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Introduction

The Johnson-Lindenstrauss Lemma was first introduced in the paper ”Ex-
tensions of Lipschitz mappings into a Hilbert Space” by William B. Johnson
and Joram Lindenstrauss published 1984 in Contemporary Mathematics.
The Theorem is as follows.

1. Johnson-Lindenstrauss Lemma
Fix 0 < ε < 1, let V = {xi : i = 1, ...M} ⊂ Rm be a set of points in Rm

If n ≥ c
ε2

logM then there exists a linear map A : Rm → Rn such that for all
i 6= j

1− ε ≤ ‖A(xi)− A(xj)‖
‖xi − xj‖

≤ 1 + ε.

The Theorem states that after fixing an error level, one can map a collec-
tion of points from one Euclidean space (no matter how high it’s dimension
m is) to a smaller Euclidean space while only changing the distance between
any two points by a factor of 1± ε. The dimension of the image space is only
dependent on the error and the number of points. Given that the dimen-
sion is very large, one can achieve significant dimension reduction, which has
applications in data analysis and computer science.

There are two proofs that use applications of Gaussian distributions. One
will use the Gaussian concentration inequality for Lipschitz functions, and
the other will use the comparison inequalities called the Gaussian Min-Max
Theorems.

Both proofs have the same probabilistic approach: Prove that the prob-
ability of a linear map satisfying the conditions of the theorem is positive.
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This is done in the following way: Construct a random matrix from Rm to
Rn which is an m by n matrix where the entries gij are independent standard
Gaussian variables.

G =

g11 . . . g1m
...

...
gn1 . . . gnm

 where gij are i.i.d standard Gaussian variables.

Then the random matrix maps the difference of two points, and the image
will be Random Vector which follows a Gaussian distribution. From there,
the two proofs branch off:

The first will use the Gaussian concentration inequality on Lipschitz
functions to provide an lower bound on the probability that the distance
between any two points changes by only a factor of 1± ε. The lower bound
will be dependent on n, ε, and M . The dependence on M will come from
having to compare all possible pair of points. Thus by choosing n nicely, the
lower bound will be strictly greater than 0 proving that the probability of
there existing such a map satisfying the lemma is positive so there must exist
such a map.

The second proof will calculate the expectation that the maximum
change in distance is less than 1 + ε and the minimum change in distance
is greater than 1 − ε. Then, by defining two random bilinear forms and
comparing their expectations with the min-max theorems, the result follows.

1 Proof by Gaussian Concentration

We have our random Gaussian matrix G. Denote y = Gx. y is the image of
the linear map G at a point x ∈ V . Computing y explicitly,

y =

g11 . . . g1m
...

...
gm1 . . . gnm


x1...
xm


=

g11x1+ · · ·+ g1mxm
...

...
gn1x1+ · · ·+ gnmxm

 .
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If we apply the random linear map G to two points xp, xq ∈ V , then to
prove the Johnson Lindenstrauss Lemma, we want

P (∀xp, xq ∈ V : (1− ε)‖xp − xq‖ ≤ ‖yp − yq‖ ≤ (1 + ε)‖xp − xq‖) > 0.
(1)

This shows that there must exist a linear map that satisfies the Johnson
Lindenstrauss Lemma.

To set up (1), we investigate y. By the stability property of the sum
of i.i.d Gaussian variables, y is a Gaussian random vector where the yi are
independent Gaussian random variables with mean 0 and variance

∑m
i=1 x

2
i .

y =d

g1...
gn

 where g1, . . . gn are i.i.d ∼ N(0,
m∑
i=1

x2i ).

Thus we can say that

y =d ‖x‖z , z = (z1, . . . , zn) , zj are i.i.d ∼ N(0, 1).

Now we repeat the above calculation to two different vectors xp and xq

in V and obtain yp and yq. Their difference has a distribution expressed as

yp − yq =d ‖xp − xq‖z
Taking Euclidean norm on both sides, we have an expression for the

distance between two points in the lower dimensional space:

‖yp − yq‖ =d ‖xp − xq‖‖z‖. (2)

We want to calculate the probability that this distance is within a factor
of 1± ε of the original distance. That is, we want to calculate the expression

P((1− ε)‖xp − xq‖ ≤ ‖yp − yq‖ ≤ (1 + ε)‖xp − xq‖). (3)

To do so, we use the Gaussian concentration bound for Lipschitz func-
tions.

Lemma 1. Consider a Lipschitz function F : Rm → R such that for some
L > 0,

‖F (x)− F (y)‖ ≤ L‖x− y‖ for all x, y ∈ Rm

Let g = (gi)i≤m be a standard Gaussian vector in Rm. Then for any t ≥ 0,
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P
(
‖F (g)− EF (g)‖ ≥ t

)
≤ 2exp

(
− t2

4L2

)
For the proof, refer to Section 7 of Gaussian Distributions with Applica-

tions. [1]
To apply the lemma, we need a Lipschitz function. The next two lemmas

show us that the norm function is a Lipschitz function.

Lemma 2.

‖v‖ = sup
{ m∑

i

αivi : ‖α‖ = 1
}

for v ∈ Rm

Proof. The ≥ comes from the Cauchy-Schwarz Inequality. For any α with
‖α‖ = 1

‖〈α, v〉‖ ≤ ‖α‖‖v‖
For the ≤, take α = v

‖v‖ . Then 〈α, v〉 = ‖v‖

Lemma 3. Let A be a bounded set in Rm. Consider the function F : Rm → R
defined by

F (x) = sup
a∈A
〈a, x〉.

Then F is a Lipschitz Function.

Proof.

‖F (x)− F (y)‖ = ‖ sup
a∈A
〈a, x〉 − sup

a∈A
〈a, y〉‖

= ‖ sup
a∈A

(a1x1 + · · ·+ amxm)− sup
a∈A

(a1y1 + · · ·+ amym)‖

≤ ‖ sup
a∈A

(a1(x1 − y1) + · · ·+ am(xm − ym))‖

= sup
a∈A
‖(a1(x1 − y1) + · · ·+ am(xm − ym))‖

≤ sup
a∈A
‖a‖‖x− y‖

So from (2) we express ‖z‖ as

F (z) = ‖z‖ = sup
‖α‖=1

{ m∑
i

αizi

}
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which is a Lipschitz function. The bounded set we take the supremum
over is A = {a ∈ Rm : ‖a‖ = 1} and so the Lipschitz bound we use is L = 1.

By Gaussian Concentration

P
( ∣∣ ‖z‖ − E‖z‖

∣∣ ≥ t
)
≤ 2e−t

2/4. (4)

We manipulate (4) to obtain a lower bound for (3). We take the comple-
ment to switch the inequalities in (4).

P
( ∣∣ ‖z‖ − E‖z‖

∣∣ ≤ t
)
≤ 1− 2e−t

2/4.

We notice that E‖z‖ is a constant term so we can perform a change of
variables t = εE‖z‖.

P
(

1− ε ≤ ‖z‖
E‖z‖

≤ 1 + ε

)
≤ 1− 2e−

ε2(E‖z‖)2
4 .

By multiplying the equation inside the probability by ‖xp − xq‖

P
(

(1− ε)‖xp − xq‖ ≤ ‖y
p − yq‖
E‖z‖

≤ (1 + ε)‖xp − xq‖
)
≥ 1− 2e−

ε2(E‖z‖)2
4 .

(5)
However this is not exactly the probability we want to calculate. We

want to compare ‖xp − xq‖ with ‖yp − yq‖ , not ‖y
p−yq‖
E‖z‖ . In order to get rid

of the denominator term E‖z‖, we alter the linear map G by dividing it by
the constant E‖z‖. Formally, define Ĝ as

Ĝ =
1

E‖z‖
G.

Then if we let ŷ = Ĝx,

ŷp − ŷq =d
‖xp − xq‖
E‖z‖

z.

Repeating all the calculations that led to (5), we have that

P((1− ε)‖xp − xq‖ ≤ ‖ŷp − ŷq‖ ≤ (1 + ε)‖xp − xq‖) ≥ 1− 2e−
ε2(E‖z‖)2

4

Let us pretend that our original linear map G took into account the
denominator E‖z‖ to obtain the lower bound for (3)
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P ((1− ε)‖xp − xq‖ ≤ ‖yp − yq‖ ≤ (1 + ε)‖xp − xq‖) ≥ 1− 2e−
ε2(E‖z‖)2

4 . (6)

To go from (6) to (1), we have to consider the probability for any two
points in V . To do so, we consider the complement of the event and use
the union bound. We reformulate (6) into set notation by letting Apq be the
event that

(1− ε)‖xp − xq‖ ≤ ‖yp − yq‖ ≤ (1 + ε)‖xp − xq‖ occurs.

To calculate the probability that every pair of points satisfies the inequal-
ity, we are calculating the probability of the intersection of all the Apq’s. Ex-
plicitly we are calculating P(∩Apq) where the intersection is over all possible
choice of pairs in V. To do so, first notice that

P(Apq) ≥ 1− 2e−
ε2(E‖z‖)2

4 .

Then by taking the complement,

P(A{
pq) ≤ 2e−

ε2(E‖z‖)2
4 .

Notice that there are M points in V so the number of pairs is

(
M

2

)
≤ M2

2
.

Thus by the union bound P(A ∪B) ≤ P(A) + P(B), we have that

P(∪A{
pq) ≤ 2

(
M

2

)
e−

ε2(E‖z‖)2
4 ≤M2e−

ε2(E‖z‖)2
4 .

By DeMorgan’s law, ∪A{
pq = (∩Apq){

P((∩Apq){) ≤M2e−
ε2(E‖z‖)2

4 .

Take complements again to obtain

P(∩Apq) ≥ 1−M2e−
ε2(E‖z‖)2

4 .

This is exactly a lower bound for (1):

P(∀xp, xq ∈ V : (1−ε)‖xp−xq‖ ≤ ‖yp−yq‖ ≤ (1+ε)‖xp−xq‖) ≥ 1−M2e−
ε2(E‖z‖)2

4
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Finally, to satisfy (1) and complete the proof, we need the condition that

1−M2e−
ε2(E‖z‖)2

4 > 0. This condition will lead us to the minimum dimension
of the codomain. Calculating

1−M2e−
ε2(E‖z‖)2

4 > 0.

log(
1

M2
) > −ε

2

4
(E‖z‖)2.

(E‖z‖)2 > 8

ε2
logM.

The condition we need to satisfy is (E‖z‖)2 > 8
ε2

logM . We use the
fact that E‖z‖ ≥ k

√
n where k is a constant and n is the dimension of the

random vector z. So if n ≥ 8c
ε2

logM , where c is a constant, then the condition

1−M2e−
ε2(E‖z‖)2

4 > 0 is satisfied. Therefore, if n > 8c
ε2

logM , we have that

P (∀xp, xq ∈ V : (1− ε)‖xp − xq‖ ≤ ‖yp − yq‖ ≤ (1 + ε)‖xp − xq‖) > 0

so there must exist a linear map G0 that satisfies

∀xp, xq ∈ V : (1− ε)‖xp − xq‖ ≤ ‖G0(x
p)−G0(x

q)‖ ≤ (1 + ε)‖xp − xq‖.

This completes the proof.

2 Gaussian Min-Max Comparison

The Gaussian Min-Max Comparison Inequalities are the Slepian’s and Gor-
don’s Inequalities.

Lemma 4. Slepian’s Inequality Let X(i) and Y (i) be two Gaussian vectors
such that

E(Y (i)− Y (i′))2 ≥ E(X(i)−X(i′))2

Then
Emax

i
Y (i) ≥ Emax

i
X(i)
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Lemma 5. Gordon’s Ineqaulity Let (X(i, j)) and (Y (i, j) be two Gaussian
vectors such that

E(Y (i, j)− Y (i, j′))2 ≤ E(X(i, j)−X(i, j′))2

E(Y (i, j)− Y (i′, j′))2 ≥ E(X(i, j)−X(i′, j′))2

Then
Emin

i
max
j
Y (i, j) ≤ Emin

i
max
j
X(i, j)

The proofs can be found in Chapter 9 of [1], but here is a short sketch of
both proofs. First, give a smooth approximation of the max function (or min
max function). Then make an interpolation between X and Y and show that
the function is increasing (or decreasing) by differentiating using Gaussian
integration by parts.

We will use these two lemmas to prove the Johnson Lindenstrauss Lemma.
First let us set up what we would like to prove and where the inequalities
come to prove the Johnson Lindenstrauss Lemma. Define T as

T =

{
xi − xj
‖xi − xj‖

: i 6= j

}
; where xi, xj ∈ V.

T is a subset of less than M2 points on the n-dimensional sphere. The
advantage of using T will be that to prove the Johnson- Lindenstrauss lemma,
all we need to show is that there is a linear map G0 such that

1− ε ≤ ‖G0(t)‖ ≤ 1 + ε ∀t ∈ T.

We can express this as

max
t∈T
‖G0(t)‖ ≤ 1 + ε min

t∈T
‖G0(t)‖ ≥ 1− ε. (7)

Of course the minimum is less than the maximum, hence we rewrite (7)
as

1− ε ≤ min
t∈T
‖G0(t)‖ ≤ max

t∈T
‖G0(t)‖ ≤ 1 + ε

As long as mint∈T ‖G0(t)‖ ≤ 1 (which is not a problem as we can always
scale our matrix by a constant), we can further rewrite (7) as
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maxt∈T ‖G0(t)‖
mint∈T ‖G0(t)‖

≤ 1 + ε

1− ε
and even further as

max
t∈T
‖G0(t)‖ −

(1 + ε)

(1− ε)
min
t∈T
‖G0(t)‖ ≤ 0. (8)

So if we show (8) then we are finished. Notice that if we are under our
random matrix set up G from before, then we can see

max
t∈T
‖G(t)‖ − (1 + ε)

(1− ε)
min
t∈T
‖G(t)‖

as a random variable. The probability space where this random variable
is defined on are n by m matrices. We can consider the expectation of this
random variable

Emax
t∈T
‖G(t)‖ − (1 + ε)

(1− ε)
Emin

t∈T
‖G(t)‖

and if the expectation is less than 0, then there must be a matrix G0

which satisfies (8). Thus, we are left to show that

1− ε ≤ Emin
t∈T
‖G(t)‖ ≤ Emax

t∈T
‖G(t)‖ ≤ 1 + ε.

To prove the lemma, we will provide bounds for Emint∈T ‖G(t)‖ below
and Emaxt∈T ‖G(t)‖ above by using the Gaussian min-max inequalities. We
will compare ‖G(t)‖ to a Gaussian vector for which the bounds on its mini-
mum and maximum are easy to compute. Then we give conditions for which
the bounds will be satisfied. Let us get started.

We use the same linear map G as in the previous proof. We repeat it
here:

G =

g11 . . . g1m
...

...
gn1 . . . gnm

 gij are i.i.d ∼ N(0, 1).

We map any point t = (t1, . . . , tm) ∈ T . The image will be G(t).
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G(t) =

g11 . . . g1m
...

...
gn1 . . . gnm


 t1...
tm

 =

g11t1+ · · ·+ g1mtm
...

...
gn1t1+ · · ·+ gnmtm

 .
Define two Gaussian bilinear forms: Let t ∈ T , u ∈ Bm the unit ball in

Rm, and let {hi}ni=1, {gj}mj=1 all be i.i.d ∼ N(0, 1)

X(t, u) = 〈G(t), u〉 =
n∑
i=1

m∑
j=1

gijtiuj Y (t, u) =
n∑
i=1

tihi +
m∑
j=1

ujgj

These can be found in example 3 of Chapter 10 in [1], where a, b = 1 and
U = Bm The m-dimensional unit ball.

We can motivate the definition of X(t, u). From Lemma 2 in the previous
section, if we maximize over u ∈ Bm, then we are calculating ‖G(t)‖. Then
by taking the minimum, over t ∈ T and taking the expectation, we have that

Emin
t∈T

max
u∈B

X(t, u) = Emin
t∈T
‖G(t)‖.

Similarly,

Emax
t∈T

max
u∈B

X(t, u) = Emax
t∈T
‖G(t)‖.

So if we show that the conditions for lemma 4 and 5 are met for X(t, u)
and Y (t, u), then we can give bounds for Emint∈T ‖G(t)‖ and Emaxt∈T ‖G(t)‖
as

Emin
t∈T

max
u∈B

Y (t, u) ≤ Emin
t∈T
‖G(t)‖ ≤ Emax

t∈T
‖G(t)‖ ≤ Emax

t∈T
max
u∈B

Y (t, u).

(9)
Checking that X(t, u) and Y (t, u) meet the conditions of the Slepian’s

and Gordon’s Inequalities is tedious and will be left until the end. Let us
continue with (9).

It is easy to maximize and minimize Y (t, u) over t ∈ T and u ∈ Bm

because Y is defined as
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Y (t, u) = 〈t, h〉+ 〈u, g〉

so maximizing and minimizing over t and u can be done separately. Ex-
plicitly, we can see that the right most term of (9) can be written as

Emax
t∈T

max
u∈B

Y (t, u) = Emax
t∈T
〈t, h〉+ Emax

u∈B
〈u, g〉 (10)

= Emax
t∈T
〈t, h〉+ E‖g‖ (11)

We can also show that the left most term of (8), using a ”change of
variables” trick, can be written as

Emin
t∈T

max
u∈B

Y (t, u) = E‖g‖ − Emax
t∈T
〈t, h〉 (12)

we will leave the details of (12) to later. From here, we are almost finished.
To prove the Johnson Lindenstrauss lemma, all we need to do is to have

Emin
t∈T

max
u∈B

Y (t, u) ≥ 1− ε Emax
t∈T

max
u∈B

Y (t, u) ≤ 1 + ε

and from (11) and (12), all we need is Emaxt∈T 〈t, h〉 ≤ εE‖g‖ which is
satisfied if

n ≥ c

ε2
logM.

where c is a constant, which is our bound on the dimension in the
condition for the Johnson Lindenstrauss lemma. n ≥ c

ε2
logM implying

Emaxt∈T 〈t, h〉 ≤ εE‖g‖ will be left for later. This finishes the proof of the
Johnson Lindenstrauss lemma.

Let us fill in all the details:

2.1 Check Conditions for Lemmas 4 and 5

With our Gaussian vectors X(t, u) and Y (t, u), let us show that they satisfy
the conditions for Gordon’s Inequality (lemma 5). Namely

E(Y (t, u)− Y (t, u′))2 ≤ E(X(t, y)−X(t, u′))2
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and
E(Y (t, u)− Y (t′, u′))2 ≥ E(X(t, u)−X(t′, u′))2.

If these conditions are satisfied, then

Emin
t∈T

max
u∈B

Y (t, u) ≤ Emin
t∈T

max
u∈B

X(t, u).

For the first condition,

E(X(t, u)−X(t′, u′))2 = E(
n∑
i=1

m∑
j=1

gij(tiuj − t′iu′j))2

=
n∑
i=1

m∑
j=1

(tiuj − t′iu′j)2

=
n∑
i=1

m∑
j=1

(tiuj)
2 − 2(tiujt

′
iu
′
j) + (t′iu

′
j)

2

= ‖t‖2‖u‖2 + ‖t′‖2‖u′‖2 − 2〈t, t′〉〈u, u′〉
= ‖u‖2 + ‖u′‖2 − 2〈t, t′〉〈u, u′〉

and

E(Y (t, u)− Y (t′, u′))2 = E(
n∑
i=1

hi(ti − t′i) +
m∑
j=1

gj(uj − uj))2

= E(
n∑
i=1

hi(ti − t′i))2 + E(
m∑
j=1

gj(uj − uj))2

=
n∑
i=1

(ti − t′i)2 +
m∑
j=1

(uj − uj)2

=
n∑
i=1

t2i − 2tit
′
i + (t′i)

2 +
m∑
j=1

u2j − 2uju
′
j + (u′j)

2

= ‖t‖+ ‖t′‖ − 〈t, t′〉+ ‖u‖+ ‖u′‖ − 2〈u, u′〉
= 2− 2〈t, t′〉+ ‖u‖+ ‖u′‖ − 2〈u, u′〉.

Subtract these two equations to find that
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E(Y (t, u)− Y (t′, u′))2 − E(X(t, u)−X(t′, u′))2

= 2− 2〈t, t′〉 − 2〈u, u′〉+ 2〈t, t′〉〈u, u′〉
= 2(1− 〈t, t′〉)(1− 〈u, u′〉)

≥ 0.

The last inequality is a consequence of Cauchy-Schwarz on 〈t, t′〉 and
〈u, u′〉 and the fact that t is on the unit sphere, u is in the unit ball.
For the second condition, let t = t′. Then we have that 〈t, t′〉 = 1 so
E(Y (t, u) − Y (t, u′))2 − E(X(t, u) − X(t, u′))2 = 0. The second condition
is satisfied trivially.

Now let us show thatX(t, u) and Y (t, u) satisfy the conditions for Slepian’s
Inequality (lemma 4) for both indexes t and u. All of the work is actually
done when showing the conditions for the Gordon’s Inequality. If t is fixed,
then we want to show

E(Y (t, u)− Y (t, u′))2 ≥ E(X(t, u)−X(t, u′))2.

We have already shown that equality holds so the condition is satisfied
trivially. If u is fixed, then we want to show

E(Y (t, u)− Y (t′, u))2 ≥ E(X(t, u)−X(t′, u))2.

We have already shown that

E(Y (t, u)− Y (t′, u′))2 − E(X(t, u)−X(t′, u′))2

= 2(1− 〈t, t′〉)(1− 〈u, u′〉).

If we fix u = u′ in the unit ball, we have that 〈u, u〉 ≤ 1. Thus

E(Y (t, u)− Y (t′, u))2 ≥ E(X(t, u)−X(t′, u))2

= 2(1− 〈t, t′〉)(1− 〈u, u′〉)
≥ 2(1− 〈t, t′〉)

≥ 0
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where the last inequality again follows from Cauchy Schwarz.
Then Slepian’s Inequality implies that

Emax
t∈T

max
u∈B

X(t, u) ≤ Emax
t∈T

max
u∈B

Y (t, u).

Putting the consequences of Gordon’s Inequality and Slepian’s Inequality
together, and the fact that

Emin
t∈T

max
u∈B

X(t, u) ≤ Emax
t∈T

max
u∈B

X(t, u),

we have (8):

Emin
t∈T

max
u∈B

Y (t, u) ≤ Emin
t∈T

max
u∈B

X(t, u) ≤ Emax
t∈T

max
u∈B

X(t, u) ≤ Emax
t∈T

max
u∈B

Y (t, u)

The first inequality is by Gordon’s, and the last inequality is by Slepian’s.

2.2 Computing (12)

We want to show that

Emin
t∈T

max
u∈B

Y (t, u) = E‖g‖ − Emax
t∈T
〈t, h〉.

We know that, when maximizing over u and minimizing over t we can
separate the left hand side as

Emin
t∈T

max
u∈B

Y (t, u) = Emin
t∈T

n∑
i=1

tihi + Emax
u∈B

m∑
j=1

ujgj

and E‖g‖ = Emaxu∈B
∑m

j=1 ujgj. All that is left to show is

Emin
t∈T

n∑
i=1

tihi = −Emax
t∈T
〈t, h〉.

We will use a ”Change of Variables” where we change hi to −hi. −hi is
still a Gaussian variable because the Gaussian variables are invariant under
rotation. Then

Emin
t∈T

n∑
i=1

tihi = Emin
t∈T

n∑
i=1

ti(−hi) = −Emax
t∈T

n∑
i=1

tihi = −Emax
t∈T
〈t, h〉
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because the minimum of negative values is the negative of the maximum
of the positive values.

2.3 Computing the lower bound on the dimension

We want to show that if n ≥ c
ε2

logM implies that Emaxt∈T 〈t, h〉 ≤ εE‖g‖,
which proves the Johnson Lindenstrauss Lemma.

We use the fact previously mentioned in the first section: ∃k s.t k
√
n ≤

E‖g‖.
We will prove that Emaxt∈T 〈t, h〉 ≤ 2

√
logM . Thus, after some compu-

tation,

n ≥ k

ε2
logM ⇔ 2

√
logM ≤ cε

√
n

where k and c are constants. So if n ≥ c
ε2

logM , then

Emax
t∈T
〈t, h〉 ≤ 2

√
logM ≤ cε

√
n ≤ εE‖g‖

To show that Emaxt∈T 〈t, h〉 ≤ 2
√

logM

Emax
t∈T
〈t, h〉 = Emax

t∈T

n∑
i=1

tihi

= Emax
t∈T

ht

[
ht ∼ N

(
0,
∑

t2i

)
= N(0, 1)

]
≤ E

1

β
log

(
M2∑
t=1

ehtβ

) [
max
i
xi ≤

1

β
log

(∑
t=1

exiβ

)]

≤ 1

β
log

(
M2∑
t=1

Eehtβ
)

By Jensen’s Inequality

=
1

β
log

(
M2∑
t=1

eβ
2/2

)
because Eeg = eV ar(g)/2

=
1

β
log(M2eβ

2/2)

=
1

β
logM2 +

β

2
.
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This is true for all β so minimizing the last equation β =
√

2 logM2

Emax
t∈T
〈t, h〉 ≤ 2

√
logM

We have used the fact that Eeg = eV ar(g)/2 where g is a Gaussian variable.
The calculation is easy and is left as an exercise for the reader.

Conclusion

The original proof as well as the two proofs provided have all been proba-
bilistic. There is a non-zero probability that this map exists. This does not
help us in actually constructing such a map. However, over the years, dif-
ferent proofs have been provided where this map can be generated through
algorithms in randomized polynomial time, and even further work has been
done to derandomize the algorithms.

Appendix A

The final bound on the dimension relied on the fact that E‖g‖ ≥ k
√
n where

k is a constant and g is a standard Gaussian vector of dimension n. This
fact is not so easy and the details are contained in [2] (Thank you David
Miyamoto!). We can give a summary of the calculation here.

E‖g‖ =
1

(2π)
n
2

∫
Rn
‖x‖e−

‖x‖
2 dx.

By switching to spherical coordinates, using a property of the beta func-
tion, and skipping a lot of calculations (all included in [2]), one can show
that

E‖g‖ =

√
2Γ(n+1

2
)

Γ(n
2
)

.

Then, one shows by induction and properties of the Gamma function that
for all n,

n√
n+ 1

≤
√

2Γ(n+1
2

)

Γ(n
2
)
≤
√
n
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and finally, one can verify that there exists a constant k such that for all
n,

k
√
n ≤ n√

n+ 1
.

Appendix B

There is a variant of the Johnson Lindenstrauss Lemma proven in [4] and
[5]. The difference is that they prove for all i 6= j

(1− ε)‖xi − xj‖2 ≤ ‖A(xi)− A(xj)‖2 ≤ (1 + ε)‖xi − xj‖2 (13)

where xi, xj ∈ V . This is already a better linear map than the one shown
to exist in the original version of the Johnson Lindenstrauss because. By
taking square roots, the above shows that

√
1− ε‖xi − xj‖ ≤ ‖A(xi)− A(xj)‖ ≤

√
1 + ε‖xi − xj‖

and 1− ε <
√

1− ε and
√

1 + ε < 1 + ε.
To prove (13), the idea is the same as the first proof provided. One defines

a random matrix and proceed using concentration inequalities. However,
because the norms are squared, the middle term ‖A(xi) − A(xj)‖2 will not
be distributed normally. It will have a chi-squared distribution which has
its own concentration inequalities. In [5], the bound on the dimension is
worse (larger), but the probability that a given map satisfies the lemma is
at least 1

M2 . This provides the additional claim that a map can be found in
randomized polynomial time.
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