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1 Introduction

Let (X,Y ) be a random couple, where X is an instance in a space S and Y ∈ {−1, 1} is a label. In machine

learning, we often call X the feature, and we call functions h : S → {−1, 1} as (binary) classfiers.

Let G be set of functions from S into R. And sign(g(X)) will be used as a predictor(or classifier)

of the unknown label Y . Often we would not have the distribution of (X,Y ), in this case, our choice of

the classifier is based on a set which we called the training data (X1, Y1), ....(Xn, Yn) that consists of n

independent and identically distributed (ie: i.i.d) copies of (X,Y ). Our goal is through learning, to find a

classfier ĝ ∈ G, such that its generalization error is small(on test sets). The standard approach to this problem

is based on bounding the difference between the generalization error P(Y g(X) ≤ 0) and the training error
1
n

∑n
j=1 I{Yjg(Xj)≤0} uniformly over the whole class G. We can define f(X) = Y g(X), so mislabel happens

when f(X) ≤ 0. In theorem 2, we develop an upper bound for the probability of there existing a function f

in F , such that P (f ≤ 0) greater than some quantity associated with the Gaussian complexity function of

class F and positive t is bounded by some quantity in terms of t which we can easily compute.

In section 3, we will introduce some basic information about neural network learning, including forward

inference and backward update. And in section 4, we would show how to bound generalization errors in

neural network learning. In theorem 3, we develop a probabilistic bound for such error, which is a specific

extension of theorem 2 with some new setting associated with neural network.

Finally, in section 5 and 6, in order to make the bound more clear, we choose some specific H, which

is half space, as the space of base functions in neural network learning, and construct a bound for Gaussian

Complexity term Gn(H), by using Vapnik-Chervonenkis dimension.The result is very convincing, we showed

that the Gaussian Complexity term will go to zero as the size of training set increases.

2 Probabilistic bounds for general function classes in terms of

Gaussian and Rademacher complexities

Let (S,A, P ) be a probability space and let F be a class of measurable function from (S,A) into R. We

could also replace S by S×{−1, 1} later when we want to talk about classification problems. Let {Xk} be a

sequence of i.i.d random variables taking values in (S,A) with common distribution P . We assume that this

sequence is defined on a probability space (Ω,Σ,P). Let Pn be the empirical measure based on the sample

(X1, ...Xn).

Pn(A) =
1

n

n∑
i=1

IA(Xi).

Furthermore, Pn can map measurable function f to its empirical mean:

f 7→ Pnf =

∫
S

fdPn =
1

n

n∑
i=1

f(Xi).

Let L∞(F) denotes the Banach space of uniformly bounded real valued function on F with the norm

‖Y ‖F := sup
f∈F
|Y (f)|.

Our goal is to find bounds on P (f ≤ 0) and on the difference |Pn(f ≤ 0)−P (f ≤ 0)| that holds for all f ∈ F
with high probability.

We define Gaussian complexity function of the class F
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Gn(F) := E sup
f∈F
|n−1

n∑
i=1

gif(Xi)|.

And the Rademacher complexity function

Rn(F) := E sup
f∈F
|n−1

n∑
i=1

εif(Xi)|,

where {εi} is a sequence of i.i.d random variable(taking values +1 or −1 with probability both 1/2). Here

we assume that for any x ∈ S the set of real numbers {f(x) : f ∈ F} is bounded.

2.1 Martingale Difference Inequality

We want to estimate P (f ≤ 0). Define such a Lipschitz function such that ϕ(x) ≥ I(−∞,0]. We have

P (f ≤ 0) ≤ Pnϕ(f) +‖Pn−P‖Gϕ , where Gϕ := {ϕ◦f : f ∈ F}. Since Pnϕ(f) is what we have known based

on our data. We want to bound ‖Pn−P‖Gϕ . One way to do this is to find how far it is from its expectation.

Let ‖Pn − P‖Gϕ = Z, we actually want to find a bound for P(Z − EZ > t), for any t ≥ 0.

Let Z(x1, ...xn) : X 7→ R. We would like to bound Z − EZ. We make the following assumptions. For

any x1, ...xn, x
′
1, x
′
2.....x

′
n,

|Z(x1, ..xi, ....xn)− Z(x1, ...xi−1, x
′
i, xi+1, ...xn)| ≤ ci

for some constant ci. We can decompose Z − EZ as follows

Z(x1, ...xn)− Ex′Z(x′1, ...x
′
n) = (Z(x1, ...xn)− Ex′Z(x′1, x2, ...., xn))+

(Ex′Z(x′1, x2, ...xn)− Ex′Z(x′1, x
′
2, x3....xn))

+ (Ex′Z(x′1, , x
′
n−1...xn)− Ex′Z(x′1, x

′
2, .......x

′
n))

= Z1 + Z2 + Z3.....Zn,

where Zi = Ex′Z(x′1, .., x
′
i−1, xi..xn)− Ex′(x′1, ..x′i, xi+1....xn).

Assume (1)|Zi| ≤ ci (2)EXi
Zi = 0 (3)Zi = Zi(x1, ...xn)

Lemma 1 For any λ ∈ R,

Exi
eλZi ≤ eλ

2c2i /2

Proof. Take any −1 ≤ s ≤ 1. Since function eλs is convex and

eλs = eλ(
1+s
2 )+(−λ)( 1−s

2 ).

Check that 0 ≤ 1+s
2 , 1−s2 ≤ 1, and 1+s

2 + 1−s
2 = 1, hence we have

eλs ≤ 1 + s

2
eλ +

1− s
2

e−λ =
eλ + e−λ

2
+ s

eλ − e−λ

2
≤ eλ

2/2 + s · sinh(λ)

by Taylor expansion. Now use Zi

ci
= s, and since by assumptions, −1 ≤ Zi

ci
≤ 1. We have

eλZi = e
λci·

Zi
ci ≤ eλ

2c2i /2 +
Zi
ci

sinh(λci)

since Exi
Zi = 0 We now have Exi

eλZi ≤ eλ2c2i /2.

3



ut

Lemma 2 If condition of lemma 1 is satisfied for each i, we have

P(Z − EZ > t) ≤ e
t2

2
∑n

i=1
c2
i

.

Proof. For any λ > 0

P(Z − EZ > t) = P(eλ(Z−EZ) > eλt) ≤ Eeλ(Z−EZ)

eλt

Since we have

Eeλ(Z−EZ) = Eeλ(Z1+Z2+....Zn)

= EEx1e
λ(Z1+Z2+....Zn)

= E[eλ(Z2+....Zn)Ex1
eλZ1 ]

≤ E[eλ(Z2+....Zn)Ex1e
λ2c2i /2]

= eλ
2c21/2EEx2 [eλ(Z2+....Zn)]

≤ eλ
2(c21+c

2
2)/2Eeλ(Z3+....Zn)

≤ eλ
2 ∑n

i=1 c
2
i /2.

Hence

P(Z − EZ > t) ≤ e−λt+λ
2 ∑n

i=1 c
2
i /2.

We minimize the exponent of the right hand side with respect to λ. We have λ =
t∑n
i=1 c

2
i

. Substitute it

back into the inequality we can get our result. ut

Lemma 3 Let F be a class of functions: X 7→ [a, b]. Define the empirical process

Z(x1, ..xn) = sup
f∈F
|Ef − 1

n

n∑
i=1

f(xi)|.

We have

P(Z − EZ > t) ≤ e−
nt2

2(b−a)2 .

Proof. First we show that, for any i,

|Z(x1, ..x
′
i, ...xn)− Z(x1, ..xi, ...xn)| = | sup

f
|Ef − 1

n
(f(x1) + ..f(x′i) + ..f(xn))|

− sup
f
|Ef − 1

n
(f(x1) + ..f(xi) + ..f(xn))||

≤ sup
f∈F

1

n
|f(xi)− f(x′i)|

≤ b− a
n

.

We set ci = b−a
n for all i, then by lemma 2,

P(Z − EZ > t) ≤ exp(− t2

2
∑n
i=1

(b−a)2
n2

) = e
− nt2

2(b−a)2 .
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2.2 Symmetrization

As we have found a bound for P{‖Pn − P‖Gϕ − E‖Pn − P‖Gϕ ≥ t}, we still want to bound E‖Pn − P‖Gϕ in

terms of Rademacher complexity function and Gaussian complexity function.

Lemma 4 Denote Ponf = 1
n

∑n
i=1 εif(Xi).

E‖Pn − P‖F ≤ 2E‖Pon‖F .

Proof. Here we introduce copies of Xi, X
′
i, each of them is independent with each other.

E sup
f
| 1
n

n∑
i=1

f(Xi)− Ef | = E sup
f

1

n
|
∑

(f(Xi)− Ef(X ′i))|

= EXi
sup
f
| 1
n
EX′i

∑
(f(X ′i)− f(Xi))|

≤ EXi
sup
f

1

n
EX′i |

∑
(f(X ′i)− f(Xi))|

≤ EXi
EX′i sup

f
| 1
n

n∑
i=1

(f(Xi)− f(X ′i))|.

Since f(Xi) and f(X ′i) are identical copies, so the we can introduce Rademacher random variable εi that is

independent to Xi and X ′i. So by the symmetry of Rademacher variable and triangle inequality, we have

E sup
f
| 1
n

n∑
i=1

f(Xi)− Ef | ≤ 2E
1

n
sup |

n∑
i=1

εif(Xi)|.

As desired.

ut

Lemma 5

E‖Pon‖F ≤
√

2πE sup
h∈F
|n−1

n∑
i=1

gih(Xi)|.

Proof. We can start from last lemma’s last step. Consider Radmacher variable εi, it is the same as gi
‖gi‖ ,

where gi is a standard gaussian. So if we replace εi in our previous equation. We have

E sup
f
| 1
n

n∑
i=1

f(Xi)− Ef | ≤
2

E‖g1‖
E

1

n
sup |

n∑
i=1

gif(Xi)|.

And since E‖g1‖ is
√

π
2 , we have our result.

ut

Lemma 6 (Rademacher comparison inequality) Let F: R+ → R+ be convex and increasing. Let further

ϕi : R→ R, be contractions such that ϕi(0) = 0. Then for any bounded subset T in RN , we have

EF (
1

2
‖
N∑
i=1

εiϕi(ti)‖T ) ≤ EF (‖
N∑
i=1

εiti‖T ).
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We would not prove this theoreom in our project. Readers can refer to this book: Probability in Banach

Spaces ,Ledoux, Michel, Talagrand, Michel, and it is the theorem 4.1.2

Now, we prove our first theorem by putting above pieces together.

2.3 Probabilistic bounds for general function classifiers

Theorem 1 For all t > 0,

P
{
∃f ∈ F : P{f ≤ 0} > inf

k≥1
[Pnϕk(f) + 4L(ϕk)Rn(F) + (

2 log k

n
)1/2] +

t√
n

}
≤ 2 exp(−t2/2)

and

P
{
∃f ∈ F : P{f ≤ 0} > inf

k≥1
[Pnϕk(f) +

√
2πL(ϕk)Gn(F) + (

2 log k

n
)1/2] +

t+ 2√
n

}
≤ 2 exp(−t2/2)

Proof. Without loss of generality we can assume that each ϕ takes values in [0, 1]. In this case we have

ϕ(x) = 1 for x ≤ 0. Fix ϕ ∈ Φ, for all f ∈ F we have

P{f ≤ 0} ≤ Pϕ(f) = Pϕ(f)− Pnϕ(f) + Pnϕ(f) ≤ Pnϕ(f) + ‖Pn − P‖Gϕ . (1)

By the definition of our norm. Here

Gϕ := {ϕ ◦ f − 1 : f ∈ F}

By lemma 3, and substitute t with t√
n

. Since function in Gϕ have range [−1, 0], we have

P{‖Pn − P‖Gϕ ≥ E‖Pn − P‖Gϕ +
t√
n
} ≤ exp(−t2/2).

Thus with probability at least 1− exp(t2/2) for all f ∈ F

P (f ≤ 0) ≤ Pnϕ(f) + E‖Pn − P‖Gϕ +
t√
n
. (2)

And by Symmetrization lemma (lemma 4)

E{‖Pn − P‖Gϕ} ≤ 2E‖Pon‖Gϕ (3)

Since a function ϕ−1
L(ϕ) is a contraction and ϕ(0)− 1 = 0, the Rademacher comparison inequality implies

Eε sup
h∈Gϕ

| 1
n

n∑
i=1

εih(Xi)| ≤ 2L(ϕ)Eε sup
h∈F
| 1
n

n∑
i=1

εif(Xi)|

Where h = ϕ ◦ f − 1. Then it follows from (2),(3) that with probability at least 1 − e−t2/2 we have for all

f ∈ F
P{f ≤ 0} ≤ Pnϕ(f) + 4L(ϕ)Rn(F) +

t√
n

(4)

We can now use (4) with ϕ = ϕk and t replaced by t+ 2
√

log k and obtain
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P
{
∃f ∈ F : P{f ≤ 0} > inf

k≥1
[Pnϕk(f) + 4L(ϕk)Rn(F) +

√
2(

log k

n
)1/2] +

t√
n

}
≤
∑
k≥1

exp{−(t+ 2
√

log k)2/2} ≤
∑
k≥1

k−2e−t
2/2 =

π2

2
e−t

2/2 ≤ 2e−t
2/2

(5)

The proof for the second bound is similar with some changes. We define class Gϕ as {ϕ ◦ f : f ∈ F}. For

further develop the inequality in (3). And we have

E‖Pn − P‖Gϕ ≤ 2E‖Pon‖Gϕ ≤
√

2πE sup
h∈Gϕ

|n−1
n∑
i=1

gih(Xi)| (6)

The second inequality is by the lemma 5.

Define these two Gaussian processes:

Z1(f, σ) := σn−1/2
n∑
i=1

gi(ϕ ◦ f)(Xi)

Z2(f, σ) := L(ϕ)n−1/2
n∑
i=1

gif(Xi) + σg

where σ = ±1, and g is a standard Gaussian independent of gi. We can denote by Eg the expectation on the

probability space (Ωg,Σg,Pg) on which the gi and g are defined. Then we have

Eg|Z1(f, σ)− Z1(h, σ′)|2 ≤ Eg|Z2(f, σ)− Z2(h, σ′)|2

We will prove the above inequality in two cases. First, if we have σσ′ = 1. Then

|Z1(f, σ)− Z1(h, σ′)|2 = 1/n|
n∑
i=1

gi(ϕ(f(Xi))− ϕ(h(Xi))|2

Since each gi is independent. If we take expectation, we would have

Eg|Z1(f, σ)− Z1(h, σ′)|2 = 1/n

n∑
i=1

|ϕ(f(Xi))− ϕ(h(Xi))|2

≤ L(ϕ)2/n

n∑
i=1

(f(Xi)− h(Xi))
2

= Eg|Z2(f, σ)− Z2(h, σ′)|2

If σσ′ = −1.

Eg|Z1(f, σ)− Z1(h, σ′)|2 = 1/n

n∑
i=1

|ϕ(f(Xi))− ϕ(h(Xi))|2

≤ 2n−1
n∑
i=1

ϕ2(f(Xi)) + 2n−1
n∑
i=1

ϕ2(h(Xi))

≤ E(2g)2 ≤ Eg|Z2(f, σ)− Z2(h, σ′)|2

By slepian’s lemma in lecture notes, we have

Eg sup{Z1(f, σ) : f ∈ F , σ = ±1} ≤ Eg sup{Z2(f, σ) : f ∈ F , σ = ±1}
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We have

Eg sup{Z1(f, σ) : f ∈ F , σ = ±1} = Eg sup
h∈Gϕ

[n−1/2
n∑
i=1

gih(Xi)]

Where we define Gϕ := {ϕ(f),−ϕ(f) : f ∈ F} And it is easy to see that

L(ϕ)Eg sup |n−1/2
n∑
i=1

gif(Xi)|+ E|g| ≥ Eg sup{Z2(f, σ) : f ∈ F , σ = ±1}

So we have

Eg sup
h∈Gϕ

[n−1/2
n∑
i=1

gih(Xi)] ≤ L(ϕ)Eg sup |
n∑
i=1

gif(Xi)|+ n−1/2E|g| (7)

So by (2), (6), and (7), we have that with probability at least 1− exp(t2/2) for all f ∈ F ,

P (f ≤ 0) ≤ Pnϕ(f) + E‖Pn − P‖Gϕ +
t√
n
≤ Pnϕ(f) +

√
2πL(ϕ)Gn(F) +

t+ 2√
n
. (8)

Then by the same method we used for the first bound we can derive the one for the second one. ut
Now let us consider a special family of functions for ϕ. Let

Φ0 := {ϕ(./δ) : δ ∈ (0, 1]},

we can check that L(ϕ(./δ)) ≤ L(ϕ)/δ.

Theorem 2 For all t > 0,

P
{
∃f ∈ F : P{f ≤ 0} > inf

δ∈(0,1]
[Pnϕ(

f

δ
) +

8L(ϕ)

δ
Rn(F) + (

2 log log2(2δ−1)

n
)1/2] +

t√
n

}
≤ 2 exp(−t2/2)

and

P{∃f ∈ F : P

{
f ≤ 0} > inf

δ∈(0,1]
[Pnϕ(

f

δ
)+

2
√

2πL(ϕ)

δ
Gn(F)+(

2 log log2(2δ−1)

n
)1/2]+

t+ 2√
n

}
≤ 2 exp(−t2/2)

Proof.

We can apply the bounds of Theorem 1 for choosing a sequence of ϕk(.) := ϕ(./δk), where δk = 2−k.

And notice that for δ ∈ (δk, δk−1], we have

1

δk
≤ 2

δ
, Pnϕ(

f

δk
) ≤ Pnϕ(

f

δ
)

and √
log k =

√
log log2

1

δk
≤
√

log log2

1

δ

ut
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3 Neural Network Learning

Many machine learning methods are inspired by biology, brains and Neural Network is a popular supervised

approach. Artificial neurons are called units and each unit computes its value based on linear combination

of values of units that point into it, which is called forward pass.

Network.png

We can take a neural network with one hidden layer as an example. Suppose we have D inputs, J hidden

units and K outputs. And we use hj ’s to denote the hidden units and Ok’s to denote the outputs.Then the

output of network can be written as

hj(x) = f(vj0 +

D∑
i=1

vjixi)

and

Ok(x) = g(wk0 +

J∑
j=1

wkjhj(x)).

And then we use backward propagation to update the weights (via gradient descent). To be more

specific, we choose a suitable error function E, and then we calculate the derivative with respect to each

weights, namely ∂E
∂wki

. And then we update the weights by gradient descent, namely

wki ← wki − β
∂E

∂wki
.

In our project, we try to bound the generalization error P (f < 0) by

P (f < 0) ≤ Pn(f < 0) + sup
f∈F
|P (f < 0)− Pn(f < 0)|,

and by the characteristics of gradient descent, we know that the emprical error Pn(f < 0) can be regarded

as a small term, and thus our main theorem is more about the bound of sup
f∈F
|P (f < 0)− Pn(f < 0)|.
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4 Bounding the generalization error in neural network learning

Let H be a class of measurable functions from (§,A) into R and let G be an arbitrary acyclic graph with a

unique input vertex vi and a unique output vertex vo.

Suppose the set V of all neurons is divided in to layers (based on different depth)

V = {vi} ∪
l⋃

j=0

Vj ,

where Vl = {vo}. And the neurons in V0 will be called base neurons.

Suppose that the inputs of the neurons of the layer Vj , j ≥ 1 are the ouputs of the neurons from Vj−1.

And the inputs of V0 are the outputs of vi. Then we assign the labels to the neurons of the network:

• Each neuron of V0 is labeled by a function from the base class H.

• Each neuron of the jth layer Vj , where j ≥ 1, is labeled by a vector

w = (w1, . . . , wn) ∈ Rn,

where n is the number of inputs of the neuron and wi is the weight for ith input.

Given a Borel function σ from R to [−1, 1] and a vector w = (w1, . . . , wn), we can define a function

Nσ,w : Rn → R by

Nσ,w(u1, . . . , un) = σ(

n∑
i=1

wiui),

and let {σj : j ≥ 1} be the set of functions from R to [−1, 1], satisfying the Lipschitz conditions:

|σj(u)− σj(v)| ≤ Lj |u− v|.

Then given an instance x ∈ S, the network works the following way:

• A base neuron computes the value of the labeled base function on x, and outputs the value through

its output edges. Namely assume the neuron is labeled by h ∈ H and take input x, then the output is

h(x).

• For a neuron in the jth layer, j ≥ 1, assume it is labeled by w = (w1, . . . , wn) and has input u =

(u1, . . . , un). Then the corresponding output is Nσj ,w(u).

Now we define class of functions computable by neural network with weights bounded. Given {Aj : j ≥
0} as sequence of positive numbers, then we recursively define the classes by:

H0 = H,

Hj = {Nσj ,w(h1, . . . , hn) : n ≥ 0, hi ∈ Hj−1, w ∈ Rn,
n∑
i=1

|wi| ≤ Aj}, for j ≥ 1.

Also let H∞ =
∞⋃
j=0

Hj : all functions computable by neural network with base H and bounded weights.

Theorem 3 For all t > 0 and all l ≥ 1,

P
{
∃f ∈ Hl : P (f̃ ≤ 0) > inf

δ∈[0,1]

[
Pnϕ(

f̃

δ
) +

2
√

2πL(ϕ)

δ

l∏
j=1

LjAjGn(H) + (
log log2(2δ−1)

n
)

1
2

]
+
t+ 2√
n

}
≤ 2 exp(−1

2
t2),
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where f̃ = f × label.

Proof. Applying Theorem 2 to class F = Hl, we will have that for all t > 0

P
{
∃f ∈ Hl : P (f̃ ≤ 0) > inf

δ∈[0,1]

[
Pnϕ(

f̃

δ
) +

2
√

2πL(ϕ)

δ
Gn(Hl) + (

log log2(2δ−1)

n
)

1
2

]
+
t+ 2√
n

}
≤ 2 exp(−1

2
t2).

So now in order to prove the theorem, we only need to show that

Gn(Hl) = E‖n−1
n∑
i=1

giδXi‖Hl
≤

l∏
j=1

LjAjE‖n−1
n∑
i=1

giδXi‖H =

l∏
j=1

LjAjGn(H).

Define

H′l = {
n∑
i=1

wihi : n ≥ 0, hi ∈ Hl−1, w ∈ Rn, ‖w‖l1 ≤ Al}

which is actually Hl without applying the function σl.

Then for f ∈ H′l, we consider two Gaussian processes:

Z1(f) = n−
1
2

n∑
i=1

gi(σl ◦ f)(Xi)

and

Z2(f) = Lln
− 1

2

n∑
i=1

gif(Xi)).

Then we have

Eg|Z1(f)− Z1(h)|2

= Eg|n−
1
2

n∑
i=1

gi(σl ◦ f)(Xi)− n−
1
2

n∑
i=1

gi(σl ◦ h)(Xi)|2

= n−1Eg|
n∑
i=1

gi(σl(f(Xi))− σl(h(Xi)))|2

= n−1
n∑
i=1

|σl(f(Xi))− σl(h(Xi))|2

≤ L2
l n
−1

n∑
i=1

|f(Xi)− h(Xi)|2

= Eg|Z2(f)− Z2(h)|2 (9)

Lemma 7 Let X = (Xi)i≤n and Y = (Yi)i≤n be two Gaussian vectors in Rn such that

E(Xi −Xj)
2 ≥ E(Yi − Yj)2 for all i, j ≤ n.

Then, the Slepian’s inequality holds, i.e.

Emax
i
Xi ≥ Emax

i
Yi.

Proof. The proof for this lemma is in the lecture notes. ut
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Then by lemma 7 and equation (9), we can conclude that

Eg‖Z1‖H′l ≤ Eg‖Z2‖H′l (10)

And it is obvious that

E‖n−1
n∑
i=1

giδXi
‖Hl

= n−
1
2Eg‖Z1‖H′l

and

LlE‖n−1
n∑
i=1

giδXi‖H′l = n−
1
2Eg‖Z2‖H′l .

So it follows that

E‖n−1
n∑
i=1

giδXi
‖Hl
≤ LlE‖n−1

n∑
i=1

giδXi
‖H′l .

Definition. A symmetric convex hull of A is the smallest convex set including A and −A and is the set of

all finite convex combination ∑
λiai

with ai ∈ A ∪ −A ,
∑
λi ≤ 1.And the closed symmetric convex hull is just the closure of the symmetric

convex hull.

Then obviously, we can see that H′l = Alconvs(Hl−1), where convs(Hl−1) denotes the closed symmetric

convex hull of the class Hl−1. Then it follows that

E‖n−1
n∑
i=1

giδXi‖H′l ≤ AlE‖n
−1

n∑
i=1

giδXi‖Hl−1
. (11)

Now combining with equation (11), we can get

E‖n−1
n∑
i=1

giδXi
‖H′l ≤ LlAlE‖n

−1
n∑
i=1

giδXi
‖H′l−1

Then by simple induction, we can conclude that

Gn(H′l) = E‖n−1
n∑
i=1

giδXi
‖H′l ≤

l∏
j=1

LjAjE‖n−1
n∑
i=1

giδXi
‖H =

l∏
j=1

LjAjGn(H).

ut
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5 Vapnik-Chervonenkis classes of sets

Definition. Assume C is a class of sets and for any sample {x1, . . . , xn}, let

∆n(C, x1, . . . , xn) = card{C ∩ {x1, . . . , xn} : C ∈ C}

and

∆n(C) = sup
{x1,...,xn}

≤ ∆n(C, x1, . . . , xn) ≤ 2n.

Note that if ∆n(C, x1, . . . , xn) = 2n, then we say C shatters {x1, . . . , xn}. If there exist some constant V <∞
such that  ∆n(C) = 2n n ≤ V,

∆n(C) < 2n n > V.

then C is called a VC class and V is called VC dimension of C.

Lemma 8 Sauer’s lemma

∀{x1, . . . , xn},

∆n(C, x1, . . . , xn) ≤
(
en

V

)V
where V is the VC dimension of S.

Proof. First, we show that ∆n(C, x1, . . . , xn) is bounded by the number of subsets shattered by C. Without

loss of generality, we can replace C by {C ∩ {x1, . . . , xn} : C ∈ C}.
We will say that C is hereditary if B ⊂ C ∈ C ⇒ B ∈ C. Apparently, if C is hereditary, then every

C ∈ C is shattered by C, and the lemma follows.

Now if C is not hereditary, then we will build a C′ such that C′ has the same cardinality as C and the

number of shattered subsets is not increasing.

Define operator Ti for i = 1, . . . , n by

Ti(C) =

 C − {xi} C − {xi} /∈ C,

C otherwise.

and

Ti(C) = {Ti(C) : C ∈ C}.

It follows that |Ti(C)| = |C| and ∀A ⊂ {x1, . . . , xn}, if A is shattered by Ti(C), then A is also shattered by C.
Then apply T = T1 ◦ · · · ◦ Tn until T k+1(C) = T k(C). Since if Ti(C) 6= C, then

∑
C∈C
|Ti(C)| <

∑
C∈C
|C|,

it follows the end condition will be met after at most
∑
C∈C
|C| times. And apparently the resulting C′ is

hereditary, and then ∆n(C, x1, . . . , xn) is bounded by the number of subsets shattered by C.
Next, we show that

∆n(C, x1, . . . , xn) ≤
(
en

V

)V
.
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∆n(C, x1, . . . , xn) ≤ card( shattered subsets of {x1, . . . , xn})
≤ card( subsets of size ≤ V )

=

V∑
i=1

(
n

i

)

≤
(
n

V

)V V∑
i=1

(
n

i

)(
V

n

)i
=

(
n

V

)V (
1 +

V

n

)V
≤

(
en

V

)V
. (12)

ut

Lemma 9 Assume H is the half spase in Rd, namely

H = {x→ sign(aTx+ b) : a ∈ Rd, b ∈ R},

then VC dimension of H equal to d+ 1

Proof. We prove this lemma by proving two claims:

1. V C(H) ≥ d+ 1

Let (x1, . . . , xd+1) = (e1, . . . , ed, 0) and let (y1, . . . , yd+1) ∈ {±1}d+1 be the label.

Then we construct a and b by

ai = yi − yd+1

and

b = yd+1.

Then we have

sign(aT ei + b) = sign(yi − yd+1 + yd+1) = yi

and

sign(aT 0 + b) = sign(yd+1 = yd+1.

So this shows that H shatters {x1, . . . , xd+1}, and thus V C(H) ≥ d+ 1.

2. V C(H) < d+ 2

By Radon theorem, any set of d + 2 points in Rd can by partitioned into two disjoint subsets whose

convex hull have a non-empty intersection. So label one of the two partitions +1 and the other −1. No

half-space can successfully label these points in the intersection.

ut
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6 Bound for Gn(H)

We know that

Gn(H) := E‖n−1
n∑
i=1

giδXi
‖H

Define

Gn(H) = ‖n−1
n∑
i=1

giδXi
‖H

= sup
H∈H

| 1
n

n∑
i=1

giI(Xi ∈ H)|.

And let

S = {s = (h(X1), . . . , h(Xn)) : h ∈ H}.

Then ∀t, we have

P(Gn(H) ≥ t) = P(sup
s∈S
| 1
n

n∑
i=1

gisi| ≥ t)

≤
∑
s∈S

P(| 1
n

n∑
i=1

gisi| ≥ t). (13)

And it’s obvious that, given s = (s1, . . . , sn),

1

n

n∑
i=1

gisi ∼ N(0,
1

n2

n∑
i=1

s2i )

So it follows that ∑
s∈S

P(| 1
n

n∑
i=1

gisi| ≥ t) = 2
∑
s∈S

P(
1

n

n∑
i=1

gisi ≥ t)

≤ 2|S|P(Y ≥ t)

≤ 2|S|e−nt2

2 (14)

where Y ∼ N(0, 1
n )

Now we only need to set a bound for |S|.
By Sauer’s lemma (Appendix B), we can conclude that

|S| ≤
(
en

V

)V
where V is the VC dimension of H.

Then by lemma 11 (Appendix B), we know that V = d+ 1, so

|S| ≤
(

en

d+ 1

)d+1
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So

P(Gn(H) ≥ t) ≤ max{2
(

en

d+ 1

)d+1

e−
nt2

2 , 1}. (15)

Let v = d+ 1 and c = 2( e
d+1 )d+1, and we can simplify (15) by

P(Gn(H) ≥ t) ≤ max{cev log(n)−nt2

2 , 1}.

Then by simple calculation, we can get t∗ =
√

4vlog(n)
n , such that ∀t ≥ t∗,

v log(n)− nt2

2
≤ −nt

2

4
.

Finally, we can bound Gn(H) by

Gn(H) = E‖n−1
n∑
i=1

giδXi
‖H

= EGn(H)

=

∫ ∞
0

P(Gn(H) ≥ t)dt

≤
∫ t∗

0

1dt+ c

∫ ∞
t∗

e−
nt2

4 dt (16)

≤ t∗ +
c√
n

∫ ∞
0

e−
x2

2 dx (17)

≤
√

4vlog(n)

n
+

c√
n
. (18)

This is a very good bound, since when n→∞, Gn(H)→ 0, in the speed of
√

log(n)
n
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