
Closed ∗-analytic set X =
⋃

j≤r X
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Chow’s Thm: Analytic X ⊂ CPn are algebraic.

Fact: Closed analytic X ⊂ open U ⊂ Cn is *-analytic (due to

SingX being closed analytic of dim SingX < dimX ).

Proof: Cone Z ⊂ Cn+1 over X is *-analytic hence closed analytic

including at 0 ∈ Cn+1 ⇒ Z = V (f1, . . . , fm), fj ∈ C{z}, and each

fj(λz) = 0 for z ∈ Z , ∀ λ ∈ C . Say fj(z) :=
∑

k fj ,k(z) with

fj ,k(λz) ≡ λk fj ,k(z)⇒ each ( ∂
∂λ)k(fj(λz))|λ=0

= fj ,k(z) = 0 on Z ,

i.e. Z is a zero set of finitely many fj ,k(z) (via Hilb. Thm). �



Plan of Proof for Main Thm: *-analytic ⇒ analytic

Induction on dimension r of X . X = X (r) ∪ X ′ with dimX ′ < r .

We may assume X ′ is analytic and X (r) ⊂ X (r) ∪ X ′. We’ll prove

X (r) is analytic. Step 1: Construct an appropriate projection map

p : Cn → Cr which realizes a local model of X (r). Step 2: Use this

projection map to construct analytic functions whose common

zeroes are exactly points in X (r) and thus complete the proof.

To construct this projection p, we first need two results.

In what follows, X0 = X (r) and X1 = X ′.



Proper projections p|X : X → open V ⊂ Cn :

Proposition: For analytic X ⊂ U ⊂ Cn+r , set U open with

p(U) ⊂ V , set p(X ) is analytic, p|X : X → V finite-to-one.

Proof: Say r = 1 (⇒ general case). Let y ∈ V ⇒ X ∩ p−1(y) =

{a1, . . . , ak} being compact. Let disjoint open Ui 3 ai ⇒ ∃ open

y ∈ V1 ⊂ V s.th. p−1(V1) ⊂
⋃

i Ui ; X ∩ p−1(V1) ∩ Ui =: Zi .

Say y = 0, ai = 0 ∈ Zi = V (f0, . . . , fm) , fi ∈ C{z}[w ] , f0 monic

deg = d > deg fi for i > 0 . Res (f0,
∑m

i=1 ti fi ) =
∑
|α|=d t

αRα

=: R(z , t) , Rα converging on an open 0 ∈ V2 ⊂ V1 ⇒ near 0



holds a ∈ p(Zi ) iff R(a, t) = 0 ∀ t ∈ Cm iff all Rα(a) = 0 . �

Lemma: X1 3 0 closed analytic in open ball U ⊂ Cn around 0.

X0 closed analytic in U\X1. Either X0 ∪ X1 = U or exists a line

l through 0 and ball U1 ⊂ U around 0, X1 ∩ l ∩ U1 = {0} and

X0 ∩ l ∩ U1 is countable with the only limit point being 0 ∈ Cn.

Proof: Take P ∈ U\(X0 ∪ X1) if it is nonempty. Let l be the line

joining P and 0. Then X1 ∩ l is analytic and countably discrete in

U ∩ l and X0 ∩ l analytic and countable in U\X1 ∩ l with limit

points in X1 ∩ l . Near 0, take U1 such that U1 ∩ X1 ∩ l = {0}. �



p|X0 off p−1p(X1) ∪ Crp|X0 is a finite covering

Step 1: Assuming X0 ∪ X1 $ U, by Lemma ∃l , ∃ projection

p : Cn → Cn−1 s.th. l = p−1(0). (X0 ∪ X1) ∩ l ∩ U1 compact ⇒

∃ nbhds U2 ⊂ U1 and V ⊂ Cn−1 of 0 s.th. p(U2) ⊂ V and

res p : (X0 ∪ X1) ∩ U2 → V is proper. By Proposition, we have:

Y1 := p(X1 ∩ U2) ⊂ V is analytic and res p : X1 ∩ U2 → Y1 is

finite-to-one; Y0 := p(X0 ∩ U2 − p−1(Y1)) ⊂ V − Y1 is analytic

and res p : (X0 ∩ U2 − p−1(Y1))→ Y0 is finite-to-one; finally,

all fibres p−1(y) are countable.



Keep projecting in this way until the image contains a nbhd of 0.

So ∃ p : Cn → Cr and open nbhds of 0: U1 ⊂ U, V ⊂ Cr , and

p(U1) ⊂ V s.th. res p : (X0 ∪ X1) ∩ U1 → V is proper and onto

with countable fibres; Y1 := p(X1 ∩ U1) ⊂ V is analytic and both

res p : X1 ∩ U1 → Y1 and res p : X0 ∩ U1 − p−1(Y1)→ V − Y1

are finite-to-one. Now apply this to X0 = X (r) and X1 = X ′.

V − Y1 ⊂ V is open dense; X (r) − p−1(Y1) ⊂ X (r) is open dense.

Assume V is a ball. So V − Y1 is connected.



q := p|
X (r)

: X (r) − p−1(Y1)→ V − Y1 is proper and finite-to-one.

Let B1 := {J = 0} ⊂ X (r) − p−1(Y1) where J is the Jacobian of q.

B1 ⊂ X (r) − p−1(Y1) is closed analytic. B := q(B1) ⊂ V − Y1 is

analytic by Proposition. By Sard’s Lemma, B is a nontrivial

analytic subset of V − Y1. Thus V − Y1 − B is dense in V and

X (r) − p−1(B ∪ Y1) is dense in X (r). Note V − Y1 − B is still

connected. Let π := res q : X (r) − p−1(B ∪ Y1)→ V − Y1 − B.

So locally on the source π is an iso. with constant size of fibre,

i.e., a finite unramified covering.



Beautiful construction from linear algebra

Lemma. Let p : Cn → Cr be any linear projection. For any

{xj}j=d
j=0 in Cn where x0 6= xj and p(x0) = p(xj) for all 1 ≤ j ≤ d ,

exists l ∈ (Cn)∗ s.th. l(x0) 6= l(xj) for all 1 ≤ j ≤ d .

Proof. If {lα} are any (n− r − 1)d + 1 linear functionals in general

position w.r. to the (n− r)-dimensional subspace p−1(0), then ∃ α

s.th. lα has the desired property. If not, for all α, exists j(α) s.th.

lα(x0) = lα(xj(α)). So exists j0 s.th. lα(x0) = lα(xj0) for n − r α’s.

By the linear independence of these lα, x0 = xj0 ?! �



Constructing analytic equations defining X (r) .

Step 2: Let d be the number of sheets in the covering π. Choose a

linear functional l on Cn. ∀ 1 ≤ j ≤ d , ∀ y ∈ V − Y1 − B, let

aj(y) be the j-th elem. sym. poly. of l(x1), · · · , l(xd) with

{x1, · · · , xd} = π−1(y). Then all aj are analytic on V − Y1 − B.

For every compact K ⊂ V , since p|X is proper, X ∩ p−1K is

compact. So l(x) is bounded on X (r) ∩ p−1K . Thus all aj are

bounded on K ∩ (V − Y1 − B). By Riemann Extension Thm, all aj

extend to analytic functions on V .



Let Fl(x) := l(x)d +
∑

1≤j≤d(−1)jaj(p(x)) · l(x)d−j . Then Fl is

analytic on p−1(V ). Fl ≡ 0 on X (r) − p−1(Y1 ∪ B). Hence Fl ≡ 0

on X (r). Let x ∈ p−1(V )− X (r) and let y = p(x). Let y = lim yk ,

yk ∈ V − Y1 − B. Thus π−1(yk) = {x (1)k , · · · , x (d)k } and because

res p : X (r) → V is proper, we can pass to a subseq s.t. for all

j = 1, · · · , d , x
(j)
k has a limit x (j) as k →∞. Thus x (j) ∈ X (r) so

x 6= x (j) for any j . By Lemma, ∃ l s.t. ∀ j , l(x) 6= l(x (j)). Fix l .



l(x
(1)
k ), · · · , l(x (d)k ) are the complete set of roots of the poly

td +
∑

1≤j≤d(−1)jaj(yk)td−j . So l(x (1)), · · · , l(x (d)) are the only

roots of the polynomial td +
∑

1≤j≤d(−1)jaj(y)td−j . Hence,

Fl(x) 6= 0. �



Corollary. X ⊂ Pn be an r -dim proj variety and let Y ⊂ X be

closed alg proper. Then X − Y is connected in classical top.

Proof. If X − Y = Z1 ∪ Z2, Zi open and closed in X − Y , then let

S = Sing X . Can stratify Z1 ∪Y ∪ S by taking X (r) = Z1\(S ∪Y )

and X (i) some suitable stratification of S ∪ Y for 0 ≤ i ≤ r − 1.

Then Z1 ∪ S ∪ Y and Z2 ∪ S ∪ Y are algebraic by Chow’s theorem.

X = (Z1 ∪ S ∪Y )∪ (Z2 ∪ S ∪Y ) and so X is not irreducible. ?! �



Stronger connectedness result on transverse spaces

Proposition: X ⊂ Pn projective variety with dimension r .

Mn−r−1 ⊂ Pn linear space disjoint from X . p : X → Pr projection

from M, Line l ⊂ Pr meets B := {x ∈ Pr | p not smooth over x}

transversely, s.th. X\p−1(B)→ Pr\B finite-sheeted connected

covering space. ⇒ p−1(l\B)→ l\B is a connected covering space.

Proof: Pick x0 ∈ l\B, and px0 the projection Pr\{x0} → Pr−1.

Take B0 set of non-smooth points of px0 |B .



Then B\p−1x0 (B0)→ Pr−1\B0 is a finite-sheeted covering space.

Take ly := p−1x0 (y) ∪ {x} for y ∈ Pr−1. Then Pr−1\B0 is the lines

ly meeting B transversely, l = ly0 for some y0. ly ∩ B is finite and

continuously varies over Pr−1\B0 ⇒ ly\B are diffeomorphic.

Suppose p−1(l\B) disconnected, then p−1(ly\B) is disconnected.

Take Ay ,z a connected component of p−1(ly\B) containing some

z , then
⋃

y Ay ,z\p−1(x) is clopen in X\p−1(B ∪ {x0} ∪ p−1x0 (B0)).

This contradicts the previous corollary. �



Corollary: X r ⊂ Pn, exists a linear subspace L, dim L = n − r + 1

such that X ∩ L is an irreducible curve and meet transversely.

Proof: Use the notation from Proposition, take pM : Pn −M → Pr

projection with center M. Then L := p−1M (l) ∪M has dimension

n − r + 1 and L ∩ X = p−1(l) is irreducible. Take z ∈ p−1(l\B),

z is smooth and we have dim(Tz,X + Tz,L) = n. �


