de Rham Theorem

May 10, 2016

Stokes formula and the integration morphism:

Let $M=\bigcup_{\sigma \in \Sigma} \sigma$ be a smooth triangulated manifold.
Fact: Stokes formula $\int_{\partial \sigma} \omega=\int_{\sigma} d \omega$ holds, e.g. for simplices.
It can be used to define linear map $\operatorname{Int} k_{k}$. The map
Int $t_{k-1}: \Omega^{k}(M) \rightarrow \Sigma_{k}^{*}$ defines a homomorphism of complexes.
Note: Stokes thm. implies commutativity of the diagram:

Elementary Forms:

If $p_{1}, p_{2}, \ldots p_{s}$ are the vertices of complex K, the set $\left\{\operatorname{St}\left(p_{k}\right)\right\}_{k}$, where $\operatorname{St}\left(p_{k}\right):=\bigcup_{\sigma: \bar{\sigma} \ni p_{k}} \sigma$, forms an open cover for M.

The partition of unity theorem guarantees the existence of a C^{∞}-partition of unity $\phi_{1}, \ldots, \phi_{s}$ subordinate to $\left\{\operatorname{St}\left(p_{k}\right)\right\}_{k}$. Below we denote the dual basis to simpleces by the same letters. Let $\sigma=\left[p_{\lambda_{0}} \ldots p_{\lambda_{k}}\right]$ be an oriented simplex. Corresponding to σ is the elementary differential form of order k $\Phi^{k}\left(p_{\lambda_{0}}, \ldots, p_{\lambda_{k}}\right)=k!\sum_{i=0}^{k}(-1)^{i} \phi_{\lambda_{i}} d \phi_{\lambda_{0}} \wedge \cdots \wedge \widehat{d \phi_{\lambda_{i}}} \wedge \cdots \wedge d \phi_{\lambda_{k}}$.

Triangulation of 2-handles:
$\mathbf{v} .=18, \mathbf{e} .=60, \mathbf{t} .=40 \Rightarrow \chi(M)=-2$.
a)

$$
\begin{aligned}
& C(2-h a m d e s): g=2 \\
& v=18, e=60, t=40 \\
& x(c)=-2=2-2 g
\end{aligned}
$$

d)

e)

1. Right inverse to integration via elementary forms

Proof: induction on k. Below $\omega \cdot \sigma$ is the pairing by integration.
$k=0 \Longrightarrow \operatorname{Int}^{0}\left(\Phi^{0}\left(q_{i}\right)\right) \cdot q_{j}:=\left(\Phi^{0}\left(q_{i}\right)\right)\left(q_{j}\right)=\Phi_{i}\left(q_{j}\right)=\delta_{i j}$.
Inductive step $k>0$: if $\sigma \neq \tau$ then $\tau \subset M \backslash \operatorname{St}(\sigma)$ (Lemma 1).
Then $\operatorname{Int} t^{k}\left(\phi^{k}[\sigma]\right) \cdot \tau=0$.
Let $\partial \sigma=: \alpha+[$ other $(\mathrm{k}-1)$-faces of $]$.
Then $\partial^{*}(\alpha)=\sum_{\partial \tau \supset \alpha} \tau$. So, $\int_{\sigma} \Phi^{k}(\sigma)=\int_{\sigma} \Phi^{k} \partial^{*}(\alpha)=$
$\int_{\sigma} d \Phi^{k-1}(\alpha)=\int_{\partial \sigma} \Phi^{k-1}(\alpha)=\int_{\alpha} \Phi^{k-1}(\alpha)=1$.
(Using Stokes, Lemma 2, and the inductive hypothesis)

Two lemmas needed for Step 1.

Remark: Supp $\Phi(\sigma) \subset \bigcap_{a \in V(\sigma)} \operatorname{St}(a):=\operatorname{St}(\sigma)$.
Lemma 1. $\tau \neq \sigma ; \tau, \sigma \in \Sigma_{k} \Longrightarrow \tau \in M \backslash S t(\sigma)$.
Proof. Let $b \in V(\tau) \backslash V(\sigma)$. Either $(b, \sigma) \in \Sigma_{k+1} \Longrightarrow$
supp $\Phi(\sigma) \cap S t(b)=\emptyset$ or $(b, \sigma) \notin \Sigma_{k+1}$. In the latter case, if
$\beta \in \Sigma_{k+1}, b \in V(\beta) \Longrightarrow \sigma \notin \mathcal{F}(\beta) \Longrightarrow S t(b) \cap \sigma=\emptyset . \ln$ either case, $\int_{\sigma} \Phi(\tau)=\int_{\tau} \Phi(\sigma)=0$, or, $[\sigma] \cdot \tau=[\tau] \cdot \sigma=0$.

Lemma 2. $\Phi^{k} \partial^{*}=d \Phi^{k-1}$. Observe that $\sum \phi_{i}=1$, so
$\sum d \phi_{i}=0$. Also $d \Phi^{k}\left(q_{\lambda_{0}} \ldots q_{\lambda_{k}}\right)=(k+1)!d \lambda_{0} \wedge \cdots \wedge d \lambda_{k}$.

Let $\sigma=q_{\lambda_{0}} \ldots q_{\lambda_{k}}$, then

$$
\begin{aligned}
& \frac{1}{(k+1)!} \Phi^{k+1} \partial^{*}[\sigma]=\frac{1}{(k+1)!} \sum_{\left[q_{r} \sigma\right] \in \Sigma_{k+1}} \Phi^{k+1}\left[q_{r} \sigma\right]= \\
& \sum_{\left[q_{r} \sigma\right] \in \Sigma_{k+1}}\left[\phi_{q_{r}} d \phi_{\lambda_{0}} \wedge \cdots \wedge d \phi_{\lambda_{k}}+\sum_{i=0}^{k}(-1)^{i+1} \phi_{\lambda_{i}} d \phi_{q_{r}} \wedge d \phi_{\lambda_{0}} \wedge\right.
\end{aligned}
$$

$$
\left.\cdots \wedge \widehat{d \phi_{\lambda_{i}}} \wedge \ldots d \phi_{\lambda_{k}}\right]=
$$

$$
\sum_{\left[q_{r} \sigma\right] \in \Sigma_{k+1}} \phi_{q_{r}} d \phi_{\lambda_{0}} \wedge \ldots d \phi_{\lambda_{k}}+\sum_{\left[q_{r} \sigma\right] \notin \Sigma_{k+1}, q_{r} \notin V(\sigma)} d \phi_{q_{r}} \wedge
$$

$$
\left.\sum_{i=0}^{k}(-1)^{i} \phi_{\lambda_{i}} d \phi_{\lambda_{0}} \wedge \cdots \wedge \widehat{d \phi_{\lambda_{i}}} \wedge \ldots d \phi_{\lambda_{k}}\right]+\sum_{j=0}^{k} d \phi_{\lambda_{j}} \wedge
$$

$$
\sum_{i=0}^{k}(-1)^{i} \phi_{\lambda_{i}} d \phi_{\lambda_{0}} \wedge \cdots \wedge \widehat{d \phi_{\lambda_{i}}} \cdots \wedge d \phi_{\lambda_{k}}=
$$

$$
d \phi_{\lambda_{0}} \wedge \cdots \wedge \ldots d \phi_{\lambda_{k}}=\frac{1}{(k+1)!} d \Phi^{k}[\sigma] .
$$

de Rham Complex

Let $k^{\text {th }}$ de Rham cohomology group $H^{k}(M):=\operatorname{ker} d_{k} /$ im d_{k-1}.
Let $k^{\text {th }}$ cohomology group of $\Sigma H^{k}(\Sigma):=\operatorname{ker} \partial_{k}^{*} / i m \partial_{k-1}^{*}$.
Note: Int ${ }_{k}: \Omega^{k}(M) \rightarrow \Sigma_{k}^{*}$ induces an isomorphism Int $t_{k}: H^{k}(M) \rightarrow H^{k}(\Sigma)$ of differential complexes.

Acyclicity of the kernel of Int. map.

Basic fact: Poincare Lemma: If U is a contractible open set in
\mathbb{R}^{n} and α a k-smooth closed form on U, then α is exact,
i.e there exists a form β such that $\alpha=d \beta$.

Observe that $\operatorname{St}(\sigma)$ is contractible so Poincare lemma applies.
Next fact that we will need is the extension of forms theorem.

Extension of forms theorem.

$\left(a_{k}\right)$ Let $\left.U(\partial \sigma)\right)$ be ngbhd of of $\partial \sigma, \sigma$ a s-simplex,
$\omega \in \Omega^{k}(U(\partial \sigma))$ closed, $k \geq 0, s \geq 1$.
If $\int_{\partial \sigma} \omega=0$ and $s=k+1$, then $\exists \tilde{\omega} \in \Omega^{k}(U(\sigma))$ cl.s.t.
$\left.\tilde{\omega}\right|_{U(\partial \sigma)}=\omega$, perhaps by shrinking $U(\partial \sigma)$.
(b_{k}) If $s \geq 1, k \geq 1, \sigma$ an s-simplex, $\omega \in \Omega^{k}(U(\sigma))$ closed and
$\alpha \in \Omega^{k-1}(U(\partial \sigma)), U(\partial \sigma) \subset U(\sigma)$, s.t. $d \alpha=\left.\omega\right|_{U(\partial \sigma)}$.
When $s=k$ assume $\int_{\sigma} \omega=\int_{\partial \sigma} \alpha$. Then exists $\tilde{\alpha} \in \Omega^{k-1}(U(\sigma))$
s.t. $\left.\tilde{\alpha}\right|_{U(\partial \sigma)}=\alpha$ and $d \tilde{\alpha}=\omega$, maybe shrinking $U(\sigma) \supset U(\partial \sigma)$.

Consider an s-dim. subcomplex $L_{s}:=\bigcup_{i} \sigma_{i}^{s}$ and $\omega \in \operatorname{ker}\left(\ln t_{k}\right)$ a closed form.

Outline: Construct inductively nbhds $U\left(L_{s}\right)$ of L_{s} and forms
$\alpha_{s} \in \Omega^{k-1}\left(U\left(L_{s}\right)\right)$ s.t. $\left.\alpha_{s}\right|_{U\left(L_{s}\right) \cap U\left(L_{s-1}\right)}=\alpha_{s-1}, d \alpha_{s}=\left.\omega\right|_{U\left(L_{s}\right)}$
and $\operatorname{Int}{ }^{k-1}\left(\alpha_{k-1}\right)=0$. Then $\alpha_{n} \in \operatorname{ker}\left(\ln t_{k-1}\right)$ and $d \alpha_{n}=\omega$,
proving that $\operatorname{ker}($ Int.) is acyclic.

Proof of acyclicity, by induction.

Basis step:

Choose disjoint, contractible nbds $U\left(\sigma_{i}^{0}\right)$. By Poincare Lemma exists $\alpha_{0}^{\prime} \in \Omega^{0}\left(U\left(\sigma_{i}^{0}\right)\right)$ with $d \alpha_{0}^{\prime}=\left.\omega\right|_{U\left(\sigma_{i}^{0}\right)}$. Set $\alpha_{0}:=\alpha_{0}^{\prime}$ for
$k>1$ and $\alpha_{0}:=\alpha_{0}^{\prime}-\alpha_{0}^{\prime}\left(\sigma_{i}^{0}\right)$ for $k=1$ so $\operatorname{Int}\left(\alpha_{0}\right)=0$ as required for $s=0$.

Inductive Step:

Given α_{s-1}, for each σ_{i}^{s} we now construct nbds $U\left(\sigma_{i}^{s}\right)$ s.t. overlaps of each two are subsets of $U\left(L_{s-1}\right)$ and also forms

Proof of acyclicity, by induction.

$\alpha_{s, i} \in \Omega^{k-1}\left(U\left(\sigma_{i}^{s}\right)\right)$ that coincide with α_{s-1} on overlaps. Inductive assumption includes $d \alpha_{s-1}=\left.\omega\right|_{U\left(L_{s-1}\right)}$ and $\alpha_{s-1} \in \operatorname{ker}\left(\operatorname{lnt}_{k-1}\left(U\left(L_{s-1}\right)\right)\right)$ for $s=k$.

Then $\left(b_{k}\right)$ gives $\tilde{\alpha}_{s, i} \in \Omega^{k-1}\left(U\left(\sigma_{i}^{s}\right)\right)$ s.t. $d \tilde{\alpha}_{s, i}=\left.\omega\right|_{U\left(\sigma_{i}^{s}\right)}$ and
$\left.\tilde{\alpha}_{s, i}\right|_{U\left(\partial \sigma_{i}^{s}\right)}=\alpha_{s-1}$. Glue $\tilde{\alpha}_{s, i}$ into $\tilde{\alpha}_{s}$ on
$U\left(L_{s}\right):=\cup_{i} U\left(\sigma_{i}^{s}\right)$. We set $\alpha_{s}:=\tilde{\alpha}_{s}$ for $s \neq k-1$ and
$\alpha_{s}:=\tilde{\alpha}_{s}-\Phi^{k-1}\left(\operatorname{lnt} t_{k-1}\left(\tilde{\alpha}_{s}\right)\right)$ for $s=k-1$.

Proof of acyclicity, by induction (concluded).

Note that Φ^{\cdot} and Int. are homomorphisms of complexes and the former is the right inverse of the latter by [1] imply
$d \alpha_{k-1}=\omega-\phi^{k}(\operatorname{Int}(\omega))=\omega$ on $U\left(L_{s}\right)$ and also that
$\operatorname{Int} t_{k-1}\left(\alpha_{k-1}\right)=\operatorname{Int} t_{k-1}\left(\tilde{\alpha}_{k-1}\right)-\operatorname{In} t_{k-1}\left(\tilde{\alpha}_{k-1}\right)=0$
concluding the proof.

Euler characteristic $\chi(T(M))$ does not depend on the triangulation $T(M)$ of M

Reason: Corollary to the Theorem implies $\operatorname{ker}\left(d_{k}^{\prime}\right)=\operatorname{im}\left(d_{k-1}^{\prime}\right)$
where d^{\prime} is the restriction of the exterior derivative in the kernel.
which in turn implies $\frac{\operatorname{ker}\left(\partial_{k}^{*}\right)}{\operatorname{im}\left(\partial_{k-1}^{*}\right)} \cong \frac{i m\left(d_{k}\right)}{\operatorname{im}\left(d_{k-1}\right)}$.
Note: $\#\{\sigma \in T(M): \operatorname{dim} \sigma=k\}=\operatorname{dim}_{\mathbb{R}} \Sigma_{k}=\operatorname{dim}_{\mathbb{R}} \Sigma^{k}$.
Theorem: Euler characteristic
$\chi(M):=\sum_{k=1}^{n}(-1)^{k} \operatorname{dim}_{\mathbb{R}} \frac{k e r\left(d_{k}\right)}{\operatorname{im}\left(d_{k-1}\right)}=\chi(T(M))$.
Corollary: $\chi(T(M))$ does not depend on triang. $T(M)$ of M.

Proof of the corollary

$$
\operatorname{dim}_{\mathbb{R}} \sum^{k}=\operatorname{dim}_{\mathbb{R}}\left(\operatorname{Im}\left(\partial_{k}^{*}\right)\right)+\operatorname{dim}_{\mathbb{R}} \frac{k e r\left(\partial_{k}^{*}\right)}{\operatorname{im}\left(\partial_{k-1}^{*}\right)}+\operatorname{dim}_{\mathbb{R}} \operatorname{Im}\left(\partial_{k-1}^{*}\right) .
$$

Therefore $\chi(M)=\sum_{k=0}^{n}(-1)^{k} \operatorname{dim}_{\mathbb{R}} \frac{k e r\left(\partial_{k}^{*}\right)}{\operatorname{im}\left(\partial_{k-1}^{*}\right)}=\chi(T(M))$.

$$
\begin{aligned}
& v=1+4 \cdot 2+8+1=18 \\
& e=4 \cdot 3+12 \cdot 4=60 \\
& t=10 \cdot 4=40 \\
& x=18-60+40=-2
\end{aligned}
$$

$$
\begin{array}{ll}
v=4, \mathrm{e}=6, \mathrm{t}=4 & \mathrm{~T}: \mathrm{g}=1, \mathrm{v}=9, \mathrm{e}=27 \\
\mathrm{X}(\mathrm{~S})=2=2-2 \mathrm{~g} & \mathrm{t}=18, \mathrm{X}(\mathrm{~T})=2=2-2 \mathrm{~g}
\end{array}
$$

$\mathrm{G}(2$ handles: $\mathrm{g}=2$)

- $\mathrm{v}=18, \mathrm{e}=60, \mathrm{t}=40$
$X(G)=-2=2-2 g$

Extension of Forms Theorem

Proof: by induction on k. Outline: Show (a_{0}) holds, then
$\left(a_{k-1}\right) \Longrightarrow\left(b_{k}\right)$, and finally, $\left(b_{k}\right) \Longrightarrow\left(a_{k}\right)$.
(a_{0}) : Say $\omega \in \Omega^{0}(U(\partial \sigma))$ closed. Then ω is locally constant.
If $s>1$, then $\omega \equiv$ const in $U(\partial \sigma)$ so we can let let $\tilde{\omega}=\omega$ in $U(\sigma)$.
If $s=1$ then $\sigma=p_{0} p_{1}$ as an 1 -simplex; also it is given that
$\int_{\partial \sigma} \omega=0$. But $\int_{\partial \sigma} \omega=\omega\left(p_{1}\right)-\omega\left(p_{0}\right)=0$ so we can let $\tilde{\omega}=\omega$.
$\left(a_{k-1}\right) \Longrightarrow\left(b_{k}\right)$: Say ω, α are as in $\left(b_{k}\right)$. Poincare lemma gives
$\alpha^{\prime} \in \Omega^{k-1}(U(\sigma)), d \alpha^{\prime}=\left.\omega\right|_{U(\sigma)}$. Let $\alpha-\alpha^{\prime}=: \beta \in \Omega^{k-1}(U(\partial \sigma))$.

Then β is closed in $U(\partial(\sigma))$. If $s=k$ then $\int_{\partial \sigma} \beta=\int_{\partial} \alpha-\int_{\partial \sigma} \alpha^{\prime}$
$=\int_{\sigma} \omega-\int_{\sigma} d \alpha^{\prime}=0$. Applying $\left(a_{k-1}\right)$ to β we get a closed form
$\tilde{\beta} \in \Omega^{k-1}(U(\sigma))$ such that $\left.\tilde{\beta}\right|_{U(\partial \sigma)}=\beta$.
Then $\tilde{\alpha}:=\left(\tilde{\beta}+\alpha^{\prime}\right) \in \Omega^{k-1}(U(\sigma))$ is as required in $\left(b_{k}\right)$.
$\left(b_{k}\right) \Longrightarrow\left(a_{k}\right):$ Say $\sigma=\left(p_{0} \ldots p_{s}\right)$ and ω are as in $\left(a_{k}\right), k>0$.
Also, let $\sigma^{\prime}:=\left(p_{1} \ldots p_{s}\right) \in \mathcal{P}$, where \mathcal{P} is he union of proper faces of σ with p_{0} as a vertex. Then ω is defined and closed in a ngbhd $U(\mathcal{P})$; clearly $U(\mathcal{P}) \subset S t\left(p_{0}\right)$ and it is star-shaped.

Poincare lemma gives $\alpha^{\prime} \in \Omega^{k-1}(U(\mathcal{P}))$ s.t. $d \alpha^{\prime}=\left.\omega\right|_{U(\mathcal{P})}$; this holds in particular in some nbhd $U\left(\partial \sigma^{\prime}\right) \subset U(\mathcal{P})$. For $s=k+1$ define $A:=\left(\partial \sigma-\sigma^{\prime}\right) \in \Sigma_{k}$. Then $\partial A=-\partial \sigma^{\prime}$, and hence $\int_{\sigma^{\prime}} \omega-\int_{\partial \sigma^{\prime}} \alpha^{\prime}=\int_{\sigma^{\prime}} \omega+\int_{A} d \alpha^{\prime}=\int_{\partial \sigma} \omega=0$. Applying now $\left(b_{k}\right)$ to simplex σ^{\prime} we get $\tilde{\alpha^{\prime}} \in \Omega^{k-1}\left(U\left(\sigma^{\prime}\right)\right)$ such that $\left.\tilde{\alpha}^{\prime}\right|_{\left.U\left(\partial \sigma^{\prime}\right)\right)}=\alpha^{\prime}$ and $d \tilde{\alpha^{\prime}}=\left.\omega\right|_{U\left(\sigma^{\prime}\right)}$. Shrink $U(\mathcal{P})$ so that $U(\mathcal{P}) \bigcap U\left(\sigma^{\prime}\right) \subset U\left(\partial \sigma^{\prime}\right)$, let $U(\partial \sigma):=U(\mathcal{P}) \bigcup U\left(\sigma^{\prime}\right)$ and set $\tilde{\alpha} \in \Omega^{k-1}(U(\partial \sigma))$ by $\tilde{\alpha}=\alpha^{\prime}$ on $U(\mathcal{P})$ and $\tilde{\alpha}=\tilde{\alpha}^{\prime}$ on $U\left(\sigma^{\prime}\right)$. Extending $\tilde{\alpha}$ using partition
of unity to $\Omega^{k-1}(U(\sigma))$ gives the closed form (required by $\left(a_{k}\right)$)
$\tilde{\omega}:=d \tilde{\alpha}$ since $\tilde{\omega}=\left.d \tilde{\alpha}\right|_{\partial \sigma}=\omega$ by construction of α^{\prime} and $\tilde{\alpha}^{\prime}$.

