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Graded rings A =
⊕∞

n=0 An and A-modules M :

Def. : A graded if An are abelian groups and An ·Am ⊆ An+m , so

A0 is subring. M =
⊕∞

n=0Mn is graded if Am ·Mn ⊆ Mm+n .

Lemma 1 : A noetherian iff A0 is and A is A0-finitely generated.

Proof : ⇐ is via Hilbert’s Basis Thm. To show ⇒ pick xj ∈ Amj ,

1 ≤ j ≤ s , that generate ideal A+ :=
⊕

i>0 Ai over A and show

An ⊆ A0[x1, ..., xs ] by induction on n : true for n = 0 and say for

i < n . If x ∈ An then x =
∑s

i=1 aixi with ai ∈ An−mi or = 0 and

since n −mi < n ⇒ ai ∈ A0[x1, ..., xs ] ⇒ x ∈ A0[x1, ..., xs ] . �



Part I: Hilbert series P(M , t) for noetherian A .

Def. : λ is additive if λ(N) = λ(M) + λ(L) when L = N/M .

Below all graded A-modules are A-finite i.e. finitely generated.

Thm. 2: Let M =
⊕

Mn be A0[x1, ..., xs ]-module, xi ∈ Aki . Then

P(M, t) :=
∑

n≥0 λ(Mn)tn = f (t)/
∏s

i=1(1− tki ) for f ∈ Z[t] .

Proof : Induction on s . For s = 0 , M A0-finite ⇒

Mn = 0 for n� 0 . Say true for s − 1 . Let xs : Mn → Mn+ks be

‘times xs ’ homomorphism, Kn := ker xs , Ln+ks := coker xs , i.e.

0→ Kn → Mn
xs→ Mn+ks → Ln+ks → 0 is exact ∀ n .Then



λ(Kn)− λ(Mn) + λ(Mn+ks )− λ(Ln+ks ) = 0 (∗). So L :=
⊕

Ln ,

K :=
⊕

Kn are graded A/xsA-modules as xs annihilates each.

M is A-finite module ⇒ K and L are A/xsA-finite and A/xsA =

A0[x1, ..., xs−1] . Summation over n of (∗) times tn+ks gives

gives (1− tks )P(M, t) = P(L, t)− tksP(K , t) + g(t) , for a g(t)

in Z[t] . By induction: P(L, t) = fL(t)/
∏s−1

i=1 (1− tki ) , P(K , t) =

fK (t)/
∏s−1

i=1 (1− tki ) with fL and fK ∈ Z[t] . Therefore

P(M, t) = [fL − tks fK + g(t)
∏s−1

i=1 (1− tki )]/
∏s

i=1(1− tki ) . �



Hilbert polynomial g(n)

Corollary 3 : Let ki = 1 ∀ i , bn := λ(Mn) , and f (1) 6= 0 . Then

∃ g ∈ Q[t] s.th. g(n) = bn for n� 0 and deg g = s−1 =: d −1 .

Proof : Let f (t) =
∑N

k=0 akt
k with ak ∈ Z . As (1− t)−d =∑

k≥0
(d+k−1

d−1
)
tk , then bn =

∑n
k=0 ak

(d+n−k−1
d−1

)
. Take g(n) :=∑N

k=0 ak
(d+n−k−1

d−1
)
. Then g(n) = bn ∀ n ≥ N , and leading

coefficient is
∑

ak/(d − 1)! 6= 0 so deg g = d − 1 . �

Def. : g is the Hilbert polynomial of M with respect to λ . We

will use this for λ(M) = l(M) := length of a composition series,

which we will define now.



Definitions ; below a an ideal of A

Def. : a is a primary ideal if xy ∈ a and x /∈ a, then y ∈
√
a .

Example : Every prime ideal is primary.

Fact : If a is primary, then
√
a is prime (easy exercise).

Def. : If a is primary, then a is p-primary for
√
a = p .

Def. : A module M is artin if M0 ⊇ M1 ⊇ ... is a descending chain

of submodules, then it stabilizes. Equivalently, every nonempty set

of submodules has a minimal element, e.g. A = C , dimAM <∞

Def. : A ring B is artin if it is artin as a B-module.



Examples : i) A finite (as a set) Z-module is artin, but Z is not

ii) If k is a field, then k[t]/(tn) is artin for all n > 1 .

iii) Z[1/p]/Z (p prime) is not noetherian, but artin Z-module.

Fact : If M is artin, then its sub- and quotient modules are artin.

Fact : If B is artin and M is B-finite, then M is artin.

Def. : A composition series is a chain M = M0 ) M1 ) ... )

Mn = (0) s. th. ∀ i , the only proper submodule of Mi/Mi+1 is 0 .



Example : Let V be a vector space with basis {x1, ..., xk} . Then

{Mk−n := span (x1, ..., xk−n)}kn=0 is a composition series for V .

Fact (A&M, 6.7): Any two composition series have same length.

Fact (A&M 6.8): M has a composition series iff M is artin and

noetherian (it is an easy exercise).

Def. : Let l(M) denote the length of a composition series of M .

Example : In the previous example, length would be dimension.

Fact (A&M, 6.9): Length of a module is an additive function.



Def. : A sequence of submodules {Mn} of M is an a-filtration on

M if M = M0 ⊇ M1 ⊇ ... and aMi ⊆ Mi+1 . Filtration is called

stable if aMi = Mi+1 for i � 0 .

Example : Mn := anM is a stable a-filtration on M .

Def. : Krull dimA := sup{n : ∃ p0 ( ... ( pn, pi prime} .

Fact : If k is a field and domain A is a finitely generated

k-algebra, then dimA = tr .d .k of the fraction field of A.

Def. : x ∈ A is regular if xy = 0 for some y ∈ A, then y = 0 .



Def. : Let p be a prime ideal. The height of p is ht(p) :=

sup{r : ∃ p0 ( ... ( pr = p, pi prime} and height of any ideal a is

ht(a) := min{ht(q) : a ⊆ q prime} .

Example : If A is local with max. ideal m, then ht(m) = dimA .

Note : If a ⊆ b are ideals, then ht(a) ≤ ht(b) .

Def. : p is a minimal prime if it is among all primes and p

is a minimal prime for an ideal a if it is minimal among all primes

containing a.



Stable a-filtrations {Mn} on M :

Lemma 4: If {M ′n} another stable a-filtration, then ∃ n0 ≥ 0

s. th. Mn+n0 ⊆ M ′n and M ′n+n0 ⊆ Mn ∀ n ≥ 0 .

Proof : Wlog, M ′n := anM . By induction on n , it is easy to see

that anM ⊆ aMn−1 ⊆ Mn . As {Mn} stable, ∃ n0 s. th. aMn =

Mn+1 ∀ n ≥ n0 ⇒ Mn+n0 = anMn0 ⊆ anM . �

Artin-Rees Lemma : Let M ′ ⊆ M be a submodule. Then

(M ′ ∩Mn) is a stable a-filtration on M ′ .



Proof : (M ′ ∩Mn) is an a-filtration: a(M ′ ∩Mn) ⊆ aM ′ ∩ aMn ⊆

M ′ ∩Mn+1 . Let Nn := M ′ ∩Mn , A∗ :=
⊕

n≥0 a
n , M∗ :=⊕

n≥0Mn , N∗ :=
⊕

n≥0Nn ⊆ M∗ , and a = (x1, ..., xr ) . Then

A∗ = A[x1, ..., xr ] is noetherian. {Mn} stable ⇒ M∗ is A∗-finite

so N∗ is A∗-finite, say generated by
⊕k

j=0Nj . For n ≥ k , m ∈ Nn

and nij generators in Nj , j ≤ k , ⇒ m =
∑

aijnij with aij ∈ an−j .

Thus m ∈ an−kNk as an−j ⊆ an−k . �



Part II: Applications for local noetherian A .

Below m is the maximal ideal of A , {Mn} stable q-filtration, q an

m-primary ideal, G (A) :=
⊕

qn/qn+1 and G (M) :=
⊕

Mn/Mn+1.

Prop. 5 : i) g(n) := l(M/Mn) <∞ ∀ n ;

ii) g ∈ Q[n] for n� 0 of deg. ≤ s := least # of generators of q ;

iii) deg g and its leading coeff. depend only on M and q .

Proof : i) As Mn−1/Mn is A-finite and annihilated by q, it is

A/q-finite. As A/q is noetherian and artin, Mn−1/Mn has finite

length so g(n) := l(M/Mn) =
∑n

r=1 l(Mr−1/Mr ) <∞ .



ii) Let q = (x1, ..., xs) and xi image of xi in q/q2. Then G (A) =

(A/q)[x1, ..., xs ] so f (n) := l(Mn/Mn+1) ∈ Q[n] of deg. ≤ s − 1

for n� 0 (Cor. 3). Fix k large.

Fact :
∑n

i=0 i
m is a polynomial in n of deg. ≤ m + 1 (Faulhaber).

We have g(n)− g(k) =
∑n−1

i=k (g(i + 1)− g(i)) =
∑n−1

i=k f (i) =∑n−1
i=k

∑s−1
m=0 ami

m =
∑s−1

m=0 am
∑n−1

i=k im ∈ Q[n] , of degree ≤ s .

iii) Let {M ′n} be a stable q-filtration. Then ∃ n0 s.th. Mn+n0 ⊆

M ′n , M ′n+n0 ⊆ Mn (Lem. 4). Then g(n+n0) ≥ g ′(n) := l(M/M ′n)

and g ′(n + n0) ≥ g(n) . Then limn→∞ g(n)/g ′(n) = 1 . �



Dimension Theory: d(A) = δ(A) = dim(A)

Def. : δ(A) := min{s : ∃ an m-primary ideal with s generators} .

Lemma 6 : Let q be an m-primary ideal and gq(n) := l(A/qn) .

Then deg gq = deg gm .

Proof : For some r , mr ⊆ q ⊆ m so mrn ⊆ qn ⊆ mn ∀ n . Then

gm(n) ≤ gq(n) ≤ gm(rn) for n� 0 but these are polynomials. �

Def. : The common degree of the gq for an m-primary ideal q is

denoted by d(A) .

Note: Prop. 5ii) ⇒ δ(A) ≥ d(A) .



Lemma 7 : If x ∈ m is regular, then d(M/xM) ≤ d(M)− 1.

Proof : Let M ′ := M/xM and Nn := xM ∩ qnM . Then

Artin-Rees ⇒ (Nn) is stable q-filtration of xM ∼= M . We have

0→ xM/Nn → M/qnM → M ′/qnM ′ → 0 exact ⇒

(g
xM
− g

M
+ g

M′ )(n) = 0 . As g
xM

, g
M

have the same degree

and leading coefficient (Prop. 5iii), we have deg g
M′ < deg g

M
. �

Prop. 8 : d(A) ≥ dimA .

Proof : Induction on d(A). d(A) = 0 implies l(A/mn) const.



⇒ mn = mn+1 for n� 0 so mn = 0 (Nakayama Lemma). Then

dimA = 0 . Assume true for d(A) ≤ d . Let d(A) = d + 1 , p0 (

... ( pr chain of primes in A and A′ := A/p0. Then l(A′/mn) ≤

l(A/mn) ⇒ d(A′) ≤ d(A) . Let x ∈ p1 \ p0 . 0 6= x ∈ A′ domain

⇒ d(A′/xA′) ≤ d(A′)− 1 (Lem. 7). Induction ⇒ dim(A′/xA′) ≤

d ⇒ r − 1 ≤ d as p1 ( ... ( pr chain of primes in A′/xA′ . �

Corollary 9 : dimA <∞ . �



Prop. 10 : dim(A) ≥ δ(A) .

Proof : Let d := dim(A) . It suffices to find x1, ..., xd ∈ m s. th.

ht((x1, ..., xi )) ≥ i ∀ i , since then ht(x1, ..., xd) ≥ d = ht(m) ⇒

(x1, ..., xd) is m-primary ⇒ δ(A) ≤ d . Construct xi inductively.

Choose x1 ∈ m \ ∪i pi ,0 where pi ,0 are the minimal primes. Then

ht((x1)) ≥ 1 . Assume x1, ..., xi−1 are constructed. Let p1, ..., pk

be all the minimal primes of (x1, ..., xi−1) of height i − 1 (if any).

Choose xi ∈ m \ ∪jpj . Let q be a minimal prime of (x1, ..., xi ) .



Then q contains a minimal prime of (x1, ..., xi−1) , say p . If

p = pj , for some j , then xi /∈ p ⇒ ht(q) ≥ i . If p 6= pj ∀ j then

ht(p) ≥ i so ht(q) ≥ i . �

Summary : We have just proved that all three notions of

dimension are equal. In relation to our studies, if we localize

k[x1, ..., xn], then the trascendence degree of the fraction field is

equal to any of the above three notions of dimension. This theory

can also be extended to modules where dimM := dim Supp M .


