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1 Introduction

Let (X,Y) be a random couple, where X is an instance in a space S and Y € {—1,1} is a label. In machine
learning, we often call X the feature, and we call functions h : S — {—1,1} as (binary) classfiers.

Let G be set of functions from S into R. And sign(g(X)) will be used as a predictor(or classifier)
of the unknown label Y. Often we would not have the distribution of (X,Y"), in this case, our choice of
the classifier is based on a set which we called the training data (X1,Y1),....(X,,Y,) that consists of n
independent and identically distributed (ie: i.i.d) copies of (X,Y). Our goal is through learning, to find a
classfier § € G, such that its generalization error is small(on test sets). The standard approach to this problem
is based on bounding the difference between the generalization error P(Y g(X) < 0) and the training error
%Z?Zl Ity g(x;)<0y uniformly over the whole class G. We can define f(X) = Yg(X), so mislabel happens
when f(X) < 0. In theorem 2, we develop an upper bound for the probability of there existing a function f
in F, such that P(f < 0) greater than some quantity associated with the Gaussian complexity function of
class F and positive ¢ is bounded by some quantity in terms of ¢ which we can easily compute.

In section 3, we will introduce some basic information about neural network learning, including forward
inference and backward update. And in section 4, we would show how to bound generalization errors in
neural network learning. In theorem 3, we develop a probabilistic bound for such error, which is a specific
extension of theorem 2 with some new setting associated with neural network.

Finally, in section 5 and 6, in order to make the bound more clear, we choose some specific H, which
is half space, as the space of base functions in neural network learning, and construct a bound for Gaussian
Complexity term G,,(H), by using Vapnik-Chervonenkis dimension.The result is very convincing, we showed
that the Gaussian Complexity term will go to zero as the size of training set increases.

2 Probabilistic bounds for general function classes in terms of

Gaussian and Rademacher complexities
Let (S, A, P) be a probability space and let F be a class of measurable function from (5,.4) into R. We
could also replace S by S x {—1, 1} later when we want to talk about classification problems. Let {X}} be a
sequence of i.i.d random variables taking values in (S, .4) with common distribution P. We assume that this

sequence is defined on a probability space (2,3, P). Let P, be the empirical measure based on the sample
(X1,...X5).

PaA) = - S T4 (X0)
i=1

Furthermore, P, can map measurable function f to its empirical mean:
1 n
fro Puf = [ fdP, =37 f(X0),
S i=1
Let L*°(F) denotes the Banach space of uniformly bounded real valued function on F with the norm

|Vl 7 := sup [Y(f)].
feF

Our goal is to find bounds on P(f < 0) and on the difference |P,(f < 0) — P(f < 0)| that holds for all f € F
with high probability.

We define Gaussian complexity function of the class F



Gn(F):=Esup|n?! s F (X))
() feg\ ;gf( )|

And the Rademacher complexity function

R, (F):=Esup nt e f(X5)],
(F) fef\ ; (Xi)|

where {¢;} is a sequence of i.i.d random variable(taking values +1 or —1 with probability both 1/2). Here
we assume that for any = € S the set of real numbers {f(x) : f € F} is bounded.

2.1 Martingale Difference Inequality

We want to estimate P(f < 0). Define such a Lipschitz function such that p(z) > I(_,0. We have
P(f <0) < Pop(f)+ 1P — Pllg,, where G, := {po f : f € F}. Since P,p(f) is what we have known based
on our data. We want to bound ||P, — P||g,,. One way to do this is to find how far it is from its expectation.
Let || P, — Pllg, = Z, we actually want to find a bound for P(Z — EZ > t), for any ¢ > 0.

Let Z(x1,..zpn) : X — R. We would like to bound Z — EZ. We make the following assumptions. For
any Ty, ...Tpn, &), Th....r

!
| Z (21, Xy ooelpy) — Z(T1, oo @i 1, Ty Tig 1, T | < 4
for some constant ¢;. We can decompose Z — EZ as follows

Z(x1, ) — Ex Z(2), ..2)) = (Z(21, ...tn) — Ep Z(2, 20, ooy )+
(Ep Z(2), 22y .oty) — Epr Z (2}, 2h, x3....1,))
+ (Bp Z(x), 2l _q.y) — Ep Z (2, 25, ... z))
=Z1+Zy+ Zs.... 2y,

where Z, = Ep Z (2, .., 251, @iown) — By (2, . 2), ig1otp).
Assume (1>|Zz| < C; (Q)EXLZZ =0 (3)Zz = Zi(l‘]_, .Z'n)

Lemma 1 For any A € R,
Ezje/\zi < e’\%?/Q

As

Proof. Take any —1 < s < 1. Since function e*® is convex and

A5 = AN

Check that 0 < 1= 125 <1 and 4= + 152 = 1, hence we have

1— A oA A oA
et + QSe_A:e +2€ +sS 26 Se’\2/2+s-sinh()\)

)\S< 1+S

e

[\

by Taylor expansion. Now use % = s, and since by assumptions, —1 < % < 1. We have

Z; .

) ;- Zi 2.2 Z; .

M= e < N2 4 Zhginh(Ay)
Ci

1 ) 22
since E,, Z; = 0 We now have F,,e?i < er e/,



Lemma 2 If condition of lemma 1 is satisfied for each i, we have

+2

P(Z —RBZ >t) < e

Proof. For any A > 0
EeNZ-EZ)

P(Z —EZ > t) = P(eMZ7E2) > M) < =

Since we have
FeMZ—EZ) _ gMNZi+Za+....20)
= EE,, }Zi+ZatZn)
_ ]E[e)\(Zg-&-....Zn)Emle)\Zl]
< ]E[e’\(Z2+““Z“)EzleA2C?/2]
_ e’\z“’%/QEEm [6,\(22+...‘Zn)]
< N+ 2pANZat-.. Zn)
< e’\2 n c?/2.
Hence
P(Z —EZ >t) < e MV Zinacl/2,
We minimize the exponent of the right hand side with respect to A. We have \ =

back into the inequality we can get our result.

Lemma 3 Let F be a class of functions: X — [a,b]. Define the empirical process

Zos, ) = sup[Bf = 3 flw)
i=1

We have
nt2

P(Z - EZ >t)<e 707,
Proof. First we show that, for any 1,
|Z (21, .2}, o) — Z (@1, T4y o Ty)| = \sgp [Ef — %(f(xl) + . f(@) + . f(xn)]
~sup[ES — L (f(0) + S+ F )|

< sup L|f(z;) — f ()]
fern

b—a
—

<

We set ¢; = b’T“ for all 7, then by lemma 2,

t2 nt2

7_2) — ¢ 20b-a)2
2 Z?:l (bng)

P(Z —-EZ >t) < exp(—

5+ Substitute it

t
Z?:l G

g



2.2 Symmetrization

As we have found a bound for P{||P, — P||g, — E||P,, — Pllg, > t}, we still want to bound E||P, — P||g, in
terms of Rademacher complexity function and Gaussian complexity function.

Lemma 4 Denote P} f = - ZZ 1€ f(Xq).

E[P, — Pl < 2E||P, || =
Proof. Here we introduce copies of X;, X/, each of them is independent with each other.
B[ 30X = Bl = Baup 1 Y00  EOD)
=
= Ex sl g YO((X) — £(0X0)

< Bxsup By YUXD - (X))
< ExEx;su | 3 (/(X) - FXD)L
i=1

Since f(X;) and f(X]) are identical copies, so the we can introduce Rademacher random variable ¢; that is

independent to X; and X/. So by the symmetry of Rademacher variable and triangle inequality, we have

1 & 1 N
ESI}P|ﬁ;f(Xi)*Ef| §2Eﬁsup|Zeif(X

As desired.
O
Lemma 5 .
E[|IPS |7 < V2rEsup [n~" )~ gih(X;)
heF =
Proof. We can start from last lemma’s last step. Consider Radmacher variable ¢;, it is the same as H‘Z—?”,
where g; is a standard gaussian. So if we replace €; in our previous equation. We have
1 n
Esup|— > f(X;)— Ef] sup| gif
Fomn ; ' “E || Z '
And since El|g1]| is \/F, we have our result.
O

Lemma 6 (Rademacher comparison inequality) Let F: Ry — Ry be convexr and increasing. Let further
@i - R — R, be contractions such that ¢;(0) = 0. Then for any bounded subset T in RN, we have

N

*HZQS‘% M) <EF HZezt 7).

i=1



We would not prove this theoreom in our project. Readers can refer to this book: Probability in Banach
Spaces ,Ledoux, Michel, Talagrand, Michel, and it is the theorem 4.1.2

Now, we prove our first theorem by putting above pieces together.

2.3 Probabilistic bounds for general function classifiers
Theorem 1 For allt > 0,

2log k

P{3r € 75 PU <0) > i [Pan() + 4LGoRL(F) + (22

>1/2} + \;ﬁ} < 2eXp(—t2/2)

and

2log k
n

P{3r € 75 PU < 0) > i [Puen(9) + VERLo)Gr(F) + (R 2 < doxp(-272)

Proof. Without loss of generality we can assume that each ¢ takes values in [0,1]. In this case we have
p(x) =1for z <0. Fix ¢ € ®, for all f € F we have

P{f <0} < Po(f) = Po(f) — Pup(f) + Pup(f) < Pup(f) + [P — Pllg,- (1)

By the definition of our norm. Here
Gpi={pof—-1:feF}

By lemma 3, and substitute ¢ with ﬁ Since function in G, have range [—1, 0], we have
t 2
P{||P, — Pllg, = E[| P, — Pllg, + %} < exp(—t7/2).

Thus with probability at least 1 — exp(t2/2) for all f € F

t
P(f <0) < Pap(f) + B[ Po = Pllg, + . (2)
And by Symmetrization lemma (lemma 4)
E{llP. - Pllg, } < 2E[P ]|, (3)

Since a function f(—;l) is a contraction and ¢(0) — 1 = 0, the Rademacher comparison inequality implies

n

1 1
E. sup |— €:h(X;)| <2L(p)Ee sup |— e f(X;
heg¢|n; (Xi)] (¢) h€f|n; (X3)]

n

Where h = g o f — 1. Then it follows from (2),(3) that with probability at least 1 — e~"/2 we have for all

ferF
t

vn
We can now use (4) with ¢ = ¢ and ¢ replaced by ¢t + 24/log k and obtain

P{f <0} < Pup(f) +4L(p) Rn(F) + (4)



P{3 € 75 P(F < 0) > Wt [Papn(9) + ALG0 R, (F) + VECED 2 T

n
2
< Zexp{—(t +2+/logk)?/2} < Z k2et/2 = %e_tz/Q <2112

k>1 E>1

(5)

The proof for the second bound is similar with some changes. We define class G, as {¢ o f : f € F}. For
further develop the inequality in (3). And we have

E|IP. — Plg, < 2E|Pll, < V27E sup [n ™ ) gih(X,) ©)
€Yy

i=1

The second inequality is by the lemma 5.

Define these two Gaussian processes:

Zi(f,0) == on 2 gi(po £)(X5)

i=1

Zo(f,0) = Lp)n™ "> g:f(Xi) + 09
=1

where 0 = £1, and g¢ is a standard Gaussian independent of g;. We can denote by E, the expectation on the
probability space (4, %X,,Py) on which the g; and g are defined. Then we have

Ey|Zi(f,0) — Zi(h,o')|* < Ey|Zs(f,0) — Za(h,o")|?

We will prove the above inequality in two cases. First, if we have oo’ = 1. Then
n
Z1(f,0) = Zi(h, ") = 1/n] Y gi(e(f(X0)) — o(h(X)[?
i=1
Since each g; is independent. If we take expectation, we would have

Eg|Z1(f,0) = Zu(h,0')|* = 1/%2 |o(f (X)) — e (h(X2))I?

< L(9)?/n Y (F(X) = h(X0))?
i=1
=E,|Z2(f,0) — Zs(h,o")|?

If 00’ = —1.
EglZ1(f,0) = Zi(h,o')|> = 1/n Y lo(f(X3)) — o(h(X3))]?
i=1

<27 QP(F(X)) + 20D QP (M(X)
i=1 i=1
< ]E(Qg)2 < ]E9|Z2(.f7 U) - ZQ(ha U/)|2
By slepian’s lemma in lecture notes, we have

Egsup{Zi(f,0): f € F,o0 =1} <Egsup{Zs(f,0): f € F,0 = £1}



We have

Eysup{Zi(f,0): f € F,o0 = £1} = E, sup [n ngh
heg,

Where we define G, := {¢(f), —p(f) : f € F} And it is easy to see that

L(¢)E, sup |n~ 1/2291 )|+ Elgl > Eysup{Za(f,0) : f € F,o0 = +1}
1=1
So we have
E, sup [n ”2291 )E suplZgz Dl +n " 2Elg| (7)
heg,

So by (2), (6), and (7), we have that with probability at least 1 — exp(t?/2) for all f € F,

t t+2
P(f<0)<P, E|P, — P — <P, 2nL(p)Gy, —_—. 8
(f <0) < Poo(f) +E| Hg“’+\/ﬁ o(f) + V21 L(p)Gn(F) + NG (8)
Then by the same method we used for the first bound we can derive the one for the second one. a

Now let us consider a special family of functions for . Let

= {p(./0) : 6 € (0,1},
we can check that L(p(./0)) < L(p)/é.

Theorem 2 For allt > 0,

5—1
P{Hf cF P 0> inf [Paph)+ BN R, () 4 (R Dy jﬁ} < 2exp(~12/2)
and
wL log 1 61
P{3f ¢ F: P{f<0}> inf | [Pnga(é) 2‘/2 @) ()4 (28 Og;j(? ))1/2}+t\jﬁ2} < 2exp(—12/2)
Proof.

We can apply the bounds of Theorem 1 for choosing a sequence of ¢x(.) := ¢(./dx), where &, = 27F.
And notice that for 6 € (d, dx—1], we have

5 L) < Pt

and

1 1
v0ogk = \/loglog2 5 < \/loglog2 5
k



3 Neural Network Learning

Many machine learning methods are inspired by biology, brains and Neural Network is a popular supervised
approach. Artificial neurons are called units and each unit computes its value based on linear combination
of values of units that point into it, which is called forward pass.

hidden layers

output layer

input layer ¢

Network.png

We can take a neural network with one hidden layer as an example. Suppose we have D inputs, J hidden
units and K outputs. And we use h;’s to denote the hidden units and Oy’s to denote the outputs.Then the
output of network can be written as

D
hj(z) = f(vjo + Z VjiTi)
i=1

and
J

Ok(x) = g(wio + Y wijh;(x)).

j=1

And then we use backward propagation to update the weights (via gradient descent). To be more
specific, we choose a suitable error function F, and then we calculate the derivative with respect to each
weights, namely %. And then we update the weights by gradient descent, namely

OF
Owy;

Wi < W — B
In our project, we try to bound the generalization error P(f < 0) by
P(f <0) < P,(f <0)+sup |P(f <0)— P,(f <0)|,
feFr

and by the characteristics of gradient descent, we know that the emprical error P,(f < 0) can be regarded

as a small term, and thus our main theorem is more about the bound of sup |P(f < 0) — P,(f < 0)].
fer



4 Bounding the generalization error in neural network learning

Let H be a class of measurable functions from (§,.4) into R and let G be an arbitrary acyclic graph with a
unique input vertex v; and a unique output vertex v,.

Suppose the set V' of all neurons is divided in to layers (based on different depth)
!
V={uulJV;,
j=0

where V; = {v,}. And the neurons in V; will be called base neurons.

Suppose that the inputs of the neurons of the layer Vj, j > 1 are the ouputs of the neurons from Vj_;.
And the inputs of V{ are the outputs of v;. Then we assign the labels to the neurons of the network:

e Each neuron of 1} is labeled by a function from the base class H.
e Each neuron of the jth layer V; , where j > 1, is labeled by a vector
w=(wy,...,w,) € R",
where n is the number of inputs of the neuron and w; is the weight for ith input.

Given a Borel function o from R to [—1,1] and a vector w = (wz,...,w,), we can define a function
Ny w : R" = R by

n
Now(ut, ... up) = O'(Z Wik,
i=1
and let {o; : j > 1} be the set of functions from R to [—1, 1], satisfying the Lipschitz conditions:
|05 (u) — o (v)] < Ljlu —v].
Then given an instance xz € S, the network works the following way:

e A base neuron computes the value of the labeled base function on z, and outputs the value through
its output edges. Namely assume the neuron is labeled by A € H and take input x, then the output is

e For a neuron in the jth layer, j > 1, assume it is labeled by w = (w1,...,w,) and has input u =
(u1,...,u,). Then the corresponding output is Ny ; . (u).

Now we define class of functions computable by neural network with weights bounded. Given {A4; : j >
0} as sequence of positive numbers, then we recursively define the classes by:

H() = Ha

Hj = {No,w(hi,.. . hn) i >0,k € Hj_1,w € R™, || < Az}, for j > 1.

i=1
Also let Hoo = |J H,;: all functions computable by neural network with base # and bounded weights.
§j=0

Theorem 3 For allt >0 and alll > 1,

. F 7L(y) 1 log log,(26~1) 1
P{3f e H,: P(f <0) > 5611["51] [Pnso(g) + M I 2:4,Gn(m) + (%@))z] + %} < Qexp(—%t2)7

Jj=1

10



where f = f X label.

Proof. Applying Theorem 2 to class F = H;, we will have that for all t > 0

. fo 2v2rL loglog, (2061 1 2 1
P{3f € H,: P(f <0) > Jnf [Pn<p(§) + @Gn(%) ) Og;( ))a] + t;ﬁ } < 2exp(—5t).

So now in order to prove the theorem, we only need to show that

n l n l
Gn(Hl) :E”n_lzgi(in H; < HLjAjEHn_IZgi(in H = HL]AJGn(’H)
i=1 j=1 i=1 j=1

Define "
Hyp={> wihi:n>0hi € Hiy,weR™ w|, <A}

i=1
which is actually H; without applying the function o;.

Then for f € H], we consider two Gaussian processes:
n
_1
Zy(f)=n"2) giloro f)(X,)
i=1

and .
Zo(f) = Lin™2 Y gif(X3)).
i=1
Then we have
Eg|Z1(f) — Z1(h)|?

= Egln Y giloro HX) —nE Y galor o ) (X,
i=1 i=1

= TflEg|z:gz'(cfz(f(Xi))*ffl(h(Xi)m2

= n_lz|01(f(Xi))_O'l(h(Xi))|2

< Lin”! Z |£(X3) = h(X3)]?
i=1
= Ey|Zo(f) — Za(h)P? (9)
Lemma 7 Let X = (X;)i<n and Y = (Y;)i<, be two Gaussian vectors in R™ such that
E(X; — X;)* > E(Y; = Y;)? for alli,j <n.
Then, the Slepian’s inequality holds, i.e.

Emax X; > EmaxY;.

Proof. The proof for this lemma is in the lecture notes. a

11



Then by lemma 7 and equation (9), we can conclude that

Eol|Zillag < EgllZall3 (10)

And it is obvious that

_1
=0 2Eg||Z1]3;

EHTL_l Z gi(in
1=1

and

n
LiE|[n™" " gidx,llag = 17 7Byl Zal24;-

i=1

So it follows that

n n
Elln™" Y gidx.llw, < LE[n" gidx,
=1 i=1

Definition. A symmetric convex hull of A is the smallest convex set including A and —A and is the set of
all finite convex combination
> M

with a; € AU—-A | > \; < 1.And the closed symmetric convex hull is just the closure of the symmetric
convex hull.

Then obviously, we can see that ] = A;convs(Hi—1), where convs(H;—1) denotes the closed symmetric
convex hull of the class H;_1. Then it follows that

]Elln_l Zgi(SXi H; < AlEHn_l Zgiéxi Hi-1- (11)

i=1 i=1

Now combining with equation (11), we can get

Elln~"> " gi0x, Il < LiAEn™> " gidx, Il

=1 i=1

Then by simple induction, we can conclude that

n l n l
Gu(H) =E|n "> gidx, s < [T LiAEINT Y gidx I = [ LiA;Gn(H).
i=1 j=1 i=1 =1

12



5 Vapnik-Chervonenkis classes of sets

Definition. Assume C is a class of sets and for any sample {z1,...,z,}, let

AL(C xy, .. xy) =card{C N {z1,...,2,}: C €C}

and
A,C)= sup < ALC,x1,...,3,) <27
{z1,..,zn}
Note that if A, (C,21,...,2,) = 2", then we say C shatters {z1,...,z,}. If there exist some constant V' < oo
such that

An(C)=2" n<V,

AyC) <2 n>V.
then C is called a VC class and V is called VC dimension of C.

Lemma 8 Sauer’s lemma
V{.’L‘l, . ,Z‘n},

\%
An(cvmlw'w'rn) < (?)

where V' is the VC dimension of S.

Proof. First, we show that A, (C,x1,...,2,) is bounded by the number of subsets shattered by C. Without
loss of generality, we can replace C by {C N{z1,...,2,}: C €C}.

We will say that C is hereditary if B C C € C = B € C. Apparently, if C is hereditary, then every
C € C is shattered by C, and the lemma follows.

Now if C is not hereditary, then we will build a C’ such that C’ has the same cardinality as C and the
number of shattered subsets is not increasing.

Define operator T; for i = 1,...,n by
C—{zi} C—{z}¢C,

T;(C) =
C otherwise.

and
T;(C) ={T;(C) : C € C}.
It follows that |T;(C)| = |C|] and VA C {z1,...,x,}, if A is shattered by T;(C), then A is also shattered by C.
Then apply T = Ty o --- o T), until T**1(C) = T*(C). Since if T;(C) # C, then > |T;(C)| < 3 |C],
ceC ceC

it follows the end condition will be met after at most Y |C| times. And apparently the resulting C’ is
ceC
hereditary, and then A, (C,x1,...,2,) is bounded by the number of subsets shattered by C.

Next, we show that

14
A,L(C,xl,...,xn) < (?) .

13



A,(Cyxy,...,xn) < card( shattered subsets of {x1,...,2,})
< card( subsets of size < V)
v
- 2()
i=1
N i
< .
< (7)) 2O
n\Y
= (=) (1
() (+5)
en\"
< — | . 12
< (%) (12)
O

Lemma 9 Assume H is the half spase in R?, namely
H = {z — sign(a¥x +b) : a € R, b € R},

then VC dimension of H equal to d + 1

Proof. We prove this lemma by proving two claims:

1. VC(H)>d+1
Let (x1,...,7411) = (e1,---,€4,0) and let (yy,...,yas1) € {£1}9T! be the label.
Then we construct a and b by

ai = Yi — Yd+1
and
b= Yd+1-
Then we have
sign(a” e; +b) = sign(y; — Yar1 + Ya+1) = vi
and
sign(a? 0+ b) = sign(yar1 = Yar1-
So this shows that H shatters {z1,...,2q+1}, and thus VC(H) > d + 1.

2. VC(H) < d+2

By Radon theorem, any set of d + 2 points in R? can by partitioned into two disjoint subsets whose
convex hull have a non-empty intersection. So label one of the two partitions +1 and the other —1. No
half-space can successfully label these points in the intersection.

14



6 Bound for G,(H)

We know that .
Gu(H) =Bl gidx, I

i=1

Define
Gal) = It gidx e
i=1
E Z I(X; € H)|
= Sup |— gi i .
Hen M i—]
And let

S={s=(h(X1),...,h(Xy)): h € H}.

Then Vt, we have

1 n
P(G,(H)>t) = P(sup|— isi| >t
(Gn(H) = t) (seglngg | >t)

SR Y gl 2 ) (13)

SES

IN

And it’s obvious that, given s = (s1,...,58,),

n

%Zgisi ~ N(0, %Zsf)
i=1 i=1

So it follows that

n n
SR gl =) = 2 PO Y s> 1)
=1 =1

seS seS
< YSIP(Y > 1)
nt2
< 2Isle (149

where Y ~ N (0, 1)
Now we only need to set a bound for |S].

By Sauer’s lemma (Appendix B), we can conclude that

en\"
S| <=
< (%)
where V is the VC dimension of H.
Then by lemma 11 (Appendix B), we know that V. =d + 1, so

d+1
en
<
151'= (d—l— 1)
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So

- en d+1 2
P(G,(H) >t) < max{2<d ) e "7 1}

+1

Let v=d+1and c= Q(djl)dﬂ, and we can simplify (15) by

nt?
P(Gn(H) > t) < max{ce’ 8"~ 1},
Then by simple calculation, we can get t* = \/MlonE sk that Vi > ¢

t? t?
vlog(n) — % < —%.

Finally, we can bound G,,(H) by

Eln" > gibx, I

i=1

Gn(H)

Vn
dvlog(n) | ¢
< - N

This is a very good bound, since when n — oo, G,,(H) — 0, in the speed of

16

(16)

(17)
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