de Rham Theorem

May 10, 2016

Stokes formula and the integration morphism:

Let $M = \bigcup_{\sigma \in \Sigma} \sigma$ be a smooth triangulated manifold.

Fact: Stokes formula $\int_{\partial \sigma} \omega = \int_{\sigma} d\omega$ holds, e.g. for simplices.

It can be used to define linear map Int_k . The map

 $Int_{k-1}: \Omega^k(M) \to \Sigma_k^*$ defines a homomorphism of complexes.

Note: Stokes thm. implies commutativity of the diagram:

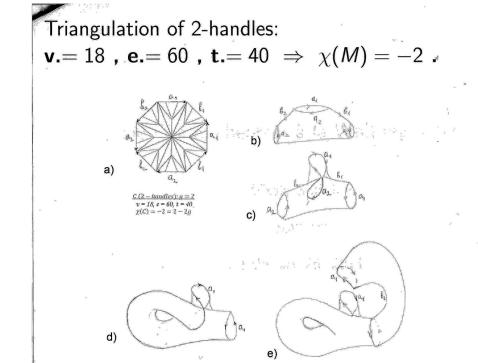
$$\cdots \longrightarrow \Omega^{k-1}(M) \xrightarrow{d_{k-1}} \Omega^{k}(M) \xrightarrow{d_{k}} \Omega^{k+1}(M) \longrightarrow \cdots$$

$$\underset{lnt_{k-1}}{\underset{m}{|\uparrow}} \uparrow \Phi^{k-1} \underset{m}{\underset{m}{|ht_{k}|}} \uparrow \Phi^{k} \underset{m}{\underset{m}{|ht_{k+1}|}} \uparrow \Phi^{k+1}$$

$$\cdots \longrightarrow \Sigma_{k-1}^{*} \xrightarrow{\partial_{k-1}^{*}} \Sigma_{k}^{*} \xrightarrow{\partial_{k}^{*}} \Sigma_{k+1}^{*} \longrightarrow \cdots$$

Elementary Forms:

If $p_1, p_2, \ldots p_s$ are the vertices of complex K , the set $\{St(p_k)\}_k$, where $St(p_k) := \bigcup_{\sigma: \overline{\sigma} \ni p_k} \sigma$, forms an open cover for M. The **partition of unity** theorem guarantees the existence of a C^{∞} -partition of unity ϕ_1, \ldots, ϕ_s subordinate to $\{St(p_k)\}_k$. Below we denote the dual basis to simpleces by the same letters. Let $\sigma = [p_{\lambda_0} \dots p_{\lambda_k}]$ be an oriented simplex. Corresponding to σ is the **elementary differential form** of order k $\Phi^{k}(p_{\lambda_{0}},\ldots,p_{\lambda_{i}})=k!\sum_{i=0}^{k}(-1)^{i}\phi_{\lambda_{i}}d\phi_{\lambda_{0}}\wedge\cdots\wedge\widehat{d\phi_{\lambda_{i}}}\wedge\cdots\wedge d\phi_{\lambda_{k}}.$



alian Ministernation of the taskshi fill () is a long of

 ${}^{{}_{\mathrm{c}},{}_{\mathrm{c}},{}_{\mathrm{c}}}$, $g_{r_{\mathrm{c}},\mathrm{c}}$, by a planetary a

$St(\mathcal{G}_{1}) \cap St(\mathcal{G}_{2}) \cap St(\mathcal{G}_{r}) = \emptyset$

Cardia and a to by admitting of

As and while converse to one

1. Right inverse to integration via elementary forms

Proof: induction on *k* . Below $\omega \cdot \sigma$ is the pairing by integration.

$$k=0 \implies \operatorname{Int}^0(\Phi^0(q_i))\cdot q_j := (\Phi^0(q_i))(q_j) = \Phi_i(q_j) = \delta_{ij} \; .$$

Inductive step k > 0 : if $\sigma \neq \tau$ then $\tau \subset M \setminus St(\sigma)$ (Lemma 1).

Then
$$Int^k(\phi^k[\sigma])\cdot au = 0$$
 .

Let
$$\partial \sigma =: \alpha + \text{ [other (k-1)-faces of] } \sigma$$
 .

Then
$$\partial^*(\alpha) = \sum_{\partial \tau \supset \alpha} \tau$$
. So, $\int_{\sigma} \Phi^k(\sigma) = \int_{\sigma} \Phi^k \partial^*(\alpha) = \int_{\sigma} d\Phi^{k-1}(\alpha) = \int_{\partial \sigma} \Phi^{k-1}(\alpha) = \int_{\alpha} \Phi^{k-1}(\alpha) = 1$.

(Using Stokes, Lemma 2, and the inductive hypothesis)

Two lemmas needed for Step 1.

Remark: Supp $\Phi(\sigma) \subset \bigcap_{a \in V(\sigma)} St(a) := St(\sigma)$. **Lemma 1.** $\tau \neq \sigma$; $\tau, \sigma \in \Sigma_k \implies \tau \in M \setminus St(\sigma)$. **Proof**. Let $b \in V(\tau) \setminus V(\sigma)$. Either $(b, \sigma) \in \Sigma_{k+1} \implies$ $supp \Phi(\sigma) \cap St(b) = \emptyset$ or $(b, \sigma) \notin \Sigma_{k+1}$. In the latter case, if $\beta \in \Sigma_{k+1}, b \in V(\beta) \implies \sigma \notin \mathcal{F}(\beta) \implies St(b) \cap \sigma = \emptyset.$ In either case, $\int_{\sigma} \Phi(\tau) = \int_{\tau} \Phi(\sigma) = 0$, or, $[\sigma] \cdot \tau = [\tau] \cdot \sigma = 0$. **Lemma 2.** $\Phi^k \partial^* = d \Phi^{k-1}$. Observe that $\sum \phi_i = 1$, so $\sum d\phi_i = 0$. Also $d\Phi^k(q_{\lambda_0} \dots q_{\lambda_k}) = (k+1)! d\lambda_0 \wedge \dots \wedge d\lambda_k$.

Let
$$\sigma = q_{\lambda_0} \dots q_{\lambda_k}$$
, then

$$\frac{1}{(k+1)!} \Phi^{k+1} \partial^*[\sigma] = \frac{1}{(k+1)!} \sum_{[q_r \sigma] \in \Sigma_{k+1}} \Phi^{k+1}[q_r \sigma] =$$

$$\sum_{[q_r \sigma] \in \Sigma_{k+1}} [\phi_{q_r} d\phi_{\lambda_0} \wedge \dots \wedge d\phi_{\lambda_k} + \sum_{i=0}^k (-1)^{i+1} \phi_{\lambda_i} d\phi_{q_r} \wedge d\phi_{\lambda_0} \wedge$$

$$\dots \wedge \widehat{d\phi_{\lambda_i}} \wedge \dots d\phi_{\lambda_k}] =$$

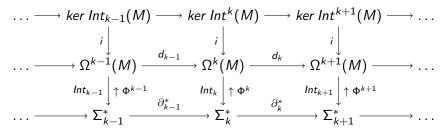
$$\sum_{[q_r \sigma] \in \Sigma_{k+1}} \phi_{q_r} d\phi_{\lambda_0} \wedge \dots \wedge d\phi_{\lambda_k} + \sum_{[q_r \sigma] \notin \Sigma_{k+1}, q_r \notin V(\sigma)} d\phi_{q_r} \wedge$$

$$\sum_{i=0}^k (-1)^i \phi_{\lambda_i} d\phi_{\lambda_0} \wedge \dots \wedge \widehat{d\phi_{\lambda_i}} \wedge \dots d\phi_{\lambda_k}] + \sum_{j=0}^k d\phi_{\lambda_j} \wedge$$

$$\sum_{i=0}^k (-1)^i \phi_{\lambda_i} d\phi_{\lambda_0} \wedge \dots \wedge \widehat{d\phi_{\lambda_i}} \dots \wedge d\phi_{\lambda_k} =$$

$$d\phi_{\lambda_0} \wedge \dots \wedge \dots d\phi_{\lambda_k} = \frac{1}{(k+1)!} d\Phi^k[\sigma].$$

de Rham Complex



Let k^{th} de Rham cohomology group $H^k(M) := \ker d_k / im d_{k-1}$.

Let k^{th} cohomology group of Σ $H^k(\Sigma) := \ker \partial_k^* / im \partial_{k-1}^*$.

Note: $Int_k : \Omega^k(M) \to \Sigma_k^*$ induces an isomorphism

 $Int_k: H^k(M) \to H^k(\Sigma)$ of differential complexes.

Acyclicity of the kernel of Int. map.

Basic fact: **Poincare Lemma**: If U is a contractible open set in

 \mathbb{R}^n and α a k-smooth closed form on U, then α is exact,

i.e there exists a form β such that $\alpha = d\beta$.

Observe that $St(\sigma)$ is contractible so Poincare lemma applies.

Next fact that we will need is the extension of forms theorem.

Extension of forms theorem.

 (a_k) Let $U(\partial \sigma)$ be ngbhd of of $\partial \sigma$, σ a *s*-simplex, $\omega \in \Omega^k(U(\partial \sigma))$ closed, k > 0, s > 1. If $\int_{\partial \sigma} \omega = 0$ and s = k + 1, then $\exists \tilde{\omega} \in \Omega^k(U(\sigma))$ cl.s.t. $\tilde{\omega}|_{U(\partial\sigma)} = \omega$, perhaps by shrinking $U(\partial\sigma)$. (b_k) If $s \ge 1$, $k \ge 1, \sigma$ an s-simplex, $\omega \in \Omega^k(U(\sigma))$ closed and $\alpha \in \Omega^{k-1}(U(\partial \sigma)), U(\partial \sigma) \subset U(\sigma), \text{ s.t. } d\alpha = \omega|_{U(\partial \sigma)}.$ When s = k assume $\int_{\sigma} \omega = \int_{\partial \sigma} \alpha$. Then exists $\tilde{\alpha} \in \Omega^{k-1}(U(\sigma))$ s.t. $\tilde{\alpha}|_{U(\partial\sigma)} = \alpha$ and $d\tilde{\alpha} = \omega$, maybe shrinking $U(\sigma) \supset U(\partial\sigma)$.

Proof of acyclicity, by induction on $s \leq n$.

Consider an *s*-dim. subcomplex $L_s := \bigcup_i \sigma_i^s$ and $\omega \in ker(Int_k)$ a closed form.

Outline: Construct inductively nbhds $U(L_s)$ of L_s and forms $\alpha_s \in \Omega^{k-1}(U(L_s))$ s.t. $\alpha_s|_{U(L_s) \cap U(L_{s-1})} = \alpha_{s-1}, \ d\alpha_s = \omega|_{U(L_s)}$

and $Int^{k-1}(\alpha_{k-1}) = 0$. Then $\alpha_n \in ker(Int_{k-1})$ and $d\alpha_n = \omega$,

proving that ker(Int.) is acyclic.

Proof of acyclicity, by induction.

Basis step:

Choose disjoint, contractible nbds $U(\sigma_i^0)$. By Poincare Lemma exists $\alpha'_0 \in \Omega^0(U(\sigma_i^0))$ with $d\alpha'_0 = \omega|_{U(\sigma_i^0)}$. Set $\alpha_0 := \alpha'_0$ for k > 1 and $\alpha_0 := \alpha'_0 - \alpha'_0(\sigma_i^0)$ for k = 1 so $Int_0(\alpha_0) = 0$ as required for s = 0.

Inductive Step:

Given α_{s-1} , for each σ_i^s we now construct nbds $U(\sigma_i^s)$ s.t. overlaps of each two are subsets of $U(L_{s-1})$ and also forms

Proof of acyclicity, by induction.

 $\alpha_{s,i} \in \Omega^{k-1}(U(\sigma_i^s))$ that coincide with α_{s-1} on overlaps. Inductive assumption includes $d\alpha_{s-1} = \omega|_{U(L_{s-1})}$ and $\alpha_{s-1} \in ker(Int_{k-1}(U(L_{s-1})))$ for s = k. Then (b_k) gives $\tilde{\alpha}_{s,i} \in \Omega^{k-1}(U(\sigma_i^s))$ s.t. $d\tilde{\alpha}_{s,i} = \omega|_{U(\sigma_i^s)}$ and $\tilde{\alpha}_{s,i}|_{U(\partial\sigma^s)} = \alpha_{s-1}$. Glue $\tilde{\alpha}_{s,i}$ into $\tilde{\alpha}_s$ on $U(L_s) := \bigcup_i U(\sigma_i^s)$. We set $\alpha_s := \tilde{\alpha}_s$ for $s \neq k-1$ and $\alpha_{\mathfrak{s}} := \tilde{\alpha}_{\mathfrak{s}} - \Phi^{k-1}(Int_{k-1}(\tilde{\alpha}_{\mathfrak{s}}))$ for $\mathfrak{s} = k-1$.

Proof of acyclicity, by induction (concluded).

Note that Φ and *Int*, are homomorphisms of complexes and the

former is the right inverse of the latter by [1] imply

$$dlpha_{k-1} = \omega - \phi^k(Int_k(\omega)) = \omega$$
 on $U(L_s)$ and also that
 $Int_{k-1}(\alpha_{k-1}) = Int_{k-1}(\tilde{\alpha}_{k-1}) - Int_{k-1}(\tilde{\alpha}_{k-1}) = 0$

concluding the proof.

Euler characteristic $\chi(T(M))$ does not depend on the triangulation T(M) of M

Reason: Corollary to the Theorem implies $ker(d'_k) = im(d'_{k-1})$

where d' is the restriction of the exterior derivative in the kernel.

which in turn implies $\frac{ker(\partial_k^*)}{im(\partial_{k-1}^*)} \cong \frac{im(d_k)}{im(d_{k-1})}$.

Note: $\#\{\sigma \in T(M) : dim\sigma = k\} = dim_{\mathbb{R}}\Sigma_k = \dim_{\mathbb{R}}\Sigma^k$.

Theorem: Euler characteristic

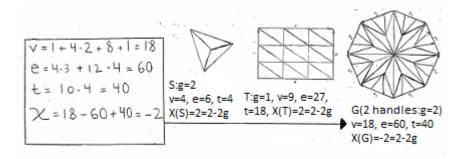
$$\chi(M) := \sum_{k=1}^{n} (-1)^k dim_{\mathbb{R}} \frac{ker(d_k)}{im(d_{k-1})} = \chi(\mathcal{T}(M)).$$

Corollary: $\chi(T(M))$ does not depend on triang. T(M) of M.

Proof of the corollary

$$dim_{\mathbb{R}}\Sigma^{k} = dim_{\mathbb{R}}(Im(\partial_{k}^{*})) + dim_{\mathbb{R}}\frac{ker(\partial_{k}^{*})}{im(\partial_{k-1}^{*})} + dim_{\mathbb{R}}Im(\partial_{k-1}^{*}).$$

Therefore $\chi(M) = \sum_{k=0}^{n} (-1)^k \dim_{\mathbb{R}} \frac{\ker(\partial_k^*)}{\operatorname{im}(\partial_{k-1}^*)} = \chi(T(M)).$



Extension of Forms Theorem

Proof: by induction on k. **Outline:** Show (a_0) holds, then

$$(a_{k-1}) \implies (b_k)$$
, and finally, $(b_k) \implies (a_k)$.

 (a_0) : Say $\omega \in \Omega^0(U(\partial \sigma))$ closed. Then ω is locally constant.

If s > 1, then $\omega \equiv const$ in $U(\partial \sigma)$ so we can let $let \ \tilde{\omega} = \omega$ in $U(\sigma)$.

If s = 1 then $\sigma = p_0 p_1$ as an 1-simplex; also it is given that

$$\int_{\partial\sigma}\omega = 0$$
. But $\int_{\partial\sigma}\omega = \omega(p_1) - \omega(p_0) = 0$ so we can let $\tilde{\omega} = \omega$.

 $(a_{k-1}) \implies (b_k)$: Say ω, α are as in (b_k) . Poincare lemma gives

 $\alpha' \in \Omega^{k-1}(U(\sigma)), \ d\alpha' = \omega|_{U(\sigma)}. \text{ Let } \alpha - \alpha' =: \beta \in \Omega^{k-1}(U(\partial \sigma)).$

Then β is closed in $U(\partial(\sigma))$. If s = k then $\int_{\partial \sigma} \beta = \int_{\partial} \alpha - \int_{\partial \sigma} \alpha'$ $=\int_{\sigma}\omega-\int_{\sigma}d\alpha'=0$. Applying (a_{k-1}) to β we get a closed form $\tilde{\beta} \in \Omega^{k-1}(U(\sigma))$ such that $\tilde{\beta}|_{U(\partial \sigma)} = \beta$. Then $\tilde{\alpha} := (\tilde{\beta} + \alpha') \in \Omega^{k-1}(U(\sigma))$ is as required in (b_k) . $(b_k) \implies (a_k)$: Say $\sigma = (p_0 \dots p_s)$ and ω are as in $(a_k), k > 0$. Also, let $\sigma' := (p_1 \dots p_s) \in \mathcal{P}$, where \mathcal{P} is he union of proper faces of σ with p_0 as a vertex. Then ω is defined and closed in a ngbhd $U(\mathcal{P})$; clearly $U(\mathcal{P}) \subset St(p_0)$ and it is star-shaped.

Poincare lemma gives $\alpha' \in \Omega^{k-1}(U(\mathcal{P}))$ s.t. $d\alpha' = \omega|_{U(\mathcal{P})}$; this holds in particular in some nbhd $U(\partial \sigma') \subset U(\mathcal{P})$. For s = k + 1define $A := (\partial \sigma - \sigma') \in \Sigma_k$. Then $\partial A = -\partial \sigma'$, and hence $\int_{\sigma'} \omega - \int_{\partial \sigma'} \alpha' = \int_{\sigma'} \omega + \int_{A} d\alpha' = \int_{\partial \sigma} \omega = 0.$ Applying now (b_k) to simplex σ' we get $\tilde{\alpha'} \in \Omega^{k-1}(U(\sigma'))$ such that $\tilde{\alpha'}|_{U(\partial \sigma')} = \alpha'$ and $d\tilde{\alpha'} = \omega|_{U(\sigma')}$. Shrink $U(\mathcal{P})$ so that $U(\mathcal{P}) \cap U(\sigma') \subset U(\partial \sigma')$, let $U(\partial \sigma) := U(\mathcal{P}) \bigcup U(\sigma')$ and set $\tilde{\alpha} \in \Omega^{k-1}(U(\partial \sigma))$ by $\tilde{\alpha} = \alpha'$ on $U(\mathcal{P})$ and $\tilde{\alpha} = \tilde{\alpha'}$ on $U(\sigma')$. Extending $\tilde{\alpha}$ using partition

of unity to $\Omega^{k-1}(U(\sigma))$ gives the closed form (required by (a_k))

 $\tilde{\omega} := d\tilde{\alpha}$ since $\tilde{\omega} = d\tilde{\alpha}|_{\partial\sigma} = \omega$ by construction of α' and $\tilde{\alpha'}$.