let /(M) denote the length of a composition series of M .
Example : In the previous example, length would be dimension.

Fact (A&M, 6.9): Length of a module is an additive function.



Def. : A sequence of submodules {M,} of M is an a-filtration on
Mit M= My 2D My D ... and aM; C M;,1 . Filtration is called
stable if aM; = M1 for i >0 .

Example : M, := a"M is a stable a-filtration on M .

Def. : Krull dim A :=sup{n: 3 po C ... C pp, p; prime} .

Fact : If k is a field and domain A is a finitely generated
k-algebra, then dim A = tr.d., of the fraction field of A.

Def. : x € Ais regular if xy =0 for some y € A, then y =0 .



Def. : Let p be a prime ideal. The height of p is ht(p) :=
sup{r: I po C ... C p, = p, p; prime} and height of any ideal a is
ht(a) := min{ht(q) : a C q prime} .

Example : If A is local with max. ideal m, then ht(m) =dimA .
Note : If a C b are ideals, then ht(a) < ht(b) .

Def. : p is a minimal prime if it is among all primes and p

is a minimal prime for an ideal a if it is minimal among all primes

containing a.



Stable a-filtrations {M,} on M :

Lemma 4: If {M/} another stable a-filtration, then 3 ny > 0

s. th. Mpyny © M) and M}, C M,V n>0.

Proof : Wlog, M/ := a"M . By induction on n, it is easy to see
that "M C aM,,_1 C M,, . As {M,} stable, 3 ng s. th. aM,, =
Mpi1Vn>ny= Mypp, =0a"M,y CaM . R

Artin-Rees Lemma : Let M’ C M be a submodule. Then

(M’ N M,) is a stable a-filtration on M’ .



Proof : (M’ N M,) is an a-filtration: a(M’' N M,) C aM’'NaM, C
M' 'O Mpy1 . Let Ny =M N M, , A" =P, 500", M* =
@nzo M, , N* = @nZO N, C M* , and a = (x1,...,%) . Then
A* = A[x1, ..., x| is noetherian. {M,} stable = M* is A*-finite
so N* is A*-finite, say generated by EBJ{(:O N;. Forn>k,meN,
and nj; generators in N, j < k , = m= Za,-jn,-j with aj; € aJ .

Thus me a" kN as a7 Ca" k. 1



Part Il: Applications for local noetherian A .

Below m is the maximal ideal of A, {M,} stable g-filtration, q an
m-primary ideal, G(A) := @ q"/q"*! and G(M) := @ M,/Mp1.
Prop. 5 : i) g(n) :=I(M/M,) < ooV n;

i) g € Q[n] for n>> 0 of deg. < s:= least # of generators of q ;
iii) deg g and its leading coeff. depend only on M and q .

Proof : i) As M,_1/M, is A-finite and annihilated by q, it is
A/q-finite. As A/q is noetherian and artin, M,_1/M, has finite

length so g(n) := I(M/My,) = > 7_1 I(M;—1/M,) < cc .



i) Let g = (x1, ..., xs) and X; image of x; in q/q. Then G(A) =
(A/q)[X1, ..., Xs] so f(n) == I(Mp/Mpy1) € Q[n] of deg. <s—1
for n > 0 (Cor. 3). Fix k large.

Fact: > ,i™ is a polynomial in n of deg. < m+1 (Faulhaber).
We have g(n) — g(k) = S7-i (g(i +1) — g(i)) = 72 F(i) =
SESe anim =3 a, S im € Qi) of degree <'s .
iii) Let {M)} be a stable g-filtration. Then 3 ng s.th. My, C

M, M

n—+ng

C M, (Lem. 4). Then g(n+ ng) > g'(n) := I(M/M)

and g’(n+ ng) > g(n) . Then limp,ocg(n)/g'(n)=1. A



Dimension Theory: d(A) = 6(A) = dim(A)

Def. : §(A) := min{s : 3 an m-primary ideal with s generators} .
Lemma 6 : Let q be an m-primary ideal and gy(n) := I(A/q") .

Then deg g; = deg g, .

Proof : Forsomer , m" CgCmsom™ Cq"Cm”V n. Then
gm(n) < gq(n) < gm(rn) for n>> 0 but these are polynomials. W

Def. : The common degree of the g; for an m-primary ideal q is
denoted by d(A) .

Note: Prop. 5ii) = 6(A) > d(A) .



Lemma 7 : If x € m is regular, then d(M/xM) < d(M) — 1.
Proof : Let M’ := M/xM and N, :=xMNq"M . Then
Artin-Rees = (N,) is stable g-filtration of xM = M . We have
0—xM/N, — M/q"M — M'/q"M’ — 0 exact =

(8w — &y +8,)(n)=0.Asg,, g, have the same degree

and leading coefficient (Prop. 5iii), we have degg,, < degg,, . B
Prop. 8 : d(A) > dimA.

Proof : Induction on d(A). d(A) =0 implies /(A/m") const.



= m" = m"! for n>> 0 so m” = 0 (Nakayama Lemma). Then
dimA =0 . Assume true for d(A) < d . Let d(A)=d+1,po <
... € p, chain of primes in A and A" := A/po. Then /(A’/m") <
I(A/m™) = d(A") < d(A) . Let x € p1 \ po . 0 # X € A’ domain
= d(A'/xA") < d(A") — 1 (Lem. 7). Induction = dim(A'/xA") <
d=r—1<dasp; C..Cp, chain of primes in A'/xA" . R

Corollary 9 : dmA<oo. R



Prop. 10 : dim(A) > §(A) .

Proof : Let d := dim(A) . It suffices to find xi, ..., x4 € m s. th.
ht((x1,...,x;)) > i ¥ i, since then ht(xi,...,xq) > d = ht(m) =
(X1, ..., Xg) is m-primary = 0(A) < d . Construct x; inductively.
Choose x; € m \ U; p; o where p; o are the minimal primes. Then
ht((x1)) > 1. Assume xi, ..., xj—1 are constructed. Let p1, ..., px
be all the minimal primes of (xi, ..., x;_1) of height i — 1 (if any).

Choose x; € m\ Ujp; . Let q be a minimal prime of (xq, ..., X;) .



Then g contains a minimal prime of (xq,...,xj—1) , say p . If
p=p;, for some j, then x; ¢ p = ht(q) > i . If p #p; V j then
ht(p) > i so ht(q) >i. W

Summary : We have just proved that all three notions of
dimension are equal. In relation to our studies, if we localize

k[x1, ..., xn], then the trascendence degree of the fraction field is
equal to any of the above three notions of dimension. This theory

can also be extended to modules where dim M := dim Supp M .



