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1 Introduction

Consider the following problem: let g1, . . . ,gm ∈Rn be i.i.d. standard n-dimensional
Gaussian random variables, and κ ∈ R is a fixed number. Define

A =
m⋂

l=1

{x ∈ Sn−1 : gl ·x≥ κ}

where Sn−1 is the n−1 dimensional sphere embedded in Rn. Clearly with probabil-
ity one the set A will shrink as m increases. The problem of interest is that, if we
set m = αn, how large can α be such that A is non-empty with high probability. By
high probability, we mean that there exists a constant c > 0 such that

P(A is empty)< e−cn. (1)

Such problem occurs in the perceptron model, which is defined by the following
dynamics. Suppose for i = 1, . . . ,n, Ht

i ∈ {−1,1} are the states of the neuron at time
t, and for each 1≤ i, j≤ n, xi

j ∈R is the interaction strength from neuron j to neuron
i. We require that for each i, xi

i = 0, and

n

∑
j=1

(xi
j)

2 = 1

The ith neuron fires at time t if Ht
i = 1, and does not fire if Ht

i =−1. The state of a
neuron is updated according to:

Ht+1
i = sign

( n

∑
j=1, j 6=i

Ht
jx

i
j

)
.
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Given interaction strength xi
j, the pattern H = (H1, . . . ,Hn) is memorized by the

perceptron if H is a fixed point of the above dynamics, that is for each i = 1, . . . ,n

Ht+1
i

( n

∑
j=1

Ht
jx

i
j

)
≥ 0.

Here to ensure stability we also require

Hi

( n

∑
j=1, j 6=i

H jxi
j

)
≥ κ (2)

for a fixed constant κ > 0. We are interested in the generic capacity of the percep-
tron: how many random patterns can we take, so that there is a high probability that
there exists a set of interaction strength satisfying (2) for all of the random patterns.
Although in our definition the states of the neurons can only take −1 and 1, here
we will relax this assumption and allow the states to be any real number. Moreover,
we will take the random pattern g ∈ Rn to come from the n-dimensional standard
Gaussian distribution.

To be more precise, let m = αn to be the number of random patterns. For
l = 1, . . . ,m, gl ∈ Rn is a random pattern generated from a standard Gaussian dis-
tribution. Let gl

i ∈ R be the ith coordinate of gl , and gl
−i ∈ Rn−1 be the rest of the

coordinates of gl . We are then interested in the probability of the event:

E = {∀i,∃x ∈ Sn−2 such that sign(gl
i)(g

l
−i ·x)≥ κ ∀l}

which means that the perceptron can successfully remember all of the m random
patterns. Then the negation of E can be written as:

Ec = {∃i such that ∀x ∈ Sn−2, sign(gl
i)(g

l
−i ·x)< κ for some l}.

Therefore

P(Ec)≤
n

∑
i=1

P(∀ x ∈ Sn−2,∃l ≤ m such that sign(gl
i)(g

l
−i ·x)< κ)

= nP(∀ x ∈ Sn−2,∃l ≤ m such that sign(gl
1)(g

l
−1 ·x)< κ)

= nP(∀ x ∈ Sn−2,∃l ≤ m such that (gl
−1 ·x)< κ)

= nP
( m⋂

l=1

{x ∈ Sn−2 : gl
−1 ·x≥ κ} is empty

)
.

Similarly

P(E)≤ P
( m⋂

l=1

{x ∈ Sn−2 : gl
−1 ·x≥ κ} is not empty

)
.

It is clear now that the perceptron capacity problem above is exactly the same prob-
lem at the beginning of the section, except n− 1 in (1) becomes n− 2 here. This
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change will not affect our analysis on α . If for some particular choice of α I can
show that (1) is true, then P(Ec) also decays in exponentially in n (since multiplying
by n does not change exponential decay rate). Therefore, the rest of the write-up will
focus on solving the α so that (1) is satisfied. I mentioned an upper bound for P(E)
because more can be said about (1). In fact, as you will see in the next section, one
of P(A is empty) and P(A is not empty) will have exponential decay.

2 Solution To the Uncorrelated Gardner’s Problem

We begin this section by stating the solution to the problem in the first section.

Theorem 1. Let A,m,n, and α be defined same as in section 1. Let g be a standard
one dimensional Gaussian random variable and (g+κ)+ be the positive part of the
random variable g+κ . Then,

αE(g+κ)2
+ > 1,κ ∈ R =⇒ ∃c > 0 such that P(A is empty)≥ 1− e−cn (3)

and

αE(g+κ)2
+ < 1,κ > 0 =⇒ ∃c > 0 such that P(A is not empty)≥ 1− e−cn (4)

2.1 Proof of the First Part of Theorem 1

Assume αE(g+ κ)2
+ > 1, and κ ∈ R. Let G be a m× n matrix whose entries are

i.i.d. standard Gaussian random variables, and 1 = (1, . . . ,1)T ∈Rm. Then A is non-
empty if and only if there exists x ∈ Sn−1 such that

Gx≥ κ1

where the inequality of two vectors should be interpreted as coordinate-wise in-
equalities. We notice that the above condition is equivalent to the following one, let
λ ∈ Rm

min
x

max
λ≥0

λ
T (κ1−Gx)≤ 0,with ‖x‖= 1,‖λ‖ ≤ 1

For the reminder of this section, I will assume that ‖x‖= 1,‖λ‖ ≤ 1. Therefore, to
show (3) it suffices to show that there exists δ ,c > 0, such that

P
(

min
x

max
λ≥0

λ
T (κ1−Gx)≥ δ

)
≥ 1− e−cn

We start with the following observation. Let g be a one-dimensional standard Gaus-
sian random variable, independent of the entries in G, then for any δ ,ε > 0,
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P
(

min
x

max
λ≥0

λ
T (κ1−Gx)+g−ε

√
n+δ ≥ δ

)
≤ P

(
min

x
max
λ≥0

λ
T (κ1−Gx)≥ δ

)
+P(g≥ ε

√
n−δ ) (5)

The second term on the right-hand side is easy to bound from above. For now we
will first focus on the probability on the left-hand side. To do this, we will use the
following theorem:

Theorem 2. (Gordon’s Inequality) Let (Xi j)i≤n, j≤m, (Yi j)i≤n, j≤m be centerd Gaus-
sian random variables, such that

1. E(X2
i j) = E(Y 2

i j) for all i≤ n, j ≤ m
2. E(Xi jXik)≥ E(Yi jYik) for all i≤ n, j ≤ m
3. E(Xi jXlk)≤ E(Yi jYlk) for l 6= i

then for any choice of βi j ∈ R

P
(

min
i

max
j
(Xi j−βi j)≥ 0

)
≤ P

(
min

i
max

j
(Yi j−βi j)≥ 0

)
Here we will use −λ T

i Gx j + g to be the Yi j in the theorem, and λ T
i g+ xT

j h to be
the Xi j in the theorem, where g ∈ Rm,h ∈ Rn are independent standard Gaussian
random variables. Let’s check if the conditions in theorem 2 are satisfied. For each
i, j, l,k, since the entries of G are i.i.d. standard Gaussian random variables, it is nor
difficult to verify that

E(−λ
T
i Gx j +g)(−λ

T
l Gxk +g) = (λ T

i λl)(xT
j xk)+1

and
E(λ T

i g+xT
j h)(λ T

l g+xT
k h) = (λ T

i λl)+(xT
j xk)

If i = l, j = k
E(−λ

T
i Gx j +g)2 = 2 = E(λ T

i g+xT
j h)2

If i = l,

E(−λ
T
i Gx j +g)(−λ

T
i Gxk +g) = 1+(xT

j xk) = E(λ T
i g+xT

j h)(λ T
i g+xT

k h)

If i 6= l, by Cauchy-Schwartz inequality

E(−λ
T
i Gx j +g)(−λ

T
l Gxk +g)−E(λ T

i g+xT
j h)(λ T

l g+xT
k h)

= (λ T
i λl)(xT

j xk)+1− (xT
j xk)− (λ T

i λl)

= (1−λ
T
i λl)(1−xT

j xk)≥ 0

Therefore, by Gordon’s inequality, we have

P
(

min
x

max
λ≥0

λ
T

κ1−λ
T Gx+g−ε

√
n≥ 0

)
≥P
(

min
x

max
λ≥0

λ
T

κ1+λ
T g+xT h−ε

√
n≥ 0

)
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Now we can find the optimum choice of x and λ on the right-hand side explicitly.
The optimum is achieved when x = −h/‖h‖, λ is in the same direction of (g+
κ)+ = (max{gi +κ,0})m

i=1 (gi is the ith coordinate of g).

min
x

max
λ≥0

λ
T

κ1+λ
T g+xT h− ε

√
n =

√
m

∑
i=1

(gi +κ)2
+−

√
n

∑
i=1

h2
i − ε
√

n

By our assumption, we can choose ε > 0 small enough such that√
αE(g+κ)2

+−1−3ε > 0 =⇒
√

mE(g+κ)2
+−
√

n−2ε
√

n≥ ε
√

n

Therefore

P
(

min
x

max
λ≥0

λ
T

κ1−λ
T Gx+g− ε

√
n≥ 0

)
≥ P

(
min

x
max
λ≥0

λ
T

κ1+λ
T g+xT h− ε

√
n≥ 0

)
= P

(√ m

∑
i=1

(gi +κ)2
+−

√
n

∑
i=1

h2
i − ε
√

n≥ 0
)

≥ P
(√ m

∑
i=1

(gi +κ)2
+−

√
n

∑
i=1

h2
i ≥

√
mE(g+κ)2

+−
√

n−2ε
√

n
)

= 1−P
(√ m

∑
i=1

(gi +κ)2
+−

√
n

∑
i=1

h2
i <

√
mE(g+κ)2

+−
√

n−2ε
√

n
)

≥ 1−P
(√ m

∑
i=1

(gi +κ)2
+ ≤

√
mE(g+κ)2

+− ε
√

n
)
−P
(√ n

∑
i=1

h2
i ≥
√

n+ ε
√

n
)
(6)

Take the square of the two inequalities in the last line, we have

m

∑
i=1

(gi +κ)2
+ ≤ mE(g+κ)2

+−
(

2ε

√
αE(g+κ)2

+− ε
2
)

n

n

∑
i=1

h2
i ≥ n+(2ε + ε

2)n2

Set Cε = 2ε

√
αE(g+κ)2

+− ε2, C′ε = 2ε + ε2. Let Xi = −(gi + κ)2
+ or Xi = h2

i ,
N = n or N = m, and C =Cε or C =C′ε . Then above showed that both probabilities
in (6) can be written in the form

P
( N

∑
i=1

(Xi−EXi)≥Cn
)
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where Xi are i.i.d. random variables. By Markov’s inequality, for any t > 0:

P
( N

∑
i=1

(Xi−EXi)≥Cn
)
= P

(
exp
( N

∑
i=1

(Xi−EXi)t
)
≥ etCn

)
≤ e−tCn

[
E
(

exp(t(X1−EX1))
)]N

(7)

Apply Taylor expansion to E
(

exp(t(X1−EX1))
)

, the order one term vanishes we
have

E
(

exp(t(X1−EX1))
)
≤ 1+

∞

∑
k=2

tk

k!
E|X1−EX1|k

Moreover, for each k ≥ 2, we have

E
∣∣h2

1−1
∣∣k ≤ 2k +2kEh2k

1

= 2k +2k(2k−1)(2k−3) · · ·1
< 2k +2k(2k)(2k−2)(2k−4) · · ·2
= 2k +22kk!≤ akk!

for some a > 0. By similar arguments, above holds when Xi =−(gi +κ)2
+ (possible

with a different choice of a). Therefore,

E
(

exp(t(X1−EX1))
)
≤ 1+

∞

∑
k=2

tk

k!
E|X1−EX1|k

≤ 1+
∞

∑
k=2

tk

k!
akk! = 1+

t2a2

1− ta

Choose 0 < t < 1/2a, then

E
(

exp(t(X1−EX1))
)
≤ 1+

t2a2

1− ta
≤ 1+2t2a2 ≤ e2t2a2

Now go back to (7), if N = n

P
( N

∑
i=1

(Xi−EXi)≥Cn
)
≤ (e−tC+2t2a2

)n

Recall that C ∼ O(ε), so we can choose ε > 0 small enough such that t = C/4a2

and t ≤ 1/2a. Then

P
( N

∑
i=1

(Xi−EXi)≥Cn
)
≤ e−nC2/8a2
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Similarly, if N = m = nα , we can further reduce ε > 0 (if needed), so that t ′ =
C/(4a2α), and t ′ < 1/2a. Then by (7)

P
( N

∑
i=1

(Xi−EXi)≥Cn
)
≤ (e−tC+2t2a2α)n ≤ e−nC2/8αa2

We have showed that both probabilities in the last line of (6) decreases exponentially
in n. Moreover P(g ≥ ε

√
n− δ ) decays exponentially in n. Therefor, by (5) there

exists c > 0 such that

P
(

min
x

max
λ≥0

λ
T (κ1−Gx)≥ δ

)
≥ 1− e−cn

which implies
P(A is empty)≥ 1− e−cn.

2.2 Proof of the Second Part of Theorem 1

Now assume αE(g+κ)2
+< 1, and κ ≥ 0. We want to show that the event {∃x such that Gx≥

1κ} has high probability. I have shown in the last section that this event is equivalent
to the event {minx maxλ≥0 λ T (κ1−Gx) ≤ 0} with constraints ‖x‖ = 1,‖λ‖ ≤ 1.
Here this condition is also equivalent to {minx maxλ≥0 λ T (κ1−Gx)≤ 0} with the
relaxed condition ‖x‖ ≤ 1,‖λ‖ ≤ 1, giving us a convex constraint. To proceed, we
will use the following theorem.

Theorem 3. (Simplified version of Sion’s Minimax Theorem) Let U,V be two convex
compact subset of Rm If f is a continuous real-valued function on U×V with:

1. For all x1,x2 ∈U, y ∈V , t ∈ [0,1], f (tx1 +(1− t)x2,y)≥min{ f (x1,y), f (x2,y)}
2. For all y1,y2 ∈V , x ∈U, t ∈ [0,1], f (x, ty1+(1− t)y2)≤max{ f (x,y1), f (x,y2)}

Then
min
x∈U

max
y∈V

f (x,y) = max
y∈V

min
x∈U

f (x,y).

Fixing one of λ and x, λ T (κ1−Gx) is an affine linear transformation, so it satisfies
the condition in the above thoerem. Therefore

min
x

max
λ≥0

λ
T (κ1−Gx) = max

λ≥0
min

x
λ

T (κ1−Gx)

which implies

−min
x

max
λ≥0

λ
T (κ1−Gx) = min

λ≥0
max

x
λ

T (Gx−κ1).

A is non-empty if and only if minλ≥0 maxx λ T (Gx−κ1) ≥ 0. To compute a prob-
abilistic bound for such event, we start with the following inequality (We assume
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the constraints ‖λ‖ ≤ 1,‖x‖ ≤ 1). Let g,g,h be defined the same way as in the last
section, then for any ε > 0, we have:

P
(

min
λ≥0

max
x

λ
T Gx+g‖x‖‖λ‖−λ

T 1κ− ε
√

n‖x‖‖λ‖ ≥ 0
)

≤ P
(

min
λ≥0

max
x

λ
T Gx−λ

T 1κ ≥ 0
)
+P(g≥ ε

√
n) (8)

Again the second term on the left-hand side is bounded by e−ε2n/2. We focus
on the left-hand side. λiGx j + g‖λi‖‖x j‖ will be the Yi j in theorem 2. ‖xi‖gT λ j +
‖λ j‖hT xi will be the Xi j in theorem 2.Now let’s check the conditions in theorem 2.
For each i, j, l,k

E(λiGx j +g‖λi‖‖x j‖)(λlGxk +g‖λl‖‖xk‖) = (λ T
i λl)(xT

j xk)+‖λi‖‖x j‖‖λl‖‖xk‖

E(‖x j‖gT
λi +‖λi‖hT x j)(‖xk‖gT

λl +‖λl‖hT xk) = ‖x j‖‖xk‖λ T
i λl +‖λi‖‖λl‖xT

j xk

By similar arguments in section 2.1, it is easy to verify that the conditions in theorem
2 are satisfied. Therefore, by Gordon’s inequality,

P
(

min
λ≥0

max
x

λ
T Gx+g‖x‖‖λ‖−λ

T 1κ− ε
√

n‖x‖‖λ‖ ≥ 0
)
≥

P
(

min
λ≥0

max
x
‖x‖gT

λ +‖λ‖hT x−λ
T 1κ− ε

√
n‖x‖‖λ‖ ≥ 0

)
(9)

Solving the maximization problem (terms does not depending on x will not show
below):

max
x
‖x‖gT

λ +‖λ‖hT x− ε
√

n‖x‖‖λ‖

= max
x
‖x‖
(

gT
λ − ε

√
n‖λ‖+ ‖λ‖

‖x‖
hT x

)
= max
‖x‖
‖x‖
(

gT
λ − ε

√
n‖λ‖+‖λ‖‖h‖

)
= max{0,gT

λ − ε
√

n‖λ‖+‖λ‖‖h‖}
≥ gT

λ − ε
√

n‖λ‖+‖λ‖‖h‖

So we have:

P
(

min
λ≥0

max
x
‖x‖gT

λ +‖λ‖hT x−λ
T 1κ− ε

√
n‖x‖‖λ‖ ≥ 0

)
≥ P

(
min
λ≥0

gT
λ −λ

T 1κ− ε
√

n‖λ‖+‖λ‖‖h‖ ≥ 0
)

(10)
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Now we minimize gT λ −λ T 1κ−ε
√

n‖λ‖+‖λ‖‖h‖ over the feasible region of λ :

min
λ≥0

gT
λ −λ

T 1κ− ε
√

n‖λ‖+‖λ‖‖h‖

= min
λ≥0
‖λ‖

(
λ T

‖λ‖
(g−1κ)− ε

√
n+‖h‖

)
= min

λ≥0
‖λ‖

(
−‖(1κ−g)+‖− ε

√
n+‖h‖

)
Therefore:

P
(

min
λ≥0

gT
λ −λ

T 1κ− ε
√

n‖λ‖+‖λ‖‖h‖ ≥ 0
)

= P
[

min
λ≥0
‖λ‖

(
−‖(1κ−g)+‖− ε

√
n+‖h‖

)
≥ 0
]

= P(−‖(1κ−g)+‖− ε
√

n+‖h‖ ≥ 0)

= P

(
−

√
m

∑
i=1

(κ−gi)2
++

√
n

∑
i=1

h2
i − ε
√

n≥ 0

)

Notice that (κ − g)2
+ and (κ + g)2

+ have the same distribution. By our assumption,
we can find ε > 0 such that√

αE(κ−g)2
+−1+3ε < 0 =⇒ −

√
mE(κ−g)2

++
√

n−2ε
√

n > ε
√

n.

This implies

P

(
−

√
m

∑
i=1

(κ−gi)2
++

√
n

∑
i=1

h2
i − ε
√

n≥ 0

)

≥ P

(
−

√
m

∑
i=1

(κ−gi)2
++

√
n

∑
i=1

h2
i ≥−

√
mE(κ−g)2

++
√

n−2ε
√

n

)

= 1−P

(
−

√
m

∑
i=1

(κ−gi)2
++

√
n

∑
i=1

h2
i <−

√
mE(κ−g)2

++
√

n−2ε
√

n

)

≥ 1−P

(√
m

∑
i=1

(κ−gi)2
+ >

√
mE(κ−g)2

++ ε
√

n

)
−P

(√
n

∑
i=1

h2
i ≤
√

n− ε
√

n

)
(11)

By similar arguments in section 2.1, there exists c > 0, such that

P
(

min
λ≥0

max
x

λ
T Gx−λ

T 1κ ≥ 0
)
≥ 1− e−cn.

Therefore,
P(A is not empty)≥ 1− e−cn
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