## Uncorrelated Gardner's Problem

Ruilin Li

## 1 Introduction

Consider the following problem: let $\mathbf{g}^{\mathbf{1}}, \ldots, \mathbf{g}^{\mathbf{m}} \in \mathbb{R}^{n}$ be i.i.d. standard $n$-dimensional Gaussian random variables, and $\kappa \in \mathbb{R}$ is a fixed number. Define

$$
A=\bigcap_{l=1}^{m}\left\{\mathbf{x} \in S^{n-1}: \mathbf{g}^{l} \cdot \mathbf{x} \geq \kappa\right\}
$$

where $S^{n-1}$ is the $n-1$ dimensional sphere embedded in $\mathbb{R}^{n}$. Clearly with probability one the set $A$ will shrink as $m$ increases. The problem of interest is that, if we set $m=\alpha n$, how large can $\alpha$ be such that $A$ is non-empty with high probability. By high probability, we mean that there exists a constant $c>0$ such that

$$
\begin{equation*}
\mathbb{P}(A \text { is empty })<e^{-c n} . \tag{1}
\end{equation*}
$$

Such problem occurs in the perceptron model, which is defined by the following dynamics. Suppose for $i=1, \ldots, n, H_{i}^{t} \in\{-1,1\}$ are the states of the neuron at time $t$, and for each $1 \leq i, j \leq n, x_{j}^{i} \in \mathbb{R}$ is the interaction strength from neuron $j$ to neuron $i$. We require that for each $i, x_{i}^{i}=0$, and

$$
\sum_{j=1}^{n}\left(x_{j}^{i}\right)^{2}=1
$$

The $i$ th neuron fires at time $t$ if $H_{i}^{t}=1$, and does not fire if $H_{i}^{t}=-1$. The state of a neuron is updated according to:

$$
H_{i}^{t+1}=\operatorname{sign}\left(\sum_{j=1, j \neq i}^{n} H_{j}^{t} x_{j}^{i}\right) .
$$

Given interaction strength $x_{j}^{i}$, the pattern $\mathbf{H}=\left(H_{1}, \ldots, H_{n}\right)$ is memorized by the perceptron if $\mathbf{H}$ is a fixed point of the above dynamics, that is for each $i=1, \ldots, n$

$$
H_{i}^{t+1}\left(\sum_{j=1}^{n} H_{j}^{t} x_{j}^{i}\right) \geq 0
$$

Here to ensure stability we also require

$$
\begin{equation*}
H_{i}\left(\sum_{j=1, j \neq i}^{n} H_{j} x_{j}^{i}\right) \geq \kappa \tag{2}
\end{equation*}
$$

for a fixed constant $\kappa>0$. We are interested in the generic capacity of the perceptron: how many random patterns can we take, so that there is a high probability that there exists a set of interaction strength satisfying (2) for all of the random patterns. Although in our definition the states of the neurons can only take -1 and 1 , here we will relax this assumption and allow the states to be any real number. Moreover, we will take the random pattern $\mathbf{g} \in \mathbb{R}^{n}$ to come from the $n$-dimensional standard Gaussian distribution.

To be more precise, let $m=\alpha n$ to be the number of random patterns. For $l=1, \ldots, m, \mathbf{g}^{l} \in \mathbb{R}^{n}$ is a random pattern generated from a standard Gaussian distribution. Let $\mathbf{g}_{i}^{l} \in \mathbb{R}$ be the $i$ th coordinate of $\mathbf{g}^{l}$, and $\mathbf{g}_{-i}^{l} \in \mathbb{R}^{n-1}$ be the rest of the coordinates of $\mathbf{g}^{l}$. We are then interested in the probability of the event:

$$
E=\left\{\forall i, \exists \mathbf{x} \in S^{n-2} \text { such that } \operatorname{sign}\left(\mathbf{g}_{i}^{l}\right)\left(\mathbf{g}_{-i}^{l} \cdot \mathbf{x}\right) \geq \kappa \forall l\right\}
$$

which means that the perceptron can successfully remember all of the $m$ random patterns. Then the negation of $E$ can be written as:

$$
E^{c}=\left\{\exists i \text { such that } \forall \mathbf{x} \in S^{n-2}, \operatorname{sign}\left(\mathbf{g}_{i}^{l}\right)\left(\mathbf{g}_{-i}^{l} \cdot \mathbf{x}\right)<\kappa \text { for some } l\right\}
$$

Therefore

$$
\begin{aligned}
\mathbb{P}\left(E^{c}\right) & \leq \sum_{i=1}^{n} \mathbb{P}\left(\forall \mathbf{x} \in S^{n-2}, \exists l \leq m \text { such that } \operatorname{sign}\left(\mathbf{g}_{i}^{l}\right)\left(\mathbf{g}_{-i}^{l} \cdot \mathbf{x}\right)<\kappa\right) \\
& =n \mathbb{P}\left(\forall \mathbf{x} \in S^{n-2}, \exists l \leq m \text { such that } \operatorname{sign}\left(\mathbf{g}_{1}^{l}\right)\left(\mathbf{g}_{-1}^{l} \cdot \mathbf{x}\right)<\kappa\right) \\
& =n \mathbb{P}\left(\forall \mathbf{x} \in S^{n-2}, \exists l \leq m \text { such that }\left(\mathbf{g}_{-1}^{l} \cdot \mathbf{x}\right)<\kappa\right) \\
& =n \mathbb{P}\left(\bigcap_{l=1}^{m}\left\{\mathbf{x} \in S^{n-2}: \mathbf{g}_{-1}^{l} \cdot \mathbf{x} \geq \kappa\right\} \text { is empty }\right) .
\end{aligned}
$$

Similarly

$$
\mathbb{P}(E) \leq \mathbb{P}\left(\bigcap_{l=1}^{m}\left\{\mathbf{x} \in S^{n-2}: \mathbf{g}_{-1}^{l} \cdot \mathbf{x} \geq \kappa\right\} \text { is not empty }\right)
$$

It is clear now that the perceptron capacity problem above is exactly the same problem at the beginning of the section, except $n-1$ in (1) becomes $n-2$ here. This
change will not affect our analysis on $\alpha$. If for some particular choice of $\alpha$ I can show that (1) is true, then $\mathbb{P}\left(E^{c}\right)$ also decays in exponentially in $n$ (since multiplying by $n$ does not change exponential decay rate). Therefore, the rest of the write-up will focus on solving the $\alpha$ so that (1) is satisfied. I mentioned an upper bound for $P(E)$ because more can be said about (1). In fact, as you will see in the next section, one of $\mathbb{P}(\mathrm{A}$ is empty $)$ and $\mathbb{P}(\mathrm{A}$ is not empty) will have exponential decay.

## 2 Solution To the Uncorrelated Gardner's Problem

We begin this section by stating the solution to the problem in the first section.
Theorem 1. Let $A, m, n$, and $\alpha$ be defined same as in section 1. Let $g$ be a standard one dimensional Gaussian random variable and $(g+\kappa)_{+}$be the positive part of the random variable $g+\kappa$. Then,

$$
\begin{equation*}
\alpha \mathbb{E}(g+\kappa)_{+}^{2}>1, \kappa \in \mathbb{R} \Longrightarrow \exists c>0 \text { such that } \mathbb{P}(A \text { is empty }) \geq 1-e^{-c n} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha \mathbb{E}(g+\kappa)_{+}^{2}<1, \kappa>0 \Longrightarrow \exists c>0 \text { such that } \mathbb{P}(A \text { is not empty }) \geq 1-e^{-c n} \tag{4}
\end{equation*}
$$

### 2.1 Proof of the First Part of Theorem 1

Assume $\alpha \mathbb{E}(g+\kappa)_{+}^{2}>1$, and $\kappa \in \mathbb{R}$. Let $G$ be a $m \times n$ matrix whose entries are i.i.d. standard Gaussian random variables, and $\mathbf{1}=(1, \ldots, 1)^{T} \in \mathbf{R}^{m}$. Then $A$ is nonempty if and only if there exists $\mathbf{x} \in S^{n-1}$ such that

$$
G \mathbf{x} \geq \kappa \mathbf{1}
$$

where the inequality of two vectors should be interpreted as coordinate-wise inequalities. We notice that the above condition is equivalent to the following one, let $\lambda \in \mathbf{R}^{m}$

$$
\min _{\mathbf{x}} \max _{\lambda \geq 0} \lambda^{T}(\kappa \mathbf{1}-G \mathbf{x}) \leq 0, \text { with }\|\mathbf{x}\|=1,\|\lambda\| \leq 1
$$

For the reminder of this section, I will assume that $\|\mathbf{x}\|=1,\|\lambda\| \leq 1$. Therefore, to show (3) it suffices to show that there exists $\delta, c>0$, such that

$$
\mathbb{P}\left(\min _{\mathbf{x}} \max _{\lambda \geq 0} \lambda^{T}(\kappa \mathbf{1}-G \mathbf{x}) \geq \delta\right) \geq 1-e^{-c n}
$$

We start with the following observation. Let $g$ be a one-dimensional standard Gaussian random variable, independent of the entries in $G$, then for any $\delta, \varepsilon>0$,

$$
\begin{array}{r}
\mathbb{P}\left(\min _{\mathbf{x}} \max _{\lambda \geq 0} \lambda^{T}(\kappa \mathbf{1}-G \mathbf{x})+g-\varepsilon \sqrt{n}+\delta \geq \delta\right) \leq \mathbb{P}\left(\min _{\mathbf{x}} \max _{\lambda \geq 0} \lambda^{T}(\kappa \mathbf{1}-G \mathbf{x}) \geq \delta\right) \\
+\mathbb{P}(g \geq \varepsilon \sqrt{n}-\delta) \tag{5}
\end{array}
$$

The second term on the right-hand side is easy to bound from above. For now we will first focus on the probability on the left-hand side. To do this, we will use the following theorem:

Theorem 2. (Gordon's Inequality) Let $\left(X_{i j}\right)_{i \leq n, j \leq m},\left(Y_{i j}\right)_{i \leq n, j \leq m}$ be centerd Gaussian random variables, such that

1. $\mathbb{E}\left(X_{i j}^{2}\right)=\mathbb{E}\left(Y_{i j}^{2}\right)$ for all $i \leq n, j \leq m$
2. $\mathbb{E}\left(X_{i j} X_{i k}\right) \geq \mathbb{E}\left(Y_{i j} Y_{i k}\right)$ for all $i \leq n, j \leq m$
3. $\mathbb{E}\left(X_{i j} X_{l k}\right) \leq \mathbb{E}\left(Y_{i j} Y_{l k}\right)$ for $l \neq i$
then for any choice of $\beta_{i j} \in \mathbb{R}$

$$
\mathbb{P}\left(\min _{i} \max _{j}\left(X_{i j}-\beta_{i j}\right) \geq 0\right) \leq \mathbb{P}\left(\min _{i} \max _{j}\left(Y_{i j}-\beta_{i j}\right) \geq 0\right)
$$

Here we will use $-\lambda_{i}^{T} G \mathbf{x}_{j}+g$ to be the $Y_{i j}$ in the theorem, and $\lambda_{i}^{T} \mathbf{g}+\mathbf{x}_{j}^{T} \mathbf{h}$ to be the $X_{i j}$ in the theorem, where $\mathbf{g} \in \mathbb{R}^{m}, \mathbf{h} \in \mathbb{R}^{n}$ are independent standard Gaussian random variables. Let's check if the conditions in theorem 2 are satisfied. For each $i, j, l, k$, since the entries of $G$ are i.i.d. standard Gaussian random variables, it is nor difficult to verify that

$$
\mathbb{E}\left(-\lambda_{i}^{T} G \mathbf{x}_{j}+g\right)\left(-\lambda_{l}^{T} G \mathbf{x}_{k}+g\right)=\left(\lambda_{i}^{T} \lambda_{l}\right)\left(\mathbf{x}_{j}^{T} \mathbf{x}_{k}\right)+1
$$

and

$$
\mathbb{E}\left(\lambda_{i}^{T} \mathbf{g}+\mathbf{x}_{j}^{T} \mathbf{h}\right)\left(\lambda_{l}^{T} \mathbf{g}+\mathbf{x}_{k}^{T} \mathbf{h}\right)=\left(\lambda_{i}^{T} \lambda_{l}\right)+\left(\mathbf{x}_{j}^{T} \mathbf{x}_{k}\right)
$$

If $i=l, j=k$

$$
\mathbb{E}\left(-\lambda_{i}^{T} G \mathbf{x}_{j}+g\right)^{2}=2=\mathbb{E}\left(\lambda_{i}^{T} \mathbf{g}+\mathbf{x}_{j}^{T} \mathbf{h}\right)^{2}
$$

If $i=l$,

$$
\mathbb{E}\left(-\lambda_{i}^{T} G \mathbf{x}_{j}+g\right)\left(-\lambda_{i}^{T} G \mathbf{x}_{k}+g\right)=1+\left(\mathbf{x}_{j}^{T} \mathbf{x}_{k}\right)=\mathbb{E}\left(\lambda_{i}^{T} \mathbf{g}+\mathbf{x}_{j}^{T} \mathbf{h}\right)\left(\lambda_{i}^{T} \mathbf{g}+\mathbf{x}_{k}^{T} \mathbf{h}\right)
$$

If $i \neq l$, by Cauchy-Schwartz inequality

$$
\begin{aligned}
& \mathbb{E}\left(-\lambda_{i}^{T} G \mathbf{x}_{j}+g\right)\left(-\lambda_{l}^{T} G \mathbf{x}_{k}+g\right)-\mathbb{E}\left(\lambda_{i}^{T} \mathbf{g}+\mathbf{x}_{j}^{T} \mathbf{h}\right)\left(\lambda_{l}^{T} \mathbf{g}+\mathbf{x}_{k}^{T} \mathbf{h}\right) \\
& =\left(\lambda_{i}^{T} \lambda_{l}\right)\left(\mathbf{x}_{j}^{T} \mathbf{x}_{k}\right)+1-\left(\mathbf{x}_{j}^{T} \mathbf{x}_{k}\right)-\left(\lambda_{i}^{T} \lambda_{l}\right) \\
& =\left(1-\lambda_{i}^{T} \lambda_{l}\right)\left(1-\mathbf{x}_{j}^{T} \mathbf{x}_{k}\right) \geq 0
\end{aligned}
$$

Therefore, by Gordon's inequality, we have

$$
\mathbb{P}\left(\min _{\mathbf{x}} \max _{\lambda \geq 0} \lambda^{T} \kappa \mathbf{1}-\lambda^{T} G \mathbf{x}+g-\varepsilon \sqrt{n} \geq 0\right) \geq \mathbb{P}\left(\min _{\mathbf{x}} \max _{\lambda \geq 0} \lambda^{T} \kappa \mathbf{1}+\lambda^{T} \mathbf{g}+\mathbf{x}^{T} \mathbf{h}-\varepsilon \sqrt{n} \geq 0\right)
$$

Now we can find the optimum choice of $\mathbf{x}$ and $\lambda$ on the right-hand side explicitly. The optimum is achieved when $\mathbf{x}=-\mathbf{h} /\|\mathbf{h}\|, \lambda$ is in the same direction of $(\mathbf{g}+$ $\kappa)_{+}=\left(\max \left\{g_{i}+\kappa, 0\right\}\right)_{i=1}^{m}\left(g_{i}\right.$ is the $i$ th coordinate of $\left.\mathbf{g}\right)$.

$$
\min _{\mathbf{x}} \max _{\lambda \geq 0} \lambda^{T} \kappa \mathbf{1}+\lambda^{T} \mathbf{g}+\mathbf{x}^{T} \mathbf{h}-\varepsilon \sqrt{n}=\sqrt{\sum_{i=1}^{m}\left(g_{i}+\kappa\right)_{+}^{2}}-\sqrt{\sum_{i=1}^{n} h_{i}^{2}}-\varepsilon \sqrt{n}
$$

By our assumption, we can choose $\varepsilon>0$ small enough such that

$$
\sqrt{\alpha \mathbb{E}(g+\kappa)_{+}^{2}}-1-3 \varepsilon>0 \Longrightarrow \sqrt{m \mathbb{E}(g+\kappa)_{+}^{2}}-\sqrt{n}-2 \varepsilon \sqrt{n} \geq \varepsilon \sqrt{n}
$$

Therefore

$$
\begin{align*}
& \mathbb{P}\left(\min _{\mathbf{x}} \max _{\lambda \geq 0} \lambda^{T} \kappa \mathbf{1}-\lambda^{T} G \mathbf{x}+g-\varepsilon \sqrt{n} \geq 0\right) \\
& \geq \mathbb{P}\left(\min _{\mathbf{x}} \max _{\lambda \geq 0} \lambda^{T} \kappa \mathbf{1}+\lambda^{T} \mathbf{g}+\mathbf{x}^{T} \mathbf{h}-\varepsilon \sqrt{n} \geq 0\right) \\
& =\mathbb{P}\left(\sqrt{\sum_{i=1}^{m}\left(g_{i}+\kappa\right)_{+}^{2}}-\sqrt{\sum_{i=1}^{n} h_{i}^{2}}-\varepsilon \sqrt{n} \geq 0\right) \\
& \geq \mathbb{P}\left(\sqrt{\sum_{i=1}^{m}\left(g_{i}+\kappa\right)_{+}^{2}}-\sqrt{\sum_{i=1}^{n} h_{i}^{2}} \geq \sqrt{m \mathbb{E}(g+\kappa)_{+}^{2}}-\sqrt{n}-2 \varepsilon \sqrt{n}\right) \\
& =1-\mathbb{P}\left(\sqrt{\sum_{i=1}^{m}\left(g_{i}+\kappa\right)_{+}^{2}}-\sqrt{\sum_{i=1}^{n} h_{i}^{2}}<\sqrt{m \mathbb{E}(g+\kappa)_{+}^{2}}-\sqrt{n}-2 \varepsilon \sqrt{n}\right) \\
& \geq 1-\mathbb{P}\left(\sqrt{\sum_{i=1}^{m}\left(g_{i}+\kappa\right)_{+}^{2}} \leq \sqrt{m \mathbb{E}(g+\kappa)_{+}^{2}}-\varepsilon \sqrt{n}\right)-\mathbb{P}\left(\sqrt{\sum_{i=1}^{n} h_{i}^{2}} \geq \sqrt{n}+\varepsilon \sqrt{n}\right) \tag{6}
\end{align*}
$$

Take the square of the two inequalities in the last line, we have

$$
\begin{gathered}
\sum_{i=1}^{m}\left(g_{i}+\kappa\right)_{+}^{2} \leq m \mathbb{E}(g+\kappa)_{+}^{2}-\left(2 \varepsilon \sqrt{\alpha \mathbb{E}(g+\kappa)_{+}^{2}}-\varepsilon^{2}\right) n \\
\sum_{i=1}^{n} h_{i}^{2} \geq n+\left(2 \varepsilon+\varepsilon^{2}\right) n^{2}
\end{gathered}
$$

Set $C_{\varepsilon}=2 \varepsilon \sqrt{\alpha \mathbb{E}(g+\kappa)_{+}^{2}}-\varepsilon^{2}, C_{\varepsilon}^{\prime}=2 \varepsilon+\varepsilon^{2}$. Let $X_{i}=-\left(g_{i}+\kappa\right)_{+}^{2}$ or $X_{i}=h_{i}^{2}$, $N=n$ or $N=m$, and $C=C_{\varepsilon}$ or $C=C_{\varepsilon}^{\prime}$. Then above showed that both probabilities in (6) can be written in the form

$$
\mathbb{P}\left(\sum_{i=1}^{N}\left(X_{i}-\mathbb{E} X_{i}\right) \geq C n\right)
$$

where $X_{i}$ are i.i.d. random variables. By Markov's inequality, for any $t>0$ :

$$
\begin{align*}
\mathbb{P}\left(\sum_{i=1}^{N}\left(X_{i}-\mathbb{E} X_{i}\right) \geq C n\right) & =\mathbb{P}\left(\exp \left(\sum_{i=1}^{N}\left(X_{i}-\mathbb{E} X_{i}\right) t\right) \geq e^{t C n}\right)  \tag{7}\\
& \leq e^{-t C n}\left[\mathbb{E}\left(\exp \left(t\left(X_{1}-\mathbb{E} X_{1}\right)\right)\right)\right]^{N}
\end{align*}
$$

Apply Taylor expansion to $\mathbb{E}\left(\exp \left(t\left(X_{1}-\mathbb{E} X_{1}\right)\right)\right)$, the order one term vanishes we have

$$
\mathbb{E}\left(\exp \left(t\left(X_{1}-\mathbb{E} X_{1}\right)\right)\right) \leq 1+\sum_{k=2}^{\infty} \frac{t^{k}}{k!} \mathbb{E}\left|X_{1}-\mathbb{E} X_{1}\right|^{k}
$$

Moreover, for each $k \geq 2$, we have

$$
\begin{aligned}
\mathbb{E}\left|h_{1}^{2}-1\right|^{k} & \leq 2^{k}+2^{k} \mathbb{E} h_{1}^{2 k} \\
& =2^{k}+2^{k}(2 k-1)(2 k-3) \cdots 1 \\
& <2^{k}+2^{k}(2 k)(2 k-2)(2 k-4) \cdots 2 \\
& =2^{k}+2^{2 k} k!\leq a^{k} k!
\end{aligned}
$$

for some $a>0$. By similar arguments, above holds when $X_{i}=-\left(g_{i}+\kappa\right)_{+}^{2}($ possible with a different choice of $a$ ). Therefore,

$$
\begin{aligned}
\mathbb{E}\left(\exp \left(t\left(X_{1}-\mathbb{E} X_{1}\right)\right)\right) & \leq 1+\sum_{k=2}^{\infty} \frac{t^{k}}{k!} \mathbb{E}\left|X_{1}-\mathbb{E} X_{1}\right|^{k} \\
& \leq 1+\sum_{k=2}^{\infty} \frac{t^{k}}{k!} a^{k} k!=1+\frac{t^{2} a^{2}}{1-t a}
\end{aligned}
$$

Choose $0<t<1 / 2 a$, then

$$
\mathbb{E}\left(\exp \left(t\left(X_{1}-\mathbb{E} X_{1}\right)\right)\right) \leq 1+\frac{t^{2} a^{2}}{1-t a} \leq 1+2 t^{2} a^{2} \leq e^{2 t^{2} a^{2}}
$$

Now go back to (7), if $N=n$

$$
\mathbb{P}\left(\sum_{i=1}^{N}\left(X_{i}-\mathbb{E} X_{i}\right) \geq C n\right) \leq\left(e^{-t C+2 t^{2} a^{2}}\right)^{n}
$$

Recall that $C \sim O(\varepsilon)$, so we can choose $\varepsilon>0$ small enough such that $t=C / 4 a^{2}$ and $t \leq 1 / 2 a$. Then

$$
\mathbb{P}\left(\sum_{i=1}^{N}\left(X_{i}-\mathbb{E} X_{i}\right) \geq C n\right) \leq e^{-n C^{2} / 8 a^{2}}
$$

Similarly, if $N=m=n \alpha$, we can further reduce $\varepsilon>0$ (if needed), so that $t^{\prime}=$ $C /\left(4 a^{2} \alpha\right)$, and $t^{\prime}<1 / 2 a$. Then by (7)

$$
\mathbb{P}\left(\sum_{i=1}^{N}\left(X_{i}-\mathbb{E} X_{i}\right) \geq C n\right) \leq\left(e^{-t C+2 t^{2} a^{2} \alpha}\right)^{n} \leq e^{-n C^{2} / 8 \alpha a^{2}}
$$

We have showed that both probabilities in the last line of (6) decreases exponentially in $n$. Moreover $\mathbb{P}(g \geq \varepsilon \sqrt{n}-\delta)$ decays exponentially in $n$. Therefor, by (5) there exists $c>0$ such that

$$
\mathbb{P}\left(\min _{\mathbf{x}} \max _{\lambda \geq 0} \lambda^{T}(\kappa \mathbf{1}-G \mathbf{x}) \geq \delta\right) \geq 1-e^{-c n}
$$

which implies

$$
\mathbb{P}(A \text { is empty }) \geq 1-e^{-c n}
$$

### 2.2 Proof of the Second Part of Theorem 1

Now assume $\alpha \mathbb{E}(g+\kappa)_{+}^{2}<1$, and $\kappa \geq 0$. We want to show that the event $\{\exists \mathbf{x}$ such that $G \mathbf{x} \geq$ $\mathbf{1} \kappa\}$ has high probability. I have shown in the last section that this event is equivalent to the event $\left\{\min _{\mathbf{x}} \max _{\lambda \geq 0} \lambda^{T}(\kappa \mathbf{1}-G \mathbf{x}) \leq 0\right\}$ with constraints $\|\mathbf{x}\|=1,\|\lambda\| \leq 1$. Here this condition is also equivalent to $\left\{\min _{\mathbf{x}} \max _{\lambda \geq 0} \lambda^{T}(\kappa \mathbf{1}-G \mathbf{x}) \leq 0\right\}$ with the relaxed condition $\|\mathbf{x}\| \leq 1,\|\lambda\| \leq 1$, giving us a convex constraint. To proceed, we will use the following theorem.

Theorem 3. (Simplified version of Sion's Minimax Theorem) Let $U, V$ be two convex compact subset of $\mathbb{R}^{m}$ If $f$ is a continuous real-valued function on $U \times V$ with:

1. For all $x_{1}, x_{2} \in U, y \in V, t \in[0,1], f\left(t x_{1}+(1-t) x_{2}, y\right) \geq \min \left\{f\left(x_{1}, y\right), f\left(x_{2}, y\right)\right\}$
2. For all $y_{1}, y_{2} \in V, x \in U, t \in[0,1], f\left(x, t y_{1}+(1-t) y_{2}\right) \leq \max \left\{f\left(x, y_{1}\right), f\left(x, y_{2}\right)\right\}$

Then

$$
\min _{x \in U} \max _{y \in V} f(x, y)=\max _{y \in V} \min _{x \in U} f(x, y)
$$

Fixing one of $\lambda$ and $\mathbf{x}, \lambda^{T}(\kappa \mathbf{1}-G \mathbf{x})$ is an affine linear transformation, so it satisfies the condition in the above thoerem. Therefore

$$
\min _{\mathbf{x}} \max _{\lambda \geq 0} \lambda^{T}(\kappa \mathbf{1}-G \mathbf{x})=\max _{\lambda \geq 0} \min _{\mathbf{x}} \lambda^{T}(\kappa \mathbf{1}-G \mathbf{x})
$$

which implies

$$
-\min _{\mathbf{x}} \max _{\lambda \geq 0} \lambda^{T}(\kappa \mathbf{1}-G \mathbf{x})=\min _{\lambda \geq 0} \max _{\mathbf{x}} \lambda^{T}(G \mathbf{x}-\kappa \mathbf{1})
$$

$A$ is non-empty if and only if $\min _{\lambda \geq 0} \max _{\mathbf{x}} \lambda^{T}(G \mathbf{x}-\kappa \mathbf{1}) \geq 0$. To compute a probabilistic bound for such event, we start with the following inequality (We assume
the constraints $\|\lambda\| \leq 1,\|\mathbf{x}\| \leq 1)$. Let $g, \mathbf{g}, \mathbf{h}$ be defined the same way as in the last section, then for any $\varepsilon>0$, we have:

$$
\begin{align*}
& \mathbb{P}\left(\min _{\lambda \geq 0} \max _{\mathbf{x}} \lambda^{T} G \mathbf{x}+g\|\mathbf{x}\|\|\lambda\|-\lambda^{T} \mathbf{1} \kappa-\varepsilon \sqrt{n}\|\mathbf{x}\|\|\lambda\| \geq 0\right) \\
& \leq \mathbb{P}\left(\min _{\lambda \geq 0} \max _{\mathbf{x}} \lambda^{T} G \mathbf{x}-\lambda^{T} \mathbf{1} \kappa \geq 0\right)+\mathbb{P}(g \geq \varepsilon \sqrt{n}) \tag{8}
\end{align*}
$$

Again the second term on the left-hand side is bounded by $e^{-\varepsilon^{2} n / 2}$. We focus on the left-hand side. $\lambda_{i} G \mathbf{x}_{j}+g\left\|\lambda_{i}\right\|\left\|\mathbf{x}_{j}\right\|$ will be the $Y_{i j}$ in theorem $2 .\left\|\mathbf{x}_{i}\right\| \mathbf{g}^{T} \lambda_{j}+$ $\left\|\lambda_{j}\right\| \mathbf{h}^{T} \mathbf{x}_{i}$ will be the $X_{i j}$ in theorem 2.Now let's check the conditions in theorem 2. For each $i, j, l, k$

$$
\begin{aligned}
& \mathbb{E}\left(\lambda_{i} G \mathbf{x}_{j}+g\left\|\lambda_{i}\right\|\left\|\mathbf{x}_{j}\right\|\right)\left(\lambda_{l} G \mathbf{x}_{k}+g\left\|\lambda_{l}\right\|\left\|\mathbf{x}_{k}\right\|\right)=\left(\lambda_{i}^{T} \lambda_{l}\right)\left(\mathbf{x}_{j}^{T} \mathbf{x}_{k}\right)+\left\|\lambda_{i}\right\|\left\|\mathbf{x}_{j}\right\|\left\|\lambda_{l}\right\|\left\|\mathbf{x}_{k}\right\| \\
& \mathbb{E}\left(\left\|\mathbf{x}_{j}\right\| \mathbf{g}^{T} \lambda_{i}+\left\|\lambda_{i}\right\| \mathbf{h}^{T} \mathbf{x}_{j}\right)\left(\left\|\mathbf{x}_{k}\right\| \mathbf{g}^{T} \lambda_{l}+\left\|\lambda_{l}\right\| \mathbf{h}^{T} \mathbf{x}_{k}\right)=\left\|\mathbf{x}_{j}\right\|\left\|\mathbf{x}_{k}\right\| \lambda_{i}^{T} \lambda_{l}+\left\|\lambda_{i}\right\|\left\|\lambda_{l}\right\| \mathbf{x}_{j}^{T} \mathbf{x}_{k}
\end{aligned}
$$

By similar arguments in section 2.1, it is easy to verify that the conditions in theorem 2 are satisfied. Therefore, by Gordon's inequality,

$$
\begin{align*}
& \mathbb{P}\left(\min _{\lambda \geq 0} \max _{\mathbf{x}} \lambda^{T} G \mathbf{x}+g\|\mathbf{x}\|\|\lambda\|-\lambda^{T} \mathbf{1} \kappa-\varepsilon \sqrt{n}\|\mathbf{x}\|\|\lambda\| \geq 0\right) \geq \\
& \mathbb{P}\left(\min _{\lambda \geq 0} \max _{\mathbf{x}}\|\mathbf{x}\| \mathbf{g}^{T} \lambda+\|\lambda\| \mathbf{h}^{T} \mathbf{x}-\lambda^{T} \mathbf{1} \kappa-\varepsilon \sqrt{n}\|\mathbf{x}\|\|\lambda\| \geq 0\right) \tag{9}
\end{align*}
$$

Solving the maximization problem (terms does not depending on $\mathbf{x}$ will not show below):

$$
\begin{aligned}
& \max _{\mathbf{x}}\|\mathbf{x}\| \mathbf{g}^{T} \lambda+\|\lambda\| \mathbf{h}^{T} \mathbf{x}-\varepsilon \sqrt{n}\|\mathbf{x}\|\|\lambda\| \\
& =\max _{\mathbf{x}}\|\mathbf{x}\|\left(\mathbf{g}^{T} \lambda-\varepsilon \sqrt{n}\|\lambda\|+\frac{\|\lambda\|}{\|\mathbf{x}\|} \mathbf{h}^{T} \mathbf{x}\right) \\
& =\max _{\|\mathbf{x}\|}\|\mathbf{x}\|\left(\mathbf{g}^{T} \lambda-\varepsilon \sqrt{n}\|\lambda\|+\|\lambda\|\|\mathbf{h}\|\right) \\
& =\max \left\{0, \mathbf{g}^{T} \lambda-\varepsilon \sqrt{n}\|\lambda\|+\|\lambda\|\|\mathbf{h}\|\right\} \\
& \geq \mathbf{g}^{T} \lambda-\varepsilon \sqrt{n}\|\lambda\|+\|\lambda\|\|\mathbf{h}\|
\end{aligned}
$$

So we have:

$$
\begin{align*}
\mathbb{P}\left(\min _{\lambda \geq 0} \max _{\mathbf{x}}\|\mathbf{x}\| \mathbf{g}^{T} \lambda+\right. & \left.\|\lambda\| \mathbf{h}^{T} \mathbf{x}-\lambda^{T} \mathbf{1} \kappa-\varepsilon \sqrt{n}\|\mathbf{x}\|\|\lambda\| \geq 0\right) \\
& \geq \mathbb{P}\left(\min _{\lambda \geq 0} \mathbf{g}^{T} \lambda-\lambda^{T} \mathbf{1} \kappa-\varepsilon \sqrt{n}\|\lambda\|+\|\lambda\|\|\mathbf{h}\| \geq 0\right) \tag{10}
\end{align*}
$$

Now we minimize $\mathbf{g}^{T} \lambda-\lambda^{T} \mathbf{1} \kappa-\varepsilon \sqrt{n}\|\lambda\|+\|\lambda\|\|\mathbf{h}\|$ over the feasible region of $\lambda$ :

$$
\begin{aligned}
& \min _{\lambda \geq 0} \mathbf{g}^{T} \lambda-\lambda^{T} \mathbf{1} \kappa-\varepsilon \sqrt{n}\|\lambda\|+\|\lambda\|\|\mathbf{h}\| \\
& =\min _{\lambda \geq 0}\|\lambda\|\left(\frac{\lambda^{T}}{\|\lambda\|}(\mathbf{g}-\mathbf{1} \kappa)-\varepsilon \sqrt{n}+\|\mathbf{h}\|\right) \\
& =\min _{\lambda \geq 0}\|\lambda\|\left(-\left\|(\mathbf{1} \kappa-\mathbf{g})_{+}\right\|-\varepsilon \sqrt{n}+\|\mathbf{h}\|\right)
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
& \mathbb{P}\left(\min _{\lambda \geq 0} \mathbf{g}^{T} \lambda-\lambda^{T} \mathbf{1} \kappa-\varepsilon \sqrt{n}\|\lambda\|+\|\lambda\|\|\mathbf{h}\| \geq 0\right) \\
& =\mathbb{P}\left[\min _{\lambda \geq 0}\|\lambda\|\left(-\left\|(\mathbf{1} \kappa-\mathbf{g})_{+}\right\|-\varepsilon \sqrt{n}+\|\mathbf{h}\|\right) \geq 0\right] \\
& =\mathbb{P}\left(-\left\|(\mathbf{1} \kappa-\mathbf{g})_{+}\right\|-\varepsilon \sqrt{n}+\|\mathbf{h}\| \geq 0\right) \\
& =\mathbb{P}\left(-\sqrt{\sum_{i=1}^{m}\left(\kappa-g_{i}\right)_{+}^{2}}+\sqrt{\sum_{i=1}^{n} h_{i}^{2}}-\varepsilon \sqrt{n} \geq 0\right)
\end{aligned}
$$

Notice that $(\kappa-g)_{+}^{2}$ and $(\kappa+g)_{+}^{2}$ have the same distribution. By our assumption, we can find $\varepsilon>0$ such that

$$
\sqrt{\alpha \mathbb{E}(\kappa-g)_{+}^{2}}-1+3 \varepsilon<0 \Longrightarrow-\sqrt{m \mathbb{E}(\kappa-g)_{+}^{2}}+\sqrt{n}-2 \varepsilon \sqrt{n}>\varepsilon \sqrt{n}
$$

This implies

$$
\begin{align*}
& \mathbb{P}\left(-\sqrt{\sum_{i=1}^{m}\left(\kappa-g_{i}\right)_{+}^{2}}+\sqrt{\sum_{i=1}^{n} h_{i}^{2}}-\varepsilon \sqrt{n} \geq 0\right) \\
& \geq \mathbb{P}\left(-\sqrt{\sum_{i=1}^{m}\left(\kappa-g_{i}\right)_{+}^{2}}+\sqrt{\sum_{i=1}^{n} h_{i}^{2}} \geq-\sqrt{m \mathbb{E}(\kappa-g)_{+}^{2}}+\sqrt{n}-2 \varepsilon \sqrt{n}\right) \\
& =1-\mathbb{P}\left(-\sqrt{\sum_{i=1}^{m}\left(\kappa-g_{i}\right)_{+}^{2}}+\sqrt{\sum_{i=1}^{n} h_{i}^{2}}<-\sqrt{m \mathbb{E}(\kappa-g)_{+}^{2}}+\sqrt{n}-2 \varepsilon \sqrt{n}\right) \\
& \geq 1-\mathbb{P}\left(\sqrt{\sum_{i=1}^{m}\left(\kappa-g_{i}\right)_{+}^{2}}>\sqrt{m \mathbb{E}(\kappa-g)_{+}^{2}}+\varepsilon \sqrt{n}\right)-\mathbb{P}\left(\sqrt{\sum_{i=1}^{n} h_{i}^{2}} \leq \sqrt{n}-\varepsilon \sqrt{n}\right) \tag{11}
\end{align*}
$$

By similar arguments in section 2.1, there exists $c>0$, such that

$$
\mathbb{P}\left(\min _{\lambda \geq 0} \max _{\mathbf{x}} \lambda^{T} G \mathbf{x}-\lambda^{T} \mathbf{1} \kappa \geq 0\right) \geq 1-e^{-c n}
$$

Therefore,

$$
\mathbb{P}(A \text { is not empty }) \geq 1-e^{-c n}
$$

## References

1. Stojnic, M.: Another Look at the Gardner Problem, 2013
2. Professor Panchenko's lecture notes
