Closed *-analytic set $X = \bigcup_{j \le r} X^{(j)}$, i.e. each $X^{(j)}$ is *j*-dim manifold, is analytic and Chow's Thm: in projective space X is algebraic.

Jia Ji and Shuyang Shen

Chow's Thm: Analytic $X \subset \mathbb{CP}^n$ are algebraic.

Fact: Closed analytic $X \subset$ open $U \subset \mathbb{C}^n$ is *-analytic (due to

Sing X being closed analytic of dim Sing $X < \dim X$).

Proof: Cone $Z \subset \mathbb{C}^{n+1}$ over X is *-analytic hence closed analytic including at $0 \in \mathbb{C}^{n+1} \Rightarrow Z = V(f_1, \ldots, f_m)$, $f_j \in \mathbb{C}\{z\}$, and each $f_j(\lambda z) = 0$ for $z \in Z$, $\forall \lambda \in \mathbb{C}$. Say $f_j(z) := \sum_k f_{j,k}(z)$ with $f_{j,k}(\lambda z) \equiv \lambda^k f_{j,k}(z) \Rightarrow \text{each } (\frac{\partial}{\partial \lambda})^k (f_j(\lambda z))|_{\lambda=0} = f_{j,k}(z) = 0 \text{ on } Z$, i.e. Z is a zero set of finitely many $f_{j,k}(z)$ (via Hilb. Thm). Plan of Proof for Main Thm: *-analytic \Rightarrow analytic

Induction on dimension r of X. $X = X^{(r)} \cup X'$ with dim X' < r. We may assume X' is analytic and $\overline{X^{(r)}} \subset X^{(r)} \cup X'$. We'll prove $\overline{X^{(r)}}$ is analytic. Step 1: Construct an appropriate projection map $p: \mathbb{C}^n \to \mathbb{C}^r$ which realizes a local model of $X^{(r)}$. Step 2: Use this projection map to construct analytic functions whose common zeroes are exactly points in $\overline{X^{(r)}}$ and thus complete the proof. To construct this projection *p*, we first need two results.

In what follows, $X_0 = X^{(r)}$ and $X_1 = X'$.

Proper projections $p_{|_X}: X \to \text{open } V \subset \mathbb{C}^n$:

Proposition: For analytic $X \subset U \subset \mathbb{C}^{n+r}$, set U open with $p(U) \subset V$, set p(X) is analytic, $p_{|_X} : X \to V$ finite-to-one. **Proof:** Say r = 1 (\Rightarrow general case). Let $y \in V \Rightarrow X \cap p^{-1}(y) =$ $\{a_1, \ldots, a_k\}$ being compact. Let disjoint open $U_i \ni a_i \Rightarrow \exists$ open $y \in V_1 \subset V$ s.th. $p^{-1}(V_1) \subset \bigcup_i U_i ; X \cap p^{-1}(V_1) \cap U_i =: Z_i$. Say y = 0, $a_i = 0 \in Z_i = V(f_0, ..., f_m)$, $f_i \in \mathbb{C}\{z\}[w]$, f_0 monic $\deg = d > \deg f_i$ for i > 0. Res $(f_0, \sum_{i=1}^m t_i f_i) = \sum_{|\alpha|=d} t^{\alpha} R_{\alpha}$ $=: \mathsf{R}(z, t)$, R_{α} converging on an open $0 \in V_2 \subset V_1 \Rightarrow$ near 0

holds $a \in p(Z_i)$ iff $\mathsf{R}(a, t) = 0 \ \forall \ t \in \mathbb{C}^m$ iff all $R_{\alpha}(a) = 0$. **Lemma:** $X_1 \ni 0$ closed analytic in open ball $U \subset \mathbb{C}^n$ around 0. X_0 closed analytic in $U \setminus X_1$. Either $X_0 \cup X_1 = U$ or exists a line *I* through 0 and ball $U_1 \subset U$ around 0, $X_1 \cap I \cap U_1 = \{0\}$ and $X_0 \cap I \cap U_1$ is countable with the only limit point being $0 \in \mathbb{C}^n$. **Proof:** Take $P \in U \setminus (X_0 \cup X_1)$ if it is nonempty. Let *I* be the line joining P and 0. Then $X_1 \cap I$ is analytic and countably discrete in $U \cap I$ and $X_0 \cap I$ analytic and countable in $U \setminus X_1 \cap I$ with limit points in $X_1 \cap I$. Near 0, take U_1 such that $U_1 \cap X_1 \cap I = \{0\}$.

$$p_{|_{X_0}}$$
 off $p^{-1}p(X_1) \cup Crp_{|_{X_0}}$ is a finite covering

Step 1: Assuming $X_0 \cup X_1 \subsetneq U$, by Lemma $\exists I, \exists$ projection $p: \mathbb{C}^n \to \mathbb{C}^{n-1}$ s.th. $I = p^{-1}(0)$. $(X_0 \cup X_1) \cap I \cap U_1$ compact \Rightarrow \exists nbhds $U_2 \subset U_1$ and $V \subset \mathbb{C}^{n-1}$ of 0 s.th. $p(U_2) \subset V$ and res $p: (X_0 \cup X_1) \cap U_2 \to V$ is proper. By Proposition, we have: $Y_1 := p(X_1 \cap U_2) \subset V$ is analytic and res $p: X_1 \cap U_2 \to Y_1$ is finite-to-one; $Y_0 := p(X_0 \cap U_2 - p^{-1}(Y_1)) \subset V - Y_1$ is analytic and res $p: (X_0 \cap U_2 - p^{-1}(Y_1)) \to Y_0$ is finite-to-one; finally, all fibres $p^{-1}(y)$ are countable.

Keep projecting in this way until the image contains a nbhd of 0. So $\exists p : \mathbb{C}^n \to \mathbb{C}^r$ and open nbhds of 0: $U_1 \subset U, V \subset \mathbb{C}^r$, and $p(U_1) \subset V$ s.th. res $p: (X_0 \cup X_1) \cap U_1 \to V$ is proper and onto with countable fibres; $Y_1 := p(X_1 \cap U_1) \subset V$ is analytic and both res $p: X_1 \cap U_1 \rightarrow Y_1$ and res $p: X_0 \cap U_1 - p^{-1}(Y_1) \rightarrow V - Y_1$ are finite-to-one. Now apply this to $X_0 = X^{(r)}$ and $X_1 = X'$. $V - Y_1 \subset V$ is open dense; $X^{(r)} - p^{-1}(Y_1) \subset X^{(r)}$ is open dense. Assume V is a ball. So $V - Y_1$ is connected.

 $q := p_{|_{\vee(r)}} : X^{(r)} - p^{-1}(Y_1) \rightarrow V - Y_1$ is proper and finite-to-one. Let $B_1 := \{J = 0\} \subset X^{(r)} - p^{-1}(Y_1)$ where J is the Jacobian of q. $B_1 \subset X^{(r)} - p^{-1}(Y_1)$ is closed analytic. $B := q(B_1) \subset V - Y_1$ is analytic by Proposition. By Sard's Lemma, B is a nontrivial analytic subset of $V - Y_1$. Thus $V - Y_1 - B$ is dense in V and $X^{(r)} - p^{-1}(B \cup Y_1)$ is dense in $X^{(r)}$. Note $V - Y_1 - B$ is still connected. Let $\pi := \text{res } q : X^{(r)} - p^{-1}(B \cup Y_1) \to V - Y_1 - B$. So locally on the source π is an iso. with constant size of fibre, i.e., a finite unramified covering.

Beautiful construction from linear algebra

Lemma. Let $p : \mathbb{C}^n \to \mathbb{C}^r$ be any linear projection. For any $\{x_j\}_{i=0}^{j=d}$ in \mathbb{C}^n where $x_0 \neq x_j$ and $p(x_0) = p(x_j)$ for all $1 \leq j \leq d$, exists $l \in (\mathbb{C}^n)^*$ s.th. $l(x_0) \neq l(x_i)$ for all $1 \leq j \leq d$. **Proof.** If $\{l_{\alpha}\}$ are any (n-r-1)d+1 linear functionals in general position w.r. to the (n-r)-dimensional subspace $p^{-1}(0)$, then $\exists \alpha$ s.th. I_{α} has the desired property. If not, for all α , exists $j(\alpha)$ s.th. $l_{\alpha}(x_0) = l_{\alpha}(x_{i(\alpha)})$. So exists j_0 s.th. $l_{\alpha}(x_0) = l_{\alpha}(x_{j_0})$ for $n - r \alpha$'s. By the linear independence of these I_{α} , $x_0 = x_{i_0}$?!

Constructing analytic equations defining $X^{(r)}$.

Step 2: Let d be the number of sheets in the covering π . Choose a linear functional I on \mathbb{C}^n . $\forall 1 \leq j \leq d, \forall y \in V - Y_1 - B$, let $a_i(y)$ be the *j*-th elem. sym. poly. of $I(x_1), \dots, I(x_d)$ with $\{x_1, \dots, x_d\} = \pi^{-1}(y)$. Then all a_i are analytic on $V - Y_1 - B$. For every compact $K \subset V$, since $p_{|_{\mathbf{v}}}$ is proper, $X \cap p^{-1}K$ is compact. So I(x) is bounded on $X^{(r)} \cap p^{-1}K$. Thus all a_i are bounded on $K \cap (V - Y_1 - B)$. By Riemann Extension Thm, all a_i extend to analytic functions on V.

Let $F_{I}(x) := I(x)^{d} + \sum_{1 \le i \le d} (-1)^{j} a_{i}(p(x)) \cdot I(x)^{d-j}$. Then F_{I} is analytic on $p^{-1}(V)$. $F_I \equiv 0$ on $X^{(r)} - p^{-1}(Y_1 \cup B)$. Hence $F_I \equiv 0$ on $\overline{X^{(r)}}$. Let $x \in p^{-1}(V) - \overline{X^{(r)}}$ and let y = p(x). Let $y = \lim y_k$, $y_k \in V - Y_1 - B$. Thus $\pi^{-1}(y_k) = \{x_k^{(1)}, \dots, x_k^{(d)}\}$ and because res $p: \overline{X^{(r)}} \to V$ is proper, we can pass to a subseq s.t. for all $j = 1, \dots, d, x_k^{(j)}$ has a limit $x^{(j)}$ as $k \to \infty$. Thus $x^{(j)} \in \overline{X^{(r)}}$ so $x \neq x^{(j)}$ for any j. By Lemma, $\exists I$ s.t. $\forall j, I(x) \neq I(x^{(j)})$. Fix I.

 $l(x_k^{(1)}), \dots, l(x_k^{(d)})$ are the complete set of roots of the poly $t^d + \sum_{1 \le j \le d} (-1)^j a_j(y_k) t^{d-j}$. So $l(x^{(1)}), \dots, l(x^{(d)})$ are the only roots of the polynomial $t^d + \sum_{1 \le j \le d} (-1)^j a_j(y) t^{d-j}$. Hence, $F_l(x) \ne 0$. **Corollary.** $X \subset \mathbb{P}^n$ be an *r*-dim proj variety and let $Y \subset X$ be closed alg proper. Then X - Y is connected in classical top. **Proof.** If $X - Y = Z_1 \cup Z_2$, Z_i open and closed in X - Y, then let S = Sing X. Can stratify $Z_1 \cup Y \cup S$ by taking $X^{(r)} = Z_1 \setminus (S \cup Y)$ and $X^{(i)}$ some suitable stratification of $S \cup Y$ for $0 \le i \le r - 1$. Then $Z_1 \cup S \cup Y$ and $Z_2 \cup S \cup Y$ are algebraic by Chow's theorem. $X = (Z_1 \cup S \cup Y) \cup (Z_2 \cup S \cup Y)$ and so X is not irreducible. ?!

Stronger connectedness result on transverse spaces

Proposition: $X \subset \mathbb{P}^n$ projective variety with dimension *r*.

 $M^{n-r-1} \subset \mathbb{P}^n$ linear space disjoint from X. $p: X \to \mathbb{P}^r$ projection from *M*, Line $I \subset \mathbb{P}^r$ meets $B := \{x \in \mathbb{P}^r \mid p \text{ not smooth over } x\}$ transversely, s.th. $X \setminus p^{-1}(B) \to \mathbb{P}^r \setminus B$ finite-sheeted connected covering space. $\Rightarrow p^{-1}(I \setminus B) \rightarrow I \setminus B$ is a connected covering space. **Proof:** Pick $x_0 \in I \setminus B$, and p_{x_0} the projection $\mathbb{P}^r \setminus \{x_0\} \to \mathbb{P}^{r-1}$. Take B_0 set of non-smooth points of $p_{x_0}|_B$.

Then $B \setminus p_{x_0}^{-1}(B_0) \to \mathbb{P}^{r-1} \setminus B_0$ is a finite-sheeted covering space. Take $l_{y} := p_{x_0}^{-1}(y) \cup \{x\}$ for $y \in \mathbb{P}^{r-1}$. Then $\mathbb{P}^{r-1} \setminus B_0$ is the lines I_v meeting B transversely, $I = I_{v_0}$ for some y_0 . $I_v \cap B$ is finite and continuously varies over $\mathbb{P}^{r-1} \setminus B_0 \Rightarrow I_v \setminus B$ are diffeomorphic. Suppose $p^{-1}(I \setminus B)$ disconnected, then $p^{-1}(I_v \setminus B)$ is disconnected. Take $A_{v,z}$ a connected component of $p^{-1}(I_v \setminus B)$ containing some *z*, then $\bigcup_{v} A_{v,z} \setminus p^{-1}(x)$ is clopen in $X \setminus p^{-1}(B \cup \{x_0\} \cup p_{x_0}^{-1}(B_0))$. This contradicts the previous corollary.

Corollary: $X^r \subset \mathbb{P}^n$, exists a linear subspace L, dim L = n - r + 1such that $X \cap L$ is an irreducible curve and meet transversely. **Proof:** Use the notation from Proposition, take $p_M : \mathbb{P}^n - M \to \mathbb{P}^r$ projection with center M. Then $L := p_M^{-1}(I) \cup M$ has dimension n - r + 1 and $L \cap X = p^{-1}(I)$ is irreducible. Take $z \in p^{-1}(I \setminus B)$,

z is smooth and we have dim $(T_{z,X} + T_{z,L}) = n$.