Closed ${ }^{*}$-analytic set $X=\bigcup_{j \leq r} X^{(j)}$, i.e. each
$X^{(j)}$ is j-dim manifold, is analytic and
Chow's Thm: in projective space X is algebraic.

Jia Ji and Shuyang Shen

Chow's Thm: Analytic $X \subset \mathbb{C} \mathbb{P}^{n}$ are algebraic.

Fact: Closed analytic $X \subset$ open $U \subset \mathbb{C}^{n}$ is *-analytic (due to Sing X being closed analytic of $\operatorname{dim} \operatorname{Sing} X<\operatorname{dim} X$).

Proof: Cone $Z \subset \mathbb{C}^{n+1}$ over X is *-analytic hence closed analytic including at $0 \in \mathbb{C}^{n+1} \Rightarrow Z=V\left(f_{1}, \ldots, f_{m}\right), f_{j} \in \mathbb{C}\{z\}$, and each
$f_{j}(\lambda z)=0$ for $z \in Z, \forall \lambda \in \mathbb{C}$. Say $f_{j}(z):=\sum_{k} f_{j, k}(z)$ with $f_{j, k}(\lambda z) \equiv \lambda^{k} f_{j, k}(z) \Rightarrow \operatorname{each}\left(\frac{\partial}{\partial \lambda}\right)^{k}\left(f_{j}(\lambda z)\right)_{\left.\right|_{\lambda=0}}=f_{j, k}(z)=0$ on Z,
i.e. Z is a zero set of finitely many $f_{j, k}(z)$ (via Hilb. Thm).

Plan of Proof for Main Thm: *-analytic \Rightarrow analytic

Induction on dimension r of $X . X=X^{(r)} \cup X^{\prime}$ with $\operatorname{dim} X^{\prime}<r$.
We may assume X^{\prime} is analytic and $\overline{X^{(r)}} \subset X^{(r)} \cup X^{\prime}$. We'll prove
$\overline{X^{(r)}}$ is analytic. Step 1: Construct an appropriate projection map $p: \mathbb{C}^{n} \rightarrow \mathbb{C}^{r}$ which realizes a local model of $X^{(r)}$. Step 2: Use this projection map to construct analytic functions whose common zeroes are exactly points in $\overline{X^{(r)}}$ and thus complete the proof.

To construct this projection p, we first need two results.
In what follows, $X_{0}=X^{(r)}$ and $X_{1}=X^{\prime}$.

Proper projections $p_{\left.\right|_{X}}: X \rightarrow$ open $V \subset \mathbb{C}^{n}:$

Proposition: For analytic $X \subset U \subset \mathbb{C}^{n+r}$, set U open with $p(U) \subset V$, set $p(X)$ is analytic, $p_{\mid x}: X \rightarrow V$ finite-to-one.

Proof: Say $r=1$ (\Rightarrow general case). Let $y \in V \Rightarrow X \cap p^{-1}(y)=$ $\left\{a_{1}, \ldots, a_{k}\right\}$ being compact. Let disjoint open $U_{i} \ni a_{i} \Rightarrow \exists$ open $y \in V_{1} \subset V$ s.th. $p^{-1}\left(V_{1}\right) \subset \bigcup_{i} U_{i} ; X \cap p^{-1}\left(V_{1}\right) \cap U_{i}=: Z_{i}$. Say $y=0, a_{i}=0 \in Z_{i}=V\left(f_{0}, \ldots, f_{m}\right), f_{i} \in \mathbb{C}\{z\}[w], f_{0}$ monic $\operatorname{deg}=d>\operatorname{deg} f_{i}$ for $i>0$. Res $\left(f_{0}, \sum_{i=1}^{m} t_{i} f_{i}\right)=\sum_{|\alpha|=d} t^{\alpha} R_{\alpha}$ $=: \mathrm{R}(z, t), R_{\alpha}$ converging on an open $0 \in V_{2} \subset V_{1} \Rightarrow$ near 0
holds $a \in p\left(Z_{i}\right)$ iff $\mathrm{R}(a, t)=0 \forall t \in \mathbb{C}^{m}$ iff all $R_{\alpha}(a)=0$.
Lemma: $X_{1} \ni 0$ closed analytic in open ball $U \subset \mathbb{C}^{n}$ around 0 .
X_{0} closed analytic in $U \backslash X_{1}$. Either $X_{0} \cup X_{1}=U$ or exists a line
I through 0 and ball $U_{1} \subset U$ around $0, X_{1} \cap I \cap U_{1}=\{0\}$ and
$X_{0} \cap I \cap U_{1}$ is countable with the only limit point being $0 \in \mathbb{C}^{n}$.
Proof: Take $P \in U \backslash\left(X_{0} \cup X_{1}\right)$ if it is nonempty. Let $/$ be the line joining P and 0 . Then $X_{1} \cap /$ is analytic and countably discrete in $U \cap I$ and $X_{0} \cap I$ analytic and countable in $U \backslash X_{1} \cap I$ with limit points in $X_{1} \cap I$. Near 0 , take U_{1} such that $U_{1} \cap X_{1} \cap I=\{0\}$.
$p_{\left.\right|_{X_{0}}}$ off $p^{-1} p\left(X_{1}\right) \cup \operatorname{Cr} p_{\left.\right|_{x_{0}}}$ is a finite covering

Step 1: Assuming $X_{0} \cup X_{1} \varsubsetneqq U$, by Lemma \exists, \exists projection $p: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$ s.th. $I=p^{-1}(0) .\left(X_{0} \cup X_{1}\right) \cap I \cap U_{1}$ compact \Rightarrow \exists nbhds $U_{2} \subset U_{1}$ and $V \subset \mathbb{C}^{n-1}$ of 0 s.th. $p\left(U_{2}\right) \subset V$ and res $p:\left(X_{0} \cup X_{1}\right) \cap U_{2} \rightarrow V$ is proper. By Proposition, we have: $Y_{1}:=p\left(X_{1} \cap U_{2}\right) \subset V$ is analytic and res $p: X_{1} \cap U_{2} \rightarrow Y_{1}$ is finite-to-one; $Y_{0}:=p\left(X_{0} \cap U_{2}-p^{-1}\left(Y_{1}\right)\right) \subset V-Y_{1}$ is analytic and res $p:\left(X_{0} \cap U_{2}-p^{-1}\left(Y_{1}\right)\right) \rightarrow Y_{0}$ is finite-to-one; finally, all fibres $p^{-1}(y)$ are countable.

Keep projecting in this way until the image contains a nbhd of 0 .
So $\exists p: \mathbb{C}^{n} \rightarrow \mathbb{C}^{r}$ and open nbhds of $0: U_{1} \subset U, V \subset \mathbb{C}^{r}$, and $p\left(U_{1}\right) \subset V$ s.th. res $p:\left(X_{0} \cup X_{1}\right) \cap U_{1} \rightarrow V$ is proper and onto with countable fibres; $Y_{1}:=p\left(X_{1} \cap U_{1}\right) \subset V$ is analytic and both res $p: X_{1} \cap U_{1} \rightarrow Y_{1}$ and res $p: X_{0} \cap U_{1}-p^{-1}\left(Y_{1}\right) \rightarrow V-Y_{1}$ are finite-to-one. Now apply this to $X_{0}=X^{(r)}$ and $X_{1}=X^{\prime}$. $V-Y_{1} \subset V$ is open dense; $X^{(r)}-p^{-1}\left(Y_{1}\right) \subset X^{(r)}$ is open dense.

Assume V is a ball. So $V-Y_{1}$ is connected.
$q:=p_{\left.\right|_{X(r)}}: X^{(r)}-p^{-1}\left(Y_{1}\right) \rightarrow V-Y_{1}$ is proper and finite-to-one.
Let $B_{1}:=\{J=0\} \subset X^{(r)}-p^{-1}\left(Y_{1}\right)$ where J is the Jacobian of q.
$B_{1} \subset X^{(r)}-p^{-1}\left(Y_{1}\right)$ is closed analytic. $B:=q\left(B_{1}\right) \subset V-Y_{1}$ is
analytic by Proposition. By Sard's Lemma, B is a nontrivial
analytic subset of $V-Y_{1}$. Thus $V-Y_{1}-B$ is dense in V and
$X^{(r)}-p^{-1}\left(B \cup Y_{1}\right)$ is dense in $X^{(r)}$. Note $V-Y_{1}-B$ is still connected. Let $\pi:=\operatorname{res} q: X^{(r)}-p^{-1}\left(B \cup Y_{1}\right) \rightarrow V-Y_{1}-B$.

So locally on the source π is an iso. with constant size of fibre,
i.e., a finite unramified covering.

Beautiful construction from linear algebra

Lemma. Let $p: \mathbb{C}^{n} \rightarrow \mathbb{C}^{r}$ be any linear projection. For any
$\left\{x_{j}\right\}_{j=0}^{j=d}$ in \mathbb{C}^{n} where $x_{0} \neq x_{j}$ and $p\left(x_{0}\right)=p\left(x_{j}\right)$ for all $1 \leq j \leq d$, exists $I \in\left(\mathbb{C}^{n}\right)^{*}$ s.th. $I\left(x_{0}\right) \neq I\left(x_{j}\right)$ for all $1 \leq j \leq d$.

Proof. If $\left\{I_{\alpha}\right\}$ are any $(n-r-1) d+1$ linear functionals in general position w.r. to the $(n-r)$-dimensional subspace $p^{-1}(0)$, then $\exists \alpha$ s.th. I_{α} has the desired property. If not, for all α, exists $j(\alpha)$ s.th. $I_{\alpha}\left(x_{0}\right)=I_{\alpha}\left(x_{j(\alpha)}\right)$. So exists j_{0} s.th. $I_{\alpha}\left(x_{0}\right)=I_{\alpha}\left(x_{j_{0}}\right)$ for $n-r \alpha$'s. By the linear independence of these $I_{\alpha}, x_{0}=x_{j 0}$?! \square

Constructing analytic equations defining $\overline{X^{(r)}}$.

Step 2: Let d be the number of sheets in the covering π. Choose a linear functional / on $\mathbb{C}^{n} . \forall 1 \leq j \leq d, \forall y \in V-Y_{1}-B$, let $a_{j}(y)$ be the j-th elem. sym. poly. of $I\left(x_{1}\right), \cdots, l\left(x_{d}\right)$ with $\left\{x_{1}, \cdots, x_{d}\right\}=\pi^{-1}(y)$. Then all a_{j} are analytic on $V-Y_{1}-B$.

For every compact $K \subset V$, since $p_{\mid x}$ is proper, $X \cap p^{-1} K$ is compact. So $I(x)$ is bounded on $X^{(r)} \cap p^{-1} K$. Thus all a_{j} are bounded on $K \cap\left(V-Y_{1}-B\right)$. By Riemann Extension Thm, all a_{j} extend to analytic functions on V.

Let $F_{l}(x):=I(x)^{d}+\sum_{1 \leq j \leq d}(-1)^{j} a_{j}(p(x)) \cdot I(x)^{d-j}$. Then F_{l} is analytic on $p^{-1}(V) . F_{I} \equiv 0$ on $X^{(r)}-p^{-1}\left(Y_{1} \cup B\right)$. Hence $F_{I} \equiv 0$ on $\overline{X^{(r)}}$. Let $x \in p^{-1}(V)-\overline{X^{(r)}}$ and let $y=p(x)$. Let $y=\lim y_{k}$, $y_{k} \in V-Y_{1}-B$. Thus $\pi^{-1}\left(y_{k}\right)=\left\{x_{k}^{(1)}, \cdots, x_{k}^{(d)}\right\}$ and because res $p: \overline{X^{(r)}} \rightarrow V$ is proper, we can pass to a subseq s.t. for all $j=1, \cdots, d, x_{k}^{(j)}$ has a limit $x^{(j)}$ as $k \rightarrow \infty$. Thus $x^{(j)} \in \overline{X^{(r)}}$ so $x \neq x^{(j)}$ for any j. By Lemma, $\exists I$ s.t. $\forall j, I(x) \neq I\left(x^{(j)}\right)$. Fix I.
$I\left(x_{k}^{(1)}\right), \cdots, I\left(x_{k}^{(d)}\right)$ are the complete set of roots of the poly $t^{d}+\sum_{1 \leq j \leq d}(-1)^{j} a_{j}\left(y_{k}\right) t^{d-j}$. So $I\left(x^{(1)}\right), \cdots, I\left(x^{(d)}\right)$ are the only roots of the polynomial $t^{d}+\sum_{1 \leq j \leq d}(-1)^{j} a_{j}(y) t^{d-j}$. Hence, $F_{I}(x) \neq 0 . \square$

Corollary. $X \subset \mathbb{P}^{n}$ be an r-dim proj variety and let $Y \subset X$ be closed alg proper. Then $X-Y$ is connected in classical top.

Proof. If $X-Y=Z_{1} \cup Z_{2}, Z_{i}$ open and closed in $X-Y$, then let $S=$ Sing X. Can stratify $Z_{1} \cup Y \cup S$ by taking $X^{(r)}=Z_{1} \backslash(S \cup Y)$ and $X^{(i)}$ some suitable stratification of $S \cup Y$ for $0 \leq i \leq r-1$.

Then $Z_{1} \cup S \cup Y$ and $Z_{2} \cup S \cup Y$ are algebraic by Chow's theorem. $X=\left(Z_{1} \cup S \cup Y\right) \cup\left(Z_{2} \cup S \cup Y\right)$ and so X is not irreducible. ?! \square

Stronger connectedness result on transverse spaces

Proposition: $X \subset \mathbb{P}^{n}$ projective variety with dimension r.
$M^{n-r-1} \subset \mathbb{P}^{n}$ linear space disjoint from $X . p: X \rightarrow \mathbb{P}^{r}$ projection
from M, Line $I \subset \mathbb{P}^{r}$ meets $B:=\left\{x \in \mathbb{P}^{r} \mid p\right.$ not smooth over $\left.x\right\}$ transversely, s.th. $X \backslash p^{-1}(B) \rightarrow \mathbb{P}^{r} \backslash B$ finite-sheeted connected covering space. $\Rightarrow p^{-1}(\Lambda B) \rightarrow \Lambda B$ is a connected covering space.

Proof: Pick $x_{0} \in \Lambda \backslash B$, and $p_{x_{0}}$ the projection $\mathbb{P}^{r} \backslash\left\{x_{0}\right\} \rightarrow \mathbb{P}^{r-1}$.
Take B_{0} set of non-smooth points of $\left.p_{x_{0}}\right|_{B}$.

Then $B \backslash p_{x_{0}}^{-1}\left(B_{0}\right) \rightarrow \mathbb{P}^{r-1} \backslash B_{0}$ is a finite-sheeted covering space.
Take $I_{y}:=p_{x_{0}}^{-1}(y) \cup\{x\}$ for $y \in \mathbb{P}^{r-1}$. Then $\mathbb{P}^{r-1} \backslash B_{0}$ is the lines
I_{y} meeting B transversely, $I=I_{y_{0}}$ for some $y_{0} . I_{y} \cap B$ is finite and continuously varies over $\mathbb{P}^{r-1} \backslash B_{0} \Rightarrow I_{y} \backslash B$ are diffeomorphic.

Suppose $p^{-1}(\Lambda \backslash B)$ disconnected, then $p^{-1}\left(I_{y} \backslash B\right)$ is disconnected.
Take $A_{y, z}$ a connected component of $p^{-1}\left(I_{y} \backslash B\right)$ containing some z, then $\bigcup_{y} A_{y, z} \backslash p^{-1}(x)$ is clopen in $X \backslash p^{-1}\left(B \cup\left\{x_{0}\right\} \cup p_{x_{0}}^{-1}\left(B_{0}\right)\right)$.

This contradicts the previous corollary.

Corollary: $X^{r} \subset \mathbb{P}^{n}$, exists a linear subspace $L, \operatorname{dim} L=n-r+1$ such that $X \cap L$ is an irreducible curve and meet transversely.

Proof: Use the notation from Proposition, take $p_{M}: \mathbb{P}^{n}-M \rightarrow \mathbb{P}^{r}$ projection with center M. Then $L:=p_{M}^{-1}(I) \cup M$ has dimension $n-r+1$ and $L \cap X=p^{-1}(I)$ is irreducible. Take $z \in p^{-1}(\Lambda B)$,
z is smooth and we have $\operatorname{dim}\left(T_{z, X}+T_{z, L}\right)=n$. \square

