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Introduction

0.1 Overview

This paper is organized into four sections, followed by an appendix.
Section 1 will begin with overview of some definitions from probability the-

ory for clarity of presentation, along with some notation. The rest of this sub-
section will then be centered on stochastic processes, and will end with the
Borel-Cantelli and a double-sided inequality for the standard normal distribu-
tion function.

Section 2 introduces the definition Brownian motion and some properties
of Brownian motion. After this, two constructions of pre-Brownian motion
will be given, followed by two methods to generate Brownian motion from pre-
Brownain motion. A third construction of pre-Brownian motion, due to Lévy
and Ciesielski, will be given; and by construction, this pre-Brownian motion will
be sample continuous, and thus will be Brownian motion. To finish this section,
a discussion of Donsker’s Theorem, which shows how Brownian motion arises
as the limit of a particular sequence of laws, will be given.

Section 3 presents some more detailed properties of Brownian sample paths,
including its nowhere monotonicity, nowhere differentiability, and its modulus
of continuity. The almost sure finiteness of hitting times will also be proven.

Section 4 is dedicated to the Brownian bridge, and giving some explicit
expressions concerning its probability. Stopping times will be defined and three
examples will be given, which will consequently be followed by the proof of
the strong Markov property of Brownian motion. This will be used to prove
the reflection principles for Brownian motion and the Brownian bridge. After
this, a rather brief discussion of the appearance of the Kolmogorov-Smirnov
distribution in statistics will be given, followed by an explicit expression for this
distribution. To end, two other bounds for probabilities of the Brownian bridge
will be proven.

The appendix consists of the statement of Kolmogorov’s Inequality, as well
as the statements of the Strong Law of Large Numbers and the Central Limit
Theorem (both single dimensional and multivariate).

1 Definitions and Inequalities

1.1 Notation

‘
Given a collection of sets A, the σ-algebra generated by A will be denoted by

σ(A). The letter P will only be used for probability measures. The conditional
probability of B with respect to A will be denoted by P [B|A].

Random variables will usually be denoted by X,Y, and Z. The law of a
random variable X will be denoted by L(X).

The set of all square-integrable functions a probability space (Ω,Σ, P ) will
be denoted by L2(Ω,Σ, P ), or just L2(Ω) if there will be no ambiguity.
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The characteristic function for the set A will be denoted by χA, i.e,

χA(x) =

{
1, if x ∈ A;

0, otherwise.
(1)

1.2 Stochastic Processes

Let (Ω,Σ, P ) be a probability space.

Let T be any indexing set. T need not even be ordered, but it will be
assumed to be ordered for simplicity. Furthermore, T will mainly be taken as
[0,∞) or [a, b], where 0 ≤ a < b; but whenever the index set is just written as
T , it will be assumed that T is an arbitrary ordered set.

A collection of random variables X = {Xt}t∈T , where each Xt has values
in a measure space (Ω′,Σ′), is called a stochastic process, or just a process.
Stochastic processes could just as easily have been defined as functions

X : T × Ω→ Ω′, (t, ω) 7→ Xt(ω) = X(t, ω)

such that, for every t ∈ T , Xt : Ω → Ω′, ω 7→ Xt(ω) is measurable, i.e. is a
random variable. For our purposes, it will be assumed that the Xt are real-
valued. The process X is sample continuous if, for every ω ∈ Ω, the function
t → Xt(ω) is almost surely continuous. X is a Gaussian process if, for every
finite I ⊂ T and any ai ∈ Ω, i ∈ I, the random variable

∑
i∈I aiXi is centered

Gaussian. The covariance function C : T × T → T of the process X is given by

C(s, t) := E[XsXt]− E[Xs]E[Xt].

In particular, if X is a Gaussian process, then C(s, t) = E[XsXt].
The finite dimensional distributions of a process X = {Xt}t∈T are the dis-

tributions of the random vectors (Xt1 , ..., Xtn), where t1 < ... < tn ∈ T (here
we’re using the order assumption on T ).

1.3 Important Inequalities

A few inequalities will be used throughout the text, and will be given here
for reference.

Lemma 1. (Borel-Cantelli Lemma) Let {An}∞n=1 be a sequence of events in a
probability space (Ω,Σ, P ).

1. If
∑∞
n=1 P [An] <∞, then P [

⋂∞
n=1

⋃∞
m=nAm] = 0;

2. If theAn are independent and
∑∞
n=1 P [An] =∞, then P [

⋂∞
n=1

⋃∞
m=nAm] =

1.
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Proof. 1. Let Bn =
⋃∞
m=nAm. Then Bn+1 ⊂ Bn for all n and by measure

continuity,

P [

∞⋂
n=1

∞⋃
m=n

Am] = P [

∞⋃
n=1

Bn] = lim
n→∞

P [Bn].

Furthermore, by countable subadditivity we have

P [Bn] = P [

∞⋃
m=n

Am] ≤
∞∑
m=n

P [Am].

Since the series
∑∞
m=1 P [Am] converges, the series

∑∞
m=n P [Am] converges

to 0; and thus limn→∞ P [Bn] = 0.

2. Let Bn be as above. Then

P [Ω−Bn] = P [Ω−
∞⋃
m=n

Am]

= P [

∞⋂
m=n

(Ω−Am)]

=

∞∏
m=n

P [Ω−Am] =

∞∏
m=n

(1− P [Am]),

where we have used the independence of the Am in the third line. Now,
using the fact that 1− P [Am] ≤ e−P [Am] (this is valid since 0 ≤ P [Am] ≤
1),

n∏
m=1

(1− P [Am]) ≤ exp (−
n∑

m=1

P [Am]).

By assumption, the right hand side of this expression goes to 0 as n→∞.
Hence P [Ω−Bn] = 0, and so P [Bn] = 1. This gives that P [

⋂∞
n=1

⋃∞
m=nAm] =

P [
⋂∞
n=1Bn] = 1.

Lemma 2. For every a > 0,

(a+ a−1)−1 exp(−a
2

2
) ≤

∫ ∞
a

exp (−x
2

2
)dx ≤ a−1 exp (−a

2

2
). (2)

Furthermore,
1√
2π

∫ ∞
a

e−
x2

2 dx ≤ e− a
2

2 . (3)

Proof. We have ∫ ∞
a

exp (−x
2

2
)dx ≤

∫ ∞
a

x

a
exp (−x

2

2
)dx

= a−1 exp (−a
2

2
).
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For the other inequality, note that 1
a exp(−a

2

2 ) =
∫∞
a

(1+ 1
x2 ) exp(−x

2

2 )dx. Thus

1

a
exp(−a

2

2
) =

∫ ∞
a

(1 +
1

x2
) exp(−x

2

2
)dx

≤ (1 + a−2)

∫ ∞
a

exp(−x
2

2
)dx.

Dividing both sides by 1 + 1
a2 and simplifying gives the desired inequality.

If a > 1√
2π

, then we can apply the inequality on the right that was just

proved to get the desired inequality. If a ≤ 1√
2π

, then we have

1√
2π

∫ ∞
a

e−
x2

2 dx ≤ 1√
2π

∫ ∞
0

e−
x2

2 dx

=
1

2
≤ e−

1
2 ( 1√

2π
)2 ≤ e− a

2

2 .
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2 Brownian Motion

2.1 Definition of Brownian Motion

2.1.1 One-Dimensional Brownian Motion

We can now state the definition of Brownian motion. The index set T will be
assumed to be the set [0,∞), but everything detailed in this section is equally
as valid for any closed subinterval of [0,∞).

Definition 1. Brownian motion is a sample continuous centered Gaussian pro-
cess B = {Bt}t∈[0,∞) such that C(s, t) = min{s, t} for all s, t ∈ [0,∞).

Remark : If B is not sample continuous, but has the other properties in
this definition, then B is called pre-Brownian motion. Note that in order to
construct Brownian motion, we will first construct pre-Brownian motion, and
then will modify it in order to make it sample continuous and hence Brownian
motion. Therefore, for most of this section I will be focusing on properties of
pre-Brownian motion (which will themselves be valid for Brownian motion).

Pre-Brownian motion has the following useful properties:

Proposition 1. Let B = {Bt}t∈[0,∞) be pre-Brownian motion. Then

1. B0 = 0 almost surely;

2. For all 0 ≤ s < t <∞, Bt −Bs is N(0, t− s);

3. For all 0 < t1 < ... < tn, the increments Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1
are

independent.

In order to prove this result, we will need the following technical lemma.
Here, a Gaussian space is defined to be any closed linear subspace of L2(Ω,Σ, P )
that solely consists of centered Gaussian variables.

Lemma 3. Let A be a Gaussian space and let {At : t ∈ T} be a collection
of vector subspaces of A. Then the subspaces At are pairwise orthogonal with
respect to the covariance function C(X,Y ) = E[XY ] on L2(Ω,Σ, P ) if and only
if the σ(At) are pairwise independent.

I will forego the proof of this lemma. It requires an application of the mono-
tone class lemma, and the fact that, given a Gaussian vector X = (X1, ..., Xn)
(i.e, any n-tuple of random variables on the same probability space (Ω,Σ, P )
such that, for all a1, ..., an ∈ R, the random variable

∑n
i=1 aiXi is centered

Gaussian) has independent coordinates if and only if the covariance matrix
(C(Xi, Xj))i,j=1,...,n is diagonal. See [3], Theorem 1.2 for the proof.

Using this, we can prove Proposition 1.

Proof. Suppose that {Bt}t∈[0,∞) is a Gaussian process and for every s, t ∈ [0,∞],
E[BsBt] = min{s, t}. Since B0 is N(0, 0), B0 = 0 almost surely. This gives (1).

Fix any s ≥ 0. Let A be the Gaussian space generated by {Bt}t∈[0,∞), let
As be the vector space spanned by {Bt}t∈[0,s], and let A′s be the vector space
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spanned by {Bs+t − Bs}t∈[0,∞). Then As and A′s are both vector subspaces of
the Gaussian space A. Furthermore, whenever r ∈ [0, s],

E[Br(Bs+u −Bs)] =E[BrBs+u]− E[BrBs]

= min{r, s+ u} −min{r, s}
=r − r = 0.

(4)

This implies that As and A′s are orthogonal. We may now apply Lemma 3 to
see that the σ-algbras generated by As and A′s are independent. Since B is a
Gaussian process, Bt −Bs is centered Gaussian; and since

E[(Bt −Bs)2] = E[B2
t ]− E[BtBs]− E[BtBs] + E[B2

s ]

= t− 2 min{s, t}+ s = t− s,
(5)

it follows that Bt −Bs is N(0, t− s). This gives (2).
To prove (3), let 0 = t0 < t1 < t2 < · · · < tn be given and set s =

tn−1 and t = tn. Then Btn − Btn−1
is independent of the Gaussian vector

(Bt1 , ..., Btn−1
). Furthermore, B(tn−1)−B(tn−2) is independent of the Gaussian

vector (Bt1 , ..., Btn−2
), and so on. This implies that the variables Bti − Bti−1

,
i = 1, ..., n are independent.

A remark needs to be made regarding Proposition 1:

1. Any sample continuous process that satisfies properties 1 - 3 in Proposition
1 is in fact Brownian motion. To see this, note that the independent
increments property implies that B is a Gaussian process. Furthermore,
whenever 0 ≤ s < t, we have

E[BsBt] = E[Bs(Bt −Bs) +B2
s ]

= E[Bs]E[Bt −Bs] + E[B2
s ]

= 0 + s = s,

(6)

so that C(s, t) = min{s, t}. In particular, we could just as easily taken
this as the definition of Brownian motion.

Using this proposition, we can compute the densities of the finite dimensional
distributions of B.

Proposition 2. If B = {Bt : t ∈ [0,∞)} is a pre-Brownian motion, then for
any choice of 0 = t0 < t1 < ... < tn, the law of the vector (Bt1 , ..., Btn) has
density given by

p(x1, ..., xn) =
1√

(2π)nt1(t2 − t1)...(tn − tn−1)
exp (−

n∑
i=1

(xi − xi−1)2

2(ti − ti−1)
). (7)

where we have set x0 = 0.
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Proof. Assume that B is a Brownian motion. Then the variables Bt1 , Bt2 −
Bt1 , ..., Btn−Btn−1 are independent and have N(0, t1), N(0, t2−t1), ..., N(0, tn−
tn−1) distributions, respectively. This implies the density of the vector (Bt1 −
Bt0 , ..., Btn −Btn−1

) is the product of the densities of these vectors, or

p(u1, ..., un) =
1√

(2π)nt1(t2 − t1)...(tn − tn−1)
exp (−

n∑
i=1

u2
i

2(ti − ti−1)
). (8)

Making the change of variables xi =
∑i
j=0 uj completes the proof.

Note that this proposition, together with the property that B0 = 0 almost
surely, characterizes the collection of finite dimensional distributions of Brow-
nian motion. In particular, any sample continuous stochastic process with the
same finite dimensional distributions as Brownian motion is itself Brownian
motion. We will use this fact in the first construction of pre-Brownian motion

Brownian motion sample paths have the following elementary properties:

Proposition 3. Let B = {Bt}t∈[0,∞) be a Brownian motion. Then

1. (Symmetry) {−Bt}t∈[0,∞) is a Brownian motion;

2. (Invariance under scaling) For every λ > 0, { 1√
λ
Bλt}t∈[0,∞) is a Brownian

motion;

3. (Simple Markov property) For every s ≥ 0, {Bs+t −Bs}t∈[0,∞) is a Brow-
nian motion. Furthermore, it is independent of σ({Br}r∈[0,s]; and

4. (Time Reversal) If {Bt}t∈[0,T ] is a Brownian motion, then {BT−BT−t}t∈[0,T ]

is a Brownian motion.

Proof. For ω ∈ Ω, define φω(t) := Bt(ω) for t ∈ [0,∞). It is immediate that B
being a Gaussian process implies all of the listed processes are Gaussian. Thus,
to show that each process is a Brownian motion, we must show the covariances
are the minimum function, and that each of the processes are sample continuous.
These will all be straightforward computations:

1. For every s, t ∈ [0,∞) we have

C(s, t) = E[(−Bs)(−Bt)] = E[BsBt] = min{s, t}.

Now let f(t) = −t. Then f is continuous on R; and because mapping φω
is continuous for every ω, so is the mapping (f ◦ φω)(t) = −Bt(ω).

2. For every s, t ∈ [0,∞),

C(s, t) = E[(
1√
λ
Bλt)(

1√
λ
Bλs)] =

1

λ
E[BλtBλs]

=
1

λ
min{λs, λt} = min{s, t}.
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Furthermore, for every λ ∈ [0,∞), the function f(t) = λt is continuous,
and its image on [0,∞) is [0,∞). Since φω is continuous for every ω, it
follows that 1√

λ
(φω ◦ f)(t) = 1√

λ
Bλt(ω) is continuous.

3. For any r, t ∈ [0,∞), we have

C(r, t) = E[(Bs+r −Bs)(Bs+t −Bs)]
= E[Bs+rBs+t]− E[Bs+rBs]− E[BsBs+t] + E[(Bs)

2]

= (s+ min{r, t})− 2s+ s = min{r, t}.

Now note that for any fixed s ∈ [0,∞), the mapping f(t) = t+s is contin-
uous, and for every ω, the constant mapping g(t) = Bs(ω) is continuous.
Therefore, for every ω the mapping (φω ◦ f + g)(t) = Bs+t(ω)−Bs(ω) is
continuous.

To show the independence part of the statement, let A be the Gaus-
sian space generated by the process B, and let As and A′s be the vec-
tor spaces generated by {Bt}t∈[0,s] and {Bs+t − Bs}t∈[0,∞), respectively.
Then σ({As}) and σ({A′s}) are independent by Proposition 1, and hence
{Bs+t −Bs}t∈[0,∞) is independent of σ({B(t)}t∈[0,s]).

4. For every t, s ∈ [0, T ], we have

C(s, t) = E[(BT −BT−s)(BT −BT−t)]
= E[(BT )2]− E[BTBT−t]− E[BT−sBT ] + E[BT−sBT−t]

= T − (T − t)− (T − s) + (T −max{s, t})
= t+ s−max{s, t} = min{s, t}.

The argument for sample continuity is the same as for the simple Markov
property.

Further properties of the Brownian sample paths can be found in the next
section of the paper.

2.1.2 Higher-Dimensional Brownian Motion

Now that we have defined Brownian motion in one dimension, we can easily
define it in higher definitions. An n-dimensional Brownian motion is the Carte-
sian product of n one-dimensional Brownian motions (in the sense of the first
two definitions). With this definition, we need to only study one-dimensional
Brownian motions. Therefore, the constructions in the next section will solely
be of one-dimensional Brownian motion.
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Not only does n-dimensional Brownian motion share the same properties
of one-dimensional Brownian motion, but n-dimensional Brownian motion is
also independent of rotations: for any n × n rotation matrix R and any n-
dimensional Browian motion and any n × n rotation matrix R, the stochastic
process B′ := RB is also a Brownian motion.

2.2 Constructions of Pre-Brownain Motion and Brownian
Motion

2.2.1 Kolmogorov’s Consistency Theorem

Often times one may one to specify a stochastic process by its finite dimen-
sional distributions. To be more specific, let T be an index set, and let I ⊂ T
be finite (say, with n elements). Suppose we are given a collection of laws PI
on (Rn,B(Rn)) for each finite I ⊂ T . The question posed is as follows : Does
there exist a probability space (Ω,Σ, P ) and a stochastic process X = {Xt} on
this space whose finite dimensional distributions are the PI? In general, the
answer is no; but under certain consistency conditions, we can always guarantee
the existence of such a probability space and such a process. The following
theorem, due to Kolmogorov, gives precise conditions under which the answer
to this question is affirmative.

Theorem 1. (Kolmogorov’s Consistency Theorem) Let T be some indexing
set. Suppose that for every finite subset I := {t1, ..., tn} ⊂ T , we are given a
probability measure PI on the space (Rn,B(Rn)). Furthermore, suppose that
these probabilities are consistent, in the following senses:

1. For every permutation π : {1, ..., n} → {1, ..., n},

P(t1,...,tn) = P(tπ(1),...,tπ(n)); and (9)

2. Whenever I ⊂ J ⊂ T are finite (where J hasm elements), andB ∈ B(R)n,

PI(B) = PJ(B × Rm−n). (10)

Then there is a probability space (Ω,Σ, P ) and a stochastic process X :=
{Xt}t∈T on this space whose finite dimensional distributions are precisely the
PI , I ⊂ T finite.

Proof. I will give an outline of the proof. Refer to [1], Section 3 for all of the
details.

Let RT denote the set of all functions from T to R. Define Ω := RT .
Let A be the collection of all cylinder sets of RT , i.e, the collection of all sets

of the form

C := {B × RT−I : I ⊂ T, I finite (n elements), B ⊂ B(Rn)}. (11)

This collection is an algebra, but it is not a σ-algebra. So, define Σ = σ(A).
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Finally, define P : A→ [0,∞] by

P (B × RT−I) := PI(B) (12)

for every I ⊂ T finite (with n elements), and every B ∈ B(Rn).
P is well-defined by the consistency conditions. It is a pre-measure on A,

and by the Carathéodory-Hahn Extension Theorem, we can extend P to a
probability measure (which will still be denoted by P) on Σ.

The space (Ω,Σ, P ) is the probability space we will work with. On this
space, define the process X := {Xt}t∈T by

Xt(ω) := ω(t) (13)

for every ω ∈ RT . This process satisfies the desired conditions.

We can actually use this theorem in order to construct pre-Brownian motion.
Let T = [0,∞), and for each I = {t1, ..., tn} ⊂ T with t1 < t2 < ... < tn, let

PI(t) = 1√
(2π)nt1(t2−t1)...(tn−tn−1)

∫ t
−∞ exp (−

∑n
i=1

(xi−xi−1)2

2(ti−ti−1) ) (i.e, the PI are

just the finite dimensional distributions of pre-Brownian motion). These laws
are consistent, since, for s < t,

1√
2πt

exp
−(b− a)

2t
=

∫ ∞
−∞

exp −(b−x)2

2(t−s)√
2π(t− s)

·
exp −(x−a)2

2s√
2πs

dx.

By Kolmogorov’s Consistency Theorem, there exists an appropriate probability
space (Ω,Σ, P ) and a stochastic process X = {Xt}t∈[0,∞) on this space whose
finite dimensional distributions are the PI . In particular, X has the same finite
dimensional distributions as pre-Brownian motion, and therefore is itself pre-
Brownian motion.

2.2.2 Fourier Series Expansion

In this subsubsection, I will give another construction of pre-Brownian mo-
tion, using Gaussian white noise.

For that purpose, let (M,M) be a measurable space and let µ be any σ-finite
measure on (M,M). An isometry γ from L2(M,M, µ) onto some Gaussian space
A is called a Gaussian white noise with intensity µ.

One question that immediately arises is whether or not there exists a Gaus-
sian white noise with intensity µ for any given σ-finite measure µ. The answer
is, in fact, in the affirmative. To be more specific, we have the following propo-
sition.

Proposition 4. For every measure space (M,M) and any σ-finite measure µ
on (M,M), there exists an appropriate probability space (Ω,Σ, P ), a Gaussian
space A in L2(Ω,Σ, P ), and a Gaussian white noise γ : L2(M,M, µ)→ A with
intensity µ.
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Proof. First note that L2(M,M, µ) is a Hilbert space (with usual inner product
〈·, ·〉 given by 〈f, g〉 =

∫
M
fḡdµ). Let {ft}t∈T be an orthonormal basis for

L2(M,M, µ). Then for every f ∈ L2(M,M, µ), we may write

f =
∑
t∈T
〈f, ft〉ft, (14)

where the coefficients in this expansion satisfy Parseval’s identity with re-
spect to the orthonormal basis {ft}t∈T :∑

t∈T
〈f, ft〉2 = ||f ||2 <∞. (15)

We now use the fact that there exists an appropriate probability space
(Ω,Σ, P ) and a family X = {Xt}t∈T of independent identically distributed stan-
dard normal Gaussian variables indexed by the set T . Now define A to be the
Gaussian space generated by the collection X. Finally, for any f ∈ L2(M,M, µ),
define

γ(f) :=
∑
t∈T
〈f, ft〉Xt. (16)

Writing out the inner product, this can be expressed as

γ(f) :=
∑
t∈T

(

∫
Ω

f(x)ft(x)dµ(x))Xt.

γ is then a Gaussian white noise with intensity µ. To see this, note that the
sum of the coefficients of Xt in γ(f) is finite by Parseval’s identity. Because
the Xt form an orthonormal system in L2(Ω,Σ, P ), the sum on the right-hand
side above actually converges in L2(Ω,Σ, P ). By definition, γ takes values in
the Gaussian space A. Fixing any t1 ∈ T and using the orthonormality of the
system {ft}t∈T , it follows that

γ(ft1) =
∑
t∈T
〈ft, ft1〉Xt

= 〈ft1 , ft1〉Xt1

= Xt1 .

This implies that γ is an isometry from L2(Ω) to A = span(Xt : t ∈ T ). Thus
γ is Gaussian white-noise with intensity µ.

Now let γ be any Gaussian white noise with intensity µ, defined on L2(M,M, µ)
and with values in L2(Ω,Σ, P ). Then:

1. For every f ∈ L2(M,M, µ), γ(f) is a centered Gaussian variable, with
variance

E[γ(f)2] = ||γ(f)||2L2(Ω,Σ,P ) = ||f ||2L2(M,M,µ) =

∫
f2dµ; and (17)

11



2. for every f, g ∈ L2(M,M, µ), we have

E[γ(f)γ(g)] = 〈γ(f), γ(g)〉L2(Ω,Σ,P )

= 〈f, g〉L2(M,M,µ) =

∫
fgdµ.

(18)

With the existence of Gaussian white noise in mind, we can easily construct
pre-Brownian motion. Consider the measure space (R,B(R), µ), where µ is
Lebesgue measure. From the above remarks, there exists an appropriate prob-
ability space (Ω,Σ, P ) and a Gaussian white noise γ with intensity µ, defined
on (R,B(R), µ) and with values in (Ω,Σ, P ). For every t ∈ [0,∞), define

Xt := γ(χ[0,t]). (19)

Because the γ(χ[0,t]) belong to some common Gaussian space, it follows
immediately that X = {Xt}t∈[0,∞) is a Gaussian process. Furthermore, for any
s, t ∈ [0,∞), we have

E[XtXs] = E[γ(χ[0,t])γ(χ[0,s])] =

∫ ∞
0

χ[0,t](x)χ[0,s](x)dµ(x) = min{s, t}.

Hence X is pre-Brownian motion.

2.2.3 Moving from Pre-Brownian Motion to Brownian Motion

Here, I will give two separate methods from moving from pre-Brownian mo-
tion to Brownian motion. The first method heavily relies on the Gaussian
properties of pre-Brownian motion, while the second method generates a mod-
ification of pre-Brownian motion that is actually Hölder continuous.

Method 1: Let X = {Xt}t∈[0,∞) be any pre-Brownian motion. It suffices
to construct a stochastic process with the same finite-dimensional distributions
as X.

To do this, for every n ≥ 1, define

Yk := X k+1
2n
−X k

2n
, (20)

where k = 0, 1, ..., 2n− 1. Since X is pre-Brownian motion, Yk is N(0, 1
2−n ). By

Lemma 2, we have

P [sup
k
|Yk| ≥

1

n2
] ≤ 2nP [|Y1| ≥

1

n2
] ≤ 2n+1 exp (−2n−1

n4
). (21)

The right hand side of this expression is the general term of a convergent
series. By the Borel-Cantelli Lemma,

P [
⋂
m≥1

⋃
k≥m

{sup
k
|Yk| ≥

1

n2
}] = 0. (22)
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For any t ∈ [0, 1], consider its dyadic expansion t :=
∑∞
i=1

ti
2i , where ti = 0, 1

for every i. For every n ≥ 1, define

tn :=

n∑
i=1

ti
2i
. (23)

This definition implies that Xtn − Xtn−1 ∈ {0, Y1, ..., Y2n−1} for every n ≥ 1.
Noticing thatXtn =

∑n
i=1(Xti−Xti−1

), and using the fact that P [
⋂
m≥1

⋃
k≥m{supk|Yk| ≥

1
n2 }] = 0, we see that there exists an N > 0 such that n ≥ N implies

P [{|Xtn −Xtn−1
| ≤ 1

n2
}] = 1. (24)

Therefore, the sequence {Xtn}∞n=1 converges almost surely to some limit Zt on
[0, 1]. We will show that Z is the desired sample continuous process.

By construction, Zt = Xt for any dyadic t ∈ [0, 1]. Now, choose any t, s ∈
[0, 1] with |t − s| ≤ 2−n. If in fact t = tn = k

2n and s = sn = m
2n , then

|k − m| = 0, 1. In particular, either |Xtn − Xsn | = 0; or |Xtn − Xsn | = |Zk|
for some k; and in this case we have |Xtn −Xsn | ≤ 1

n2 for large enough n. By
definition of Zt, it follows that for large enough n,

|Zt − Zs| ≤ |Zt −Xtn |+ |Xtn −Xsn |+ |Xsn − Zs|

≤
∞∑
m=n

1

m2
+

1

n2
+

∞∑
m=n

1

m2

≤ C

n

(25)

for some constant C. Thus t 7→ Zt(ω) is continuous for all ω ∈ {|Xtn−Xtn−1
| ≤

1
n2 }. Since this set has probability one, it follows that Z is sample continuous.
On the complement of this set, set Zt = 0. Using the sample continuity and the
fact that Z agrees with X on a dense subset of [0, 1], we can conclude that Z has
the same finite-dimensional distributions as Brownian motion. In particular, Z
is itself Brownian motion.

Method 2: For this method, we will first need to give two definitions.

Definition 2. Let X = {Xt}t∈T and Y = {Yt}t∈T be stochastic processes
defined on the same index set T and with values in a mutual measure space
(M,M). Then Y is a modification ofX if for every t ∈ T , P ({Yt = Xt}) = 1; and
Y is indistinguishable from X if P ({Xt = Yt,∀t ∈ T}) = 1, or, equivalently, if
there is a subset N ⊂ Ω of measure zero such that Xt = Yt whenever ω ∈ Ω−N .

The goal of this section is to show that there exists a suitable modification of
pre-Brownian motion that is sample continuous. In fact, we will show something
much stronger: namely, it will be shown that every pre-Brownian motion can be
modified to be Hölder continuous. This is the contents of the following theorem.
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Theorem 2. Let X = {Xt}t∈[0,∞) be a pre-Brownian motion. There exists
a modification of X that is sample continuous, and is in fact locally Hölder
continuous with exponent 1

2 − η whenever η ∈ (0, 1
2 ).

Proof. We need two lemmas in order to prove this result.

Lemma 4. Let (E, d) be any metric space, let D = { k2n : n ∈ N, 1 ≤ k ≤ 2n−1},
and let f : D → E be a mapping. Assume that there exists an α > 0 and
some finite constant C such that for every n ∈ N and for every k ∈ N with
1 ≤ k ≤ 2n − 1,

d(f((i− 1)2−n), f(i2−n)) ≤ C2−nα. (26)

Then whenever s, t ∈ D,

d(f(s), f(t)) ≤ C

1− 2−α
|t− s|α. (27)

Proof. Fix any s, t ∈ D with s < t. Let n be the smallest positive integer
such that 2−n ≤ t− s, and let m be the smallest nonnegative integer such that
m2−n ≥ s. Then we can write

s = m2−n − e02−n−1 − ...− ek2−n−k; and (28)

t = m2−n + e′02−n−1 + ...+ e′p2
−n−p, (29)

for some nonnegative integers k, p and constants e′i, ej that are either 0 or 1 for
every i = 0, ..., p and j = 0, ..., k. Furthermore, define

sj := m2−n − e02−n−1 − ...− ej2−n−j ; and (30)

ti := m2−n + e′02−n−1 + ...+ e′i2
−n−i. (31)

Since tp = t and sk = s, we can apply the assumptions of the Lemma to each
of the pairs (s0, t0), (sj−1, sj), and (ti−1, ti), to get

d(f(s), f(t)) = d(f(sk), f(tp))

≤ d(f(s0, t0)) +

k∑
j=1

d(f(sj), f(sj−1)) +

p∑
i=1

d(f(ti), f(ti−1))

≤ C2−nα(1 +

k∑
j=1

2−jα +

p∑
i=1

2−iα)

≤ C2−nα(1 + 2

∞∑
i=1

2−iα)

≤ 2C(1− 2−α)−12−nα

≤ 2C(1− 2−α)−1(t− s)α.

(32)

The second to last inequality follows from the fact that (1 + 2
∑∞
i=1 2−iα) <

2(
∑∞
i=0 2−iα) = 2

1−2−α ; and the last line follows from 2−n ≤ t− s.
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Lemma 5. (Kolmogorov’s Lemma) Let X = {Xt}t∈T be a stochastic process
indexed by some real bounded interval T , where all the Xt take values on
some complete metric space (E, d). Assume that there are three real numbers
q, ε, C > 0 such that whenever s, t ∈ T ,

E[d(Xs, Xt)
q] ≤ C|t− s|1+ε

. (33)

Then there exists a modification Y of X whose paths are Hölder continuous
with exponent α ∈ (0, εq ), i.e, for every ω ∈ Ω and every α ∈ (0, εq ), there exists

a constant Cα(ω) <∞ such that for every s, t ∈ T ,

d(Ys(ω), Yt(ω)) ≤ Cβ(ω)|t− s|β . (34)

In particular, Y has continuous sample paths.

Proof. For simplicity, take T = [0, 1]; and fix any α ∈ (0, εq ). Our assumptions
and Chebyshev’s Inequality imply, for any a > 0 and s, t ∈ T , that

P [d(Xs, Xt) ≥ a] = P [d(Xs, Xt)
q ≥ aq] ≤ E[d(Xs, Xt)

q]

aq
≤ Ca−q|t− s|1+ε

.

Applying this inequality to s = (i − 1)2−n, t = i2−n, and a = 2−nα for i =
1, ..., 2n, we get

P [d(X(i−1)2−n , Xi2−n) ≥ a] ≤ C2n(qα−(1+ε)).

Summing over all i, it follows that

P [

2n⋃
i=1

{d(X(i−1)2−n , Xi2−n) ≥ a}] ≤ 2n(C2n(qα−(1+ε))) = C2−n(ε−qα).

By assumption, ε − qα > 0, from which is follows that the right-hand side
of the above expression is the general term of an absolutely convergent series.
Summing over all n, we then have

∞∑
n=1

P [

2n⋃
i=1

{d(X(i−1)2−n , Xi2−n) ≥ a}] ≤ C
∞∑
n=1

2−n(ε−qα) <∞.

By the Borel-Cantelli lemma, there almost surely exists an N0 = N0(ω) such
that whenever N ≥ N0 and whenever i = 1, 2, ..., 2n,

d(X(i−1)2−n , Xi2−n) ≤ 2−nα.

In particular, the constant

Kα(ω) := sup
n≥1

[ sup
1≤i≤2n

d(X(i−1)2−n , Xi2−n)

2−nα
] (35)
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is almost surely finite (i.e, P [{Kα < ∞}] = 1), since whenever N ≥ N0 the
supremum inside parentheses is bounded above by 1; and since there are only
finitely many terms less than N0. Applying Lemma 4 on the event {Kα <∞},
we see that for every s, t ∈ D,

d(Xs, Xt) ≤ Cα(ω)|t− s|α, (36)

where Cα(ω) = 2(1 − 2−α)Kα(ω). Thus, on the event {Kα(ω) < ∞}, the
sample path t → Xt(ω) is Hölder continuous on D, and therefore is uniformly
continuous on D. Because (E, d) is a complete metric space, there is a unique
continuous extension of this mapping to the interval T = [0, 1], which also is
Hölder continuous with exponent α.

Now fix some x0 ∈ E. Define the process Y := {Yt}t∈[0,1] by

Yt(ω) :=

{
lims→t, s∈DXs(ω), if Kα(ω) <∞;

x0, if Kα(ω) =∞.
(37)

It is evident that Yt is a random variable for each t ∈ [0, 1]. Furthermore, the
comments above imply that the sample paths of Y are Hölder continuous with
exponent α. Moreover, whenever t ∈ [0, 1],

Xs → Xt (38)

in probability as s→ t for s ∈ D. Since Yt is defined as the almost sure limit of
Xs as s→ t, s ∈ T , this implies that Xt = Yt almost surely. In particular, Y is
indeed a modification of X.

Having established these two lemmas, the theorem can be proved quickly. If
s < t, then because the random variable Xt −Xs is N(0, t − s), there is some
random variable Y that is N(0, 1) such that Xt − Xs =

√
t− sY . Therefore,

whenever α > 0,

E[|Xt −Xs|α] = (t− s)α2 E[|Y |α] <∞.

Whenever α > 2, we may apply Lemma 5 with ε = α
2 to generate a modification

of X that is sample continuous and, in fact, has sample paths which are locally
Hölder continuous with exponent β for any β < α−2

2α . Letting α tend to ∞
allows us to take β arbitrarily close to 1

2 .

By construction, the modification Y of the stochastic process X in the proof
is unique up to indistinguishability.

2.2.4 Lévy-Ciesielski’s Construction

This construction is due to Lévy, but was simplified by Ciesielski. I will give
Ciesielski’s simplified version of the construction. Ultimately, this construc-
tion is akin to the previous construction of pre-Brownian motion (as both use
Fourier series in order to construct the pre-Brownain motion), but the process
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constructed will actually be sample continuous by definition (this we still will
have to show).

The goal of this section is to first construct Brownian motion with index
set [0, 1], and then extend this construction to generate Brownian motion with
index set [0,∞).

Let (Ω,Σ, P ) be the probability space constructed in Kolmogorov’s Theorem
(except, assume that the original index set is T = [0, 1] instead of T = [0,∞)), so
that the PI are just the finite dimensional distributions of pre-Brownian motion.

Let n ≥ 1 be given, and let 1 ≤ k < 2n be odd. The Haar functions, defined
on [0, 1], are given by

fk2−n(t) =


2
n−1
2 , if (k − 1)2−n ≤ t < k2−n;

−2
n−1
2 , if k2−n ≤ t < (k + 1)2−n;

0, otherwise,

(39)

together with the function f0 ≡ 1. This collection is a complete orthonormal
system in L2([0, 1]), and hence is a basis. To see this, note that∫ 1

0

fi2−n(t)fj2−m(t)dt =

∫ (i+1)2−n

(i−1)2−n
2n−1dt = 1. (40)

If instead i2−n 6= j2−m, then either n 6= m or n = m but i 6= q. In the second
case, the intervals on which the Haar functions are nonzero do not overlap, and
therefore the integral evaluates to 0. So now assume n 6= m; without loss of
generality we may assume that n < m. Then either [ j−1

2m , j+1
2m ) ⊂ [ i−1

2n ,
i+1
2n ),

or these two intervals are disjoint. If they’re disjoint, we’re done. Otherwise,
the first interval must be contained in one of the halves of the second interval,
since it’s length is less than 1

2 of the length of the second interval. In particular,
fj2−m is constant on the support of fi2−n , which gives∫ 1

0

fj2−mfi2−n = C

∫ 1

0

fi2−n = 0.

It is also complete: if g ∈ L2([0, 1]) is perpendicular to every Haar function,
then the integral ∫ (k+1)2−n

(k)2−n
g(t)dt

is independent of off 0 ≤ k < 2n. To prove this, for any integer n ∈ N and
k = 0, 1, ..., 2n − 1, define

Ik :=

∫ (k+1)2−n

k2−n
g(x)dx.

Our assumptions on the fk2−n imply that Ik = I0 for every k, and therefore the
integral above is independent of k. In particular, we have∫ j2−n

i2−n
g(t)dt = 2−n(j − i)

∫ 1

0

g(t)dt = 0
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for every 0 ≤ i < j ≤ 2n and any n ≥ 1. Thus∫ b

a

g(x)dx = 0.

holds for all dyadic rationals a, b ∈ [0, 1]. This is enough to show that the Haar
system is complete.

We can now begin out construction of Brownian motion with index set [0, 1].
Let {gk2−n : k = 0 or odd k < 2n, 1 ≤ n} be any collection of independent
identically distributed standard Gaussian variables (they can be on any space);
and for each t ∈ [0, 1] define

Bt := g0

∫ t

0

f0(x)dx+

∞∑
n=1

∑
k odd<2−n

gk2−n

∫ t

0

fk2−n(x)dx. (41)

If the right-hand side of the Bt converge, then it immediately follows that B =
{Bt}t∈[0,1] is a Gaussian process by assumption on the gk2−n .

Therefore, the first goal is to show that this sum converges on [0, 1], and in
fact converges uniformly on [0, 1] to a continuous path.

To do this, consider the Schauder functions Sk2−n(t) =
∫ t

0
fk2−n(x)dx. These

are just little tents of height 2−
n+1
2 . With this in mind, it follows that

en = ||
∑

k odd<2n

gk2−n

∫ t

0

fk2−n(x)dx||∞

= max
t∈[0,1]

|
∑

k odd<2n

gk2−n

∫ t

0

fk2−n(x)dx|

= 2−
n−1
2 max

k odd<2n
|gk2−n |

. (42)

Therefore, for any constant C > 0, we have

P [en > C(2−n log(2−n))
1
2 ] = P [ max

k odd <2−n
gk2−n > C

√
2n log(2) ]

≤ 2 · 2n−1

∫ 1

C(
√

2n log(2))

e−
x2

2

√
2π

dx

< n−
1
2 2nKe−C

2n log(2)

= n−
1
2 2n(1−C2)K,

(43)

where K > 0 is constant, and where we have used Lemma 2 in the third in-
equality. Whenever C > 1, the series

∑∞
n=1 n

− 1
2 2n(1−C2) converges absolutely;

so by the Borel-Cantelli Lemma,

P [lim sup
n→∞

en ≤ C(2−n log(2−n))
1
2 ] = 1. (44)

This implies that the series converges absolutely on [0, 1] and that the process
B = {Bt : t ∈ [0, 1]} is actually sample continuous.
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In order to finish the proof, we need to show that E[B(t)B(s)] = min{s, t}
whenever 0 ≤ s, t ≤ 1. For every such s, t, we have

E[B(t)B(s)] = E[(g0

∫ t

0

f0(x)dx+

∞∑
n=1

∑
k odd<2−n

gk2−n

∫ t

0

fk2−n(x)dx)

× (g0

∫ s

0

f0(x)dx+

∞∑
n=1

∑
k odd<2−n

gk2−n

∫ s

0

fk2−n(x)dx)]

=

∫ t

0

f0(x)dx

∫ s

0

f0(x)dx+

∞∑
n=1

(

∫ t

0

fk2−n(x)dx)(

∫ s

0

fk2−n(x)dx)

=

∫ 1

0

χ[0,t](x)χ[0,s](x)dx = min{s, t}.

(45)
Here we used the independence of the gk2−n to get the second inequality; and
to get the third equality, we have used Parseval’s Inequality with respect to the
the Haar orthonormal system applied to the characteristic functions χ[0,t] and
χ[0,s]. B is therefore a Brownian motion on [0, 1].

We can use this to construct a Brownian motion on [0,∞). Use this construc-
tion of Brownian motion to construct some sequence {Bn}∞n=1 of independent
copies of a Brownian motion. Define the stochastic process B := {Bt}t∈[0,∞) by

Bt :=



B1
t , if 0 ≤ t < 1;

B1
1 +B2

t−1, if 1 ≤ t < 2;

· · · · · · · · ·
B1

1 + · · ·+Bn1 +Bn+1
t−n , if n ≤ t < n+ 1

· · · · · · · · ·

(46)

This is sample continuous, since each of the Bn are sample continuous and
limt→nBt = B1

1 + ... + Bn1 regardless of the direction that t approaches n. It
is indeed a Gaussian process, since the Bn are Gaussian processes and are all
mutually independent. It remains to show that this has the desired covariance.
To do this, let 0 ≤ s < t be given. We have two cases:

1. s, t ∈ [j, j + 1) for some j ≥ 1 ∈ Z. Then Bt − Bs = Bj+1
t−j − B

j+1
s−j , which

implies

E[BtBs] = E[(Bj+1
t−j +Bj1 + ...+B1

1)(Bj+1
s−j +Bj1 + ...+B1

1)]

= E[Bj+1
t−jB

j+1
s−j ] +

j∑
k=1

E[(Bk1 )2]

= (s− j) + j = s.

2. s ∈ [j, j + 1) and t ∈ [i, i+ 1), where 1 ≤ j < i; i, j ∈ Z. Then Bt − Bs =
Bi+1
t−i +Bi1 + ...+Bj+1

1 −Bj+1
s−j . Furthermore, using the independence of the
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Bn, we have

E[BtBs] = E[(Bj+1
t−j +Bj1 + ...+B1

1)(Bi+1
s−i +Bi1 + ...+B1

1 ]

= E[Bi+1
s−i ] +

i∑
k=1

E[(Bk1 )2]

= (s− i) + i = s

B then has the desired covariance, and hence is Brownian motion.
This type of extension makes it very easy to move from a Brownian motion

with index set [0, 1] to a Brownian motion with index set [0,∞), and allows us
to solely focus on Brownian motions with index set [0, 1]. Indeed, we also could
have used this after the first construction of Brownian motion with index set
[0, 1] in order to extend it to a Brownian motion with index set [0,∞).

2.3 Brownian motion as the Limit of Distributions

In this section, I will discuss the Donsker Theorem, which is a classical
central limit theorem on C[0,∞).

Define the metric d : C[0,∞)→ [0,∞) by

d(f, g) := sup
n=1

1

2n
dn(f, g)

1 + dn(f, g)
, (47)

where dn(f, g) = supt∈[0,n]|f(t) − g(t)|. This function is indeed a metric, and
actually metricizes uniform convergence on compact sets in C[0,∞).

Consider any sequence (Xn)∞n=1 of independent identically-distributed ran-
dom variables, each with mean 0 and finite variance σ2. For every n ∈ Z≥1 and
every t ∈ [0,∞), let bntc be the smallest integer less than or equal to nt, and
define

Bnt :=
1

σ
√
n

(
∑
i≤bntc

Xi) + (nt− bntc)
X1+bntc

σ
√
n

. (48)

Set Bn := {Bnt }t∈[0,∞). Simply put, Bn is a random walk at integer values
of nt, and is just linear interpolated for all other values. The goal of this section
is to prove the following theorem:

Theorem 3. (Donsker’s Theorem) The stochastic process Bn = {Bnt }t∈[0,∞)

converges in distribution to Brownian motion Bt on the metric space (C([∞)), d)
as n→∞. In particular, for every t ∈ [0,∞),

L(Bnt )→ L(Bt).

The proof of this theorem requires some work. First of all, probabilities on
C[0,∞) are completely determined by the finite dimensional distributions. In
particular, the cylindrical σ-algebra on C[0,∞) (namely, the σ-algebra gener-
ated by the events {f ∈ C[0,∞) : (f(t1), ..., f(tn)) ∈ B, B ∈ B(Rn)} for some
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fixed B and fixed t1 < ... < tn in [0,∞)) coincides as the Borel σ-algebra on
C[0,∞). This is a rather simple consequence of C[0,∞) being a separable metric
space. This implies that, if the finite dimensional distributions of the sequence
of stochastic processes Bn converge to the finite dimensional distributions to
some stochastic process B, then B is the unique possible distributional limit of
this sequence.

Now notice that because the second term in the expression for Bnt is of

the order n−
1
2 , we can simplify our argument by treating tn as an integer and

writing Bnt = 1
σ
√
n

∑
i≤ntXi. Writing

1

σ
√
n

∑
i≤nt

Xi =

√
t

σ
√
nt

∑
i≤nt

Xi,

we may apply the Central Limit Theorem to see that Bn(t) converges in dis-
tribution to N(0, t). Furthermore, whenever s < t, we can express Bnt as the
sum

Bnt = Bns +
1

σ
√
n

∑
ns<i≤nt

Xi.

Because Bns and Bnt −Bnt are independent, it follows that

E[BnsB
n
t ] = E[Bns (Bnt −Bns )] + E[(Bns )2]

= E[(Bns )2],

which converges to s as n → ∞. It follows that the finite dimensional distri-
butions of Bn converge to the finite dimensional distributions of a Brownian
motion B = {Bt}t∈[0,∞), and therefore, by the previous discussion, identifies
the Brownian motion B = {Bt} as the unique possible limit of the sequence
{Bn}∞n=1.

It therefore remains to show that the sequence actually converges. In order
to do this, we will need the Selection Theorem, which concerns uniform tight
sequences of laws on probability spaces.

To be specific, let (Pn)∞n=1 be any sequence of laws on a metric space (E, d).
We say that (Pn)∞n=1 is uniformly tight if for every ε > 0, there exists some
compact set K ⊂ E such that for every n, Pn[K] ≥ 1− ε. We have the following
theorem:

Theorem 4. (Selection Theorem) For any uniformly tight sequence of laws
(Pn)∞n=1 on the metric space (E, d), there exists a subsequence (nk)∞k=1 such
that (Pnk)∞k=1 converges weakly to some probability law P .

From this, it follows that if we can show that the sequence of laws {L(Bnt )}∞n=1

is uniformly tight for each t, then there will exist a subsequence {L(Bnkt )}∞k=1

that converges weakly to some probability law P . But the unique possible limit
of this sequence will necessarily be L(Bt); and the existence of one convergent
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subsequence, together with the fact that the finite dimensional distributions con-
verge and identify a unique possible limit, will imply that {L(Bnt )}∞n=1 → L(Bt)
weakly in (C[0,∞), d), which will complete the proof of the Theorem.

The rest of this section will therefore be devoted to finding a convenient
characterization of uniform tightness.

For any given δ, T > 0 and any given function f ∈ C([0, T ]), define

mT (f, δ) := sup{|f(b)− f(a)| : |b− a| ≤ δ, a, b ∈ [0, T ]}. (49)

mT is just the modulus of continuity for the function f . We have the follow-
ing version of the Arzelá-Ascoli Theorem using the aforementioned notation:

Theorem 5. (Arzelá-Ascoli Theorem) The set K is compact in (C([0,∞)), d)
if and only if for every T > 0,

sup
f∈K
|f(0)| <∞ and lim

δ→0
sup
f∈K

mT (f, δ) = 0. (50)

We can use this to prove the following result to give an equivalent statement
of uniform tightness.

Proposition 5. A sequence of laws (Pn)∞n=1 on (C((0,∞]), d) is uniformly tight
if and only if

1.
lim
a→∞

sup
n≥1

Pn[{f ∈ C((0,∞]) : |f(0)| > a}] = 0; and (51)

2. for every T, ε > 0, we have

lim
δ→0

sup
n≥1

Pn[{f ∈ C((0,∞]) : mT (f, δ) > ε}] = 0. (52)

For proofs of these statements, see [1], Section 22.
The second condition in this statement is usually difficult to show, so we

instead will use the following asymptotic equicontinuity condition:

lim
δ→0

lim sup
n→∞

Pn[{f ∈ C((0,∞]) : mT (f, δ) > ε}] = 0. (53)

This statement implies the second statement in Proposition 5. To see this,
suppose this holds for every T > 0 and every ε > 0. Then for every a > 0 there
exists a δ0 > 0 and a N ∈ N such that whenever n ≥ N ,

Pn[{f ∈ C((0,∞]) : mT (f, δ) > ε}] < a.

Since every f ∈ C((0,∞]) is continuous by definition, the modulus of conti-
nuity mT (f, δ) goes to 0 as δ → 0. Furthermore, mT is a decreasing function of
δ. Therefore, for every n < N , there exists a δn > 0 such that
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Pn[{f ∈ C((0,∞]) : mT (f, δn) > ε}] < a;

and whenever n ≥ 1 and δ < min{δ0, δ1, ..., δn}, we have

Pn[{f ∈ C((0,∞]) : mT (f, δ) > ε}] < a.

In particular, limδ→0 supn≥1 Pn[{f ∈ C((0,∞]) : mT (f, δ) > ε}] = 0 holds
for every ε > 0 and every T > 0.

We can now complete the proof of the uniform tightness of the sequence
{L(Bnt )}∞n=1 using Proposition 5. By definition, Bn0 = 0 almost surely, so it
suffices to check that the asymptotic equicontinuity condition holds for this
sequence.

Note that whenever s < t,

mT (Bn, δ) = sup
t,s∈[0,T ]; |t−s|≤δ

| 1

σ
√
n

∑
ns≤t≤nt

Xi|

≤ max
0≤k≤nT ; 0<j≤nδ

| 1

σ
√
n

∑
k<i≤k+j

Xi|.
(54)

To maximize this expression over all 0 ≤ k ≤ nT , we can set m = T
δ and can

maximize over all indices k := lnδ, where 0 ≤ l ≤ m− 1. Since we also need to
maximize over 0 < j ≤ nδ, and since both of the maximums being considered
are taken over increments of size nδ, it follows that

max
0≤k≤nT ; 0<j≤nδ

| 1

σ
√
n

∑
k<i≤k+j

Xi| ≤ 3 max
0≤l≤m−1; 0<j≤nδ

| 1

σ
√
n

∑
lnδ<i≤lnδ+j

Xi|.

This implies that whenever mT (Bn, δ) > ε, there exists some 0 ≤ l ≤ m− 1
such that

P [{ max
0<j≤nδ

| 1

σ
√
n

∑
lnδ<i≤lnδ+j

Xi| >
ε

3
}] = 1.

Since the number of events of this type is m = T
δ , we therefore have

P [{mT (Bn, δ) > ε}] ≤ mP [{ max
0<j≤nδ

| 1

σ
√
n

∑
1≤i≤j

Xi| >
ε

3
}]. (55)

Setting Sn =
∑n
i=1Xi, we see by Kolmogorov’s inequality1 that whenever

max1≤j≤n P [{|Sn − Sj | > α}] ≤ p < 1, we have

P [{ max
1≤j≤n

|Sj | > 2α}] ≤ 1

1− p
P [{|Sn| > α}].

1See the Appendix for the statement
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Setting α = εσ
√
n

6 and applying Chebyshev’s inequality gives

P [{|
∑

j+1≤i≤nδ

Xi| >
εσ
√
n

6
}] ≤ 62δnσ2

ε2nσ2
=

36δ

ε2
.

In particular, if 36δε−2 < 1, then

P [{max
1≤i≤j

|
∑

j+1≤i≤nδ

Xi|] >
εσ
√
n

3
} ≤ 1

1− 36δε−2
P [{|

∑
1≤i≤nδ

Xi| >
εσ
√
n

6
}]. (56)

Lastly, using the Central Limit Theorem, it follows that

lim sup
n→∞

P [{mT (Bnt , δ) > ε}] ≤ m

1− 36δε−2
lim sup
n→∞

P [{|
∑

1≤i≤nδ

Xi| >
εσ
√
n

6
}]

=
m

1− 36δε−2
2N(0, 1)(

ε

6
√
δ
,∞)

≤ 2T

δ(1− 36δε−2)
exp(− ε2

2(62δ)
);

and this goes to 0 as δ → 0. Therefore, for every T, ε > 0 we have that

lim
δ→0

lim sup
n→∞

P [{mT (Bnδ) > ε}] = 0. (57)

We have therefore shown asymptotic equicontinuity holds, and hence Donsker’s
Theorem follows.
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3 Detailed Properties of Brownian Sample Paths

Brownian motion sample paths have very many properties, some desirable,
and others not as much. Many of the proofs for these properties require the
strong Markov property of Brownian motion, which we will address in the next
section of the paper. As a result, we will only state and prove properties of Brow-
nian sample paths that do not require the strong Markov property of Brownian
motion. For more properties of Brownian sample paths, see the Exercises at
the end of Chapter 2 in Le Gall’s text [3]. Before any results can be given, it is
necessary to introduce a third definition of Brownian motion.

3.1 Filtrations

LetB = {Bt}t∈[0,∞) be a Brownian motion on the probability space (Ω,Σ, P ).
Define the σ-algebras Σt for t ∈ [0,∞) by

Σt := σ({Bs}s∈[0,t]).

Then

1. whenever 0 ≤ s < t, Σs ⊂ Σt ⊂ Σ;

2. for all t, Bt is Σt measurable; and

3. for all t, the process {Bs −Bt}t∈[s,∞) is independent of Σt.

The first and second points are obvious; the third point follows from the simple
Markov property of Brownian motion.

The collection {Σt}t∈[0,∞) is an example of a filtration. To be specific, a
filtration on a measurable space (Ω,Σ) is any collection of σ-algebras {Σt}t∈[0,∞)

on Ω that satisfy statements 1-3 as given above. We have just shown that
associated to every Brownian motion is a filtration. This filtration will be called
the standard filtration for B. Filtrations give us a tactical advantage in proving
some more advanced properties of Brownian motion. From here on out we
will then write a Brownian motion B = {Bt}t∈[0,∞) as {(Bt,Σt)}t∈[0,∞), where
{Σt}t∈[0,∞) is the standard filtration for B.

For the remainder of this section, let {(Bt,Σt)}t∈[0,∞) be Brownian motion.

3.2 Blumenthal’s Zero-One Law

Define Σ0+ :=
⋂
t>0 Σt. We have the following 0− 1 law.

Theorem 6. (Blumenthal’s zero-one law) For every A ∈ Σ0+, either P [A] = 1
or P [A] = 0.

Proof. Consider any 0 < t1 < ... < tn < ∞, any bounded continuous function
g : Rk → R, and any fixed A ∈ Σ+0. Because g is continuous, B is sample
continuous, and B0 = 0 almost surely, we have that

E[χAg(Bt1 , ..., Btn)] = lim
ε→0

E[χAg(Bt1 −Bε, ..., Btn −Bε)]. (58)
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By the simple Markov property, whenever ε < t1 the incrementsBtn−Bε, ..., Bt1−
Bε are independent of Σε, and therefore are independent of Σ+0. Hence

E[χAg(Bt1 , ..., Btn)] = lim
ε→0

P [A]E[g(Bt1 −Bε, ..., Btn −Bε)]

= P [A]E[g(Bt1 , ..., Btn)].
(59)

This implies that σ({Bti}ni=1) is independent of Σ0+. Since the ti were arbitrary,
this implies that Σ0+ is independent of σ({Bt}t∈(0,∞)). Furthermore, for almost
every ω, B0 is the pointwise limit of Bt as t→ 0, and therefore σ({Bt}t∈(0,∞)) =
σ({Bt}t∈[0,∞)). Finally, because Σ0+ ⊂ σ({Bt}t∈[0,∞)), we see that Σ0+ is
independent of itself. In particular, this implies that for every A ∈ Σ0+, P [A] =
P [A ∩A] = P [A]2, so either P [A] = 0 or P [A] = 1.

We can use this prove the following proposition.

Proposition 6. 1. For every ε > 0, we almost surely have

sup
0≤t≤ε

Bt > 0 and inf
0≤t≤ε

Bt < 0. (60)

2. For every a ∈ R, we almost surely have

inf{t ≥ 0 : Bt = a} <∞. (61)

In particular, we almost surely have

lim sup
t→∞

Bt =∞ and lim inf
t→∞

Bt = −∞. (62)

Remarks:
1) To see that the function fε(ω) = sup0≤t≤εBt(ω) is a random variable, we

need only notice that by sample continuity, sup0≤t≤εBt(ω) = sup0≤t≤ε, t∈QBt(ω).
Since the supremum of a countable collection of measurable functions is itself
measurable, it follows that sup0≤t≤εBt is measurable, and hence a random vari-
able.

2) Random variables of the form τa = inf{t ≥ 0 : Bt = a} for some Brownian
motion {Bt,Σt}t∈[0,∞) are called hitting times, and will be discussed in the
section about stopping times later on. The first statement of part b of this
proposition then states that hitting times are almost surely finite.

Proof. 1. Consider any decreasing sequence of positive real numbers (ε)∞n=1

converging to 0. For each n = 1, 2, ..., define

An := {ω : sup
0≤t≤εn

Bt(ω) > 0}. (63)

Then An+1 ⊂ An for every n, and hence A =
⋂∞
n=1An is Σ+0-measurable.

By Blumenthal’s zero-one law, either P [A] = 0 or P [A] = 1. From measure
continuity,

P [A] = lim
n→∞

P [An], (64)
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and since P [An] ≥ P [{Bεn > 0}] = 1
2 (Bεn is N(0, εn) for every n), we see

that P [A] ≥ 1
2 . It follows that P [A] = 1, and in particular that for every

ε > 0, sup0≤t≤εBt > 0 almost surely.

By the symmetry property of Brownian motion, we see that for every
ε > 0,

1 = P [{ sup
0≤t≤ε

(−Bt) > 0}]

= P [{− inf
0≤t≤ε

Bt > 0}],
(65)

from which the other assertion follows.

2. By the previous part of the proposition and by measure continuity,

1 = P [{ sup
0≤t≤1

Bt > 0}] = lim
ε→0

P [{ sup
0≤t≤1

Bt > ε}]. (66)

Furthermore, by the scaling invariance property of Brownian motion,

P [{ sup
0≤t≤1

Bt > ε}] = P [{ sup
0≤t≤ 1

ε2

Bε2t > 1}] = P [{ sup
0≤t≤ 1

ε2

Bt > 1}] (67)

3.3 Zero Set

Define the set Z by

Z := {(t, ω) ∈ [0,∞)× Ω : B(t, ω) = 0}; (68)

and for any fixed ω ∈ Ω, define

Z(ω) := {t ∈ [0,∞) : B(t, ω) = 0}. (69)

We have the following theorem concerning the sets Z(ω):

Theorem 7. For almost every ω ∈ Ω,

1. Z(ω) has Lebesgue measure 0; and

2. Z(ω) is closed.

Proof. 1. Noticing that Z(ω) ⊂ (B([0,∞),Σ), we may apply the Fubini-
Tonelli Theorem to get

E[µ(Z(ω))] = (µ× P )(Z) =

∫ ∞
0

P [{ω ∈ Ω : Bt(ω) = 0}]dt = 0. (70)

This implies µ(Z(ω)) = 0.

2. By definition, for almost every ω ∈ Ω, the sample path φ : t → Bt(ω) is
continuous; and since Z(ω) = φ−1(0), we see that Z(ω) is closed.
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3.4 Nowhere Monotonicity

Theorem 8. For almost every ω ∈ Ω, the sample path t → Bt(ω) is not
monotone on any nontrivial interval.

Proof. Fix some ω ∈ Ω such that the sample path f : t 7→ Bt(ω) is continuous,
and such that Proposition 6(1) holds. Consider the stochastic process {Bt −
Bs}t∈[s,∞), for s > 0 is rational. By the simple Markov property, this is a
Brownian motion. By Proposition 6(1), for every ε > 0 we almost surely have

sup
t∈[s,s+ε]

Bt(ω) > Bs(ω) and inf
t∈[s,s+ε]

Bt(ω) < Bs(ω). (71)

This implies that f is not monotone on any nontrivial closed interval of [0,∞).
To prove this, suppose on the contrary that f is monotone increasing on some
interval [a, b] for a, b ∈ Q, a < b. Since f is continuous and monotonic increasing
on the closed interval [a, b], then inft∈[a,b]Bt(ω) = Ba(ω). But setting ε = b−a >
0, the above inequalities imply Ba(ω) < Ba(ω), a contradiction. In particular,
this proves that f cannot be monotonic increasing on [a, b]. Since a and b were
arbitrary rationals with a < b, it follows that f cannot be monotone increasing
on any nontrivial interval of [0,∞).

3.5 Nowhere Differentiability

Theorem 9. The Brownian sample path is nowhere differentiable.

Proof. It suffices to consider a Brownian motion B on a probability space
(Ω,Σ, P ) with index set [0, 1]. For l ∈ Z, l ≥ 1, let Al = {s ∈ [0, 1] :
limt→s

Bs−Bt
s−t ≤ l}. Our goal is to show that P [Al] = 0 for every l, since

this will imply that the collection of all ω ∈ Ω for which the derivative exists
has measure zero. For that purpose, assume that s ∈ Al. I will actually show
that there are no three consecutive increments that belong to Al for any given
l. If s ∈ [ k2n ,

k−1
2n ], where n > 2, then for every 1 ≤ j ≤ n,

|B k+j
2n
−B k+(j−1)

2n )
| ≤ l(2j + 1)

2n
. (72)

Let An,k be the event that |B k+j
2n
− B k+(j−1)

2n )
| ≤ l(2j+1)

2n holds for j = 1, 2, 3.

Then by the scaling invariance of Brownian motion,

P [An,k] ≤ P [|B1| ≤ 7l2−
n
2 ]3 ≤ (7l2−

n
2 )3, (73)

where the last inequality follows since B1 is N(0, 1). Therefore,

P [

2n⋃
k=1

An,k] ≤ 2n(7l2−
n
2 )3 = (7l)32−

n
2 . (74)
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Notice that the term on the rightmost hand side is the general term of an

absolutely convergent series. Summing over all n ≥ 1 thus gives P [
⋃2n

k=1An,k] <
∞. By the Borel-Cantelli lemma,

P [
⋂
m≥1

⋃
n≥m

(
⋃
k≤2n

An,k)] = 0. (75)

Since Al is a subset of
⋂
m≥1

⋃
n≥m(

⋃
k≤2n An,k), it follows that P [Al] = 02.

3.6 Modulus of Continuity

The following theorem, due to Lévy, gives the exact modulus of continuity
of the Brownian sample path.

Theorem 10. For any Brownian motion B = {Bt}t∈[0,∞), we almost surely
have

lim sup
0≤t1<t2≤1; t=t2−t1→0

|Bt2 −Bt1 |√
2t log 1

t

= 1 (76)

Proof. Set h(t) =
√

2t log( 1
t ), let 0 < δ < 1, and let k, n be nonnegative integers.

We have

P [{max
k≤n

(Bk2−n −B(k−1)2−n) ≤ (1− δ)h(2−n)}] = (1−
∫ ∞

(1−δ)h(2−n)

1√
2π

exp(−x
2

2
)dx)2n

< exp(−2n
∫ ∞

(1−δ)h(2−n)

1√
2π

exp(−x
2

2
)dx)

By Lemma 3, there exists a constant C > 0 such that∫ ∞
(1−δ)h(2−n)

1√
2π

exp(−x
2

2
)dx > C

2n√
n

exp(−(1− δ)2 log(2n)) > 2nδ (77)

whenever n is large enough. Applying the Borel-Cantelli lemma then gives that

P [{max
k≤n

(Bk2−n −B(k−1)2−n)

h(2−n)
≥ 1}] = 1. (78)

This proves

lim sup
0≤t1<t2≤1; t=t2−t1→0

|Bt2 −Bt1 |√
2t log 1

t

≥ 1. (79)

2The first result concerning the nowhere differentiability of the Brownian sample path was
given by Wiener. The proof given here is due to Dvoretsky et al, and is a much simplified
version of Wiener’s original proof.
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To show the reverse inequality, let 0 < δ < 1 and ε > 1+δ
1−δ − 1 be given. We

then have

P [{ max
0<j−i≤2nδ; 0≤i<j≤2n

|Bj2−n −Bi2−n |
h((j − i)2−n)

} ≥ 1 + ε] ≤
∑

0<j−i≤2nδ; 0≤i<j≤2n

2

∫ ∞
(1+ε)

√
2 log( 1

j−i 2
−n)

1√
2π

exp(−x
2

2
)dx

≤ C√
n

2n((1+δ)−(1−δ)(1+ε)2),

where C > 0 is a constant. Because 1+δ
1−δ < (1 + ε)2, the last expression on

the right is the general term of an absolutely convergent series. By the Borel-
Cantelli lemma, for 0 ≤ i < j ≤ 2n, 0 < j− i ≤ 2nδ and large enough n we have
that

|Bj2−n −Bi2−n | < (1 + ε)h((j − 1)2−n). (80)

Choose m large enough so that the inequality above holds whenever n ≥ m,
and choose any 0 ≤ s < t ≤ 1 such that t− s < 2−m(1+δ). Pick some n ≥ m so
that 2−(n+1)(1−δ) ≤ t− s < 2−n(1−δ), and expand t and s dyadically as follows:

s = i2−n − 2−p1 − 2−p2 + ..., (81)

where n < p1 < p2 < ...; and

t = j2−n + 2−q1 + 2−q2 + ..., (82)

where n < q1 < q2 < .... It is easy to see then that s ≤ i2−n < j2−n ≤ t and
that j − i ≤ t2−n < 2nδ. By sample continuity of the process B, we see that

|Bt −Bs| ≤ |Bi2−n −Bs|+ |Bj2−n −Bi2−n |+ |Bt −Bj2−n |

≤
∞∑

p=n+1

(1 + ε)h(2−p) + (1 + ε)h((t− s)2−n) +

∞∑
p=n+1

(1 + ε)h(2−p).

Whenever n is large enough, there exists a constant C > 0 such that

∞∑
p=n+1

h(2−p) ≤ Ch(2−n) < εh(2−(n+1)(1−δ)); (83)

and for small enough t, we have

|Bt −Bs| < (1 + 3ε+ 2ε2)h(t). (84)

Because ε can be chosen however as small as wanted by choosing a sufficiently

small δ, it follows that lim sup0≤t1<t2≤1; t=t2−t1→0
|Bt2−Bt1 |√

2t log 1
t

≤ 1. The theorem

now follows.
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4 The Brownian Bridge

Throughout this section we will argue on a probability space (Ω,Σ, P ).

Definition 3. A Brownian bridge is a sample continuous centered Gaussian
process W = {Wt}t∈[0,1] such that for all 0 ≤ s < t ≤ 1,

C(t, s) = s(1− t). (85)

Brownian bridges exist: for any Brownian motion B = {Bt}t∈[0,1], set Wt =
Bt − tB1. Then W = {Wt}t∈[0,1] is a centered Gaussian process, and for any
0 ≤ s < t ≤ 1 we have

E[WtWs] = E[(Bt − tB1)(Bs − sB1)]

= E[BtBs]− sE[BtB1]− tE[BsB1] + stE[B2
1 ]

= s− st− st+ st = s(1− t).

It is important to note that we can ’extract’ a Brownian motion from any
given Brownian bridge. To see this, let Y = {Yt}t∈[0,1] be a Brownian bridge.
Choose any standard Gaussian variable B1 that is independent of Yt for every
t ∈ [0,∞). Then the process B = {Bt}t∈[0,1] defined by

Bt = Yt + tB1 (86)

is a Brownian motion. This is easy to see: B is a Gaussian process since Y is
and since B1 is independent of all Yt. Furthermore, whenever 0 ≤ s < t ≤ 1,

E[BsBt] = E[YsYt] + sE[YsB1] + tE[YtB1] + stE[B2
1 ]

= s(1− t) + st = s = min s, t.

In particular, there is a naturally defined bijection between Brownian motions
and Brownian bridges. From now on, whenever we consider a Brownian bridge
Y = {Yt}t∈[0,1] we will always express it as Yt = Bt − tB1 for some Brownian
motion B = {Bt}t∈[0,1]. We can actually use this characterization of Brownian
bridges in order to compute its probabilities.

To be more specific, let Y = {Yt}t∈[0,1] be the Brownian bridge given by
Yt = Bt − tB1 for the Brownian motion B = {Bt}t∈[0,1]. For every ε > 0,
P [{|B1| < ∞}] 6= 0; and therefore the conditional law L(B||B1| < ε) is well-
defined on C[0, 1]. Equipping C[0, 1] with the usual supremum norm, we get
the following theorem.

Theorem 11. On C[0, 1], for every t ∈ [0, 1] we have

lim
ε→0+

L(Bt||B1| < ε) = L(Yt). (87)

Proof. Since E[YtB1] = E[BtB1]− tE[B2
1 ] = t− t = 0, the variables Yt and B1

are independent. This allows us to write Bt = Yt + tB1, i.e, we can write Bt as
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the sum of the Brownian bridge Y and a standard Gaussian variable B1 that is
independent of Y .

Let Nε be the distribution of B1 given that |B1| < ε, and let Zε be any
random variable that has the distribution Nε and is independent of Yt. Then

L(Bt||B1| < ε) = L(Yt + tZε) = L(Yt) + L(tZε), (88)

and letting ε→ 0+, we see that for all t ∈ [0, 1],

lim
ε→0+

L(Bt||B1| < ε) = L(Yt). (89)

4.1 Stopping Times and the Strong Markov Property

Let {(Bt,Σt)}t∈[0,∞) be a Brownian motion on the probability space (Ω,Σ, P ).
A stopping time for {Σt}t∈[0,∞) is a random variable τ ≥ 0 such that, for every
t ∈ [0,∞), the event {τ ≤ t} is contained in Σt.

Stopping times exist. Consider the following three examples:

1. Constant stopping times: The constant time variable τ(ω) = c is a stop-
ping time, since

{ω ∈ Ω : τ(ω) ≤ t} =

{
∅ ∈ Σt, if t < c;

Ω ∈ Σt, if t ≥ c.
(90)

2. Hitting times: The hitting time τc(ω) = inf {t > 0 : B(t, ω) = c} is a stop-
ping time, since

{ω ∈ Ω : τc(ω) ≤ t} =
⋂

p<c, p∈Q

⋃
q<t, q∈Q

{ω ∈ Ω : B(q) > p} ∈ Σt (91)

by sample continuity.

3. Dyadic stopping times: Let τ be any stopping time for the filtration {Σt}.
Let bτ(ω)c denote the smallest integer greater than τ(ω). The the random
variable

τn :=
b2nτc+ 1

2n

is a stopping time, called the dyadic stopping time. To see this, note that
if k

2n ≤ τ < k+1
2n , then τn = k+1

2n ; whence it follows that for every t ≥ 0,
j

2n ≤ t <
j+1
2n implies

{τn ≤ t} = {τn ≤
j

2n
} = {τ < j

2n
}

=
⋃

q< j
2n , q∈Q

{τ ≤ q} ∈ Σt.

Note that τn ≥ τ for every n ∈ N, and that τn ↓ τ as n→∞.
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If {(Xt,Σt)}t∈[0,∞) is a Brownian motion, and τ is a stopping time on
{Σt}t∈[0,∞), then we define

Στ := {A ∈ Σ∞ : ∀t ∈ [0,∞), A ∩ {τ ≤ t} ∈ Σt}. (92)

It is a quick and easy exercise to show that Στ is in fact a σ-algebra.
We will need the following important fact about stopping times: any stopping

time τ for the filtration {Σt}t∈[0,∞) is Στ -measurable.
To see this, first let τ be a stopping time. It suffices to show that the inverse

image of every closed interval [0, s] under τ belongs to Στ . So, let s ∈ [0,∞) be
given. For every t ∈ [0,∞), we have

{τ ≤ s} ∩ {τ ≤ t} = {τ ≤ min{s, t}} ∈ Σmin{s, t} ⊂ Σt. (93)

It follows that {τ ≤ s} ∈ Στ .

We can now move on to our main result concerning stopping times, namely,
the strong Markov property of Brownian motion. Colloquially, this result states
that Brownian motion begins afresh at stopping times. We will use this result
frequently for the rest of the paper, as it will be an essential ingredient in proving
many of the different bounds for probabilities concerning Brownian bridges.

Theorem 12. (Strong Markov Property) On the event {τ < ∞}, the process
B′ = {B′t} defined by

B′t = Bτ+t −Bτ
is Brownian motion, independent of Στ .

Proof. Consider the dyadic stopping times τn as defined before. Since B is
sample continuous and τn ↓ τ , it follows that Bτn → Bτ almost surely. Since
B′ is sample continuous by definition, it suffices to check that B′ has the same
finite dimensional distributions as pre-Brownian motion. To do this, let k ∈ Z≥1

be given. Choose any 0 ≤ t1 < t2 < ... < tk, any bounded continuous function
F : Rk → R, and fix A ∈ Στ . Define

G(t) := F (Bτ+t1 −Bτ , ..., Bτ+tk −Bτ ). (94)

Then G is bounded and continuous on Rk. Furthermore, whenever j ≥ 0, the
event

A
⋂
{τn =

j

2n
} = B

⋂
{j − 1

2n
≤ τ < j

2n
} ∈ Σ j

2n

is independent of G( l
2n ), which in turn implies

E[G(τn)χAχ{τ<∞}] =
∑
j≥0

E[G(
j

2n
)χB∩{τn= k

2n }
]

=
∑
j≥0

E[G(
j

2n
)]E[χB∩{τn= j

2n }
]

= E[G(0)]
∑
j≥0

E[χB∩{τn= j
2n }

]

= E[G(0)]E[χBχ{τ<∞}].
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Here, we used the independence as stated above in the second line, and the
homogeneity of Brownian motion in the third line in order to write E[G( j

2n )] =
E[G(0)]. By continuity of G, G(τn)→ G(τ), and hence

E[G(τ)χBχ{τ<∞}] = lim
n→∞

E[G(τn)χBχ{τ<∞}] = E[G(0)]E[χBχ{τ<∞}]. (95)

In particular, since B ∈ Σt was arbitrary, this shows that the the increments
(B′t1 , ..., B

′
tk

) are independent of the σ-algebra Σt. Furthermore, it shows that,
on the event {τ <∞}, the distribution of (B′t1 , ..., B

′
tk

) is the same as the distri-
bution of (Bt1 , ..., Btn), so that B′ has the same finite dimensional distributions
as pre-Brownian motion, and hence is itself Brownian motion.

4.2 Reflection Principle for Brownian Motion

Let {(Bt,Σt)}t∈[0,∞) be a Brownian motion on (Ω,Σ, P ). We have the fol-
lowing ”reflection principle”:

Theorem 13. For any t ∈ [0, 1], set St = sups∈[0,t]Bs. Then for any a ∈ [0,∞)
and any b ∈ (−∞, a], we have

P [{St ≥ a and Bt ≤ b}] = P [{Bt ≥ 2b− a}] (96)

In particular, St and |Bt| have the same distribution.

Remark : This result will be referred to as the reflection principle for Brow-
nian motion.

Proof. Consider the hitting time τa = inf {t > 0 : Bt = a}. We have that {sup0≤s≤tBs ≥
a} = {inf {s > 0 : Bs = a} ≤ t}; and, from Proposition 6(2), we have that
τa < ∞ almost surely. Furthermore, using the notation from the statement
of the strong Markov property, we have by definition of τa that B′t−τa(ω) =
Bt(ω)−Bτa(ω)(ω) = Bt(ω)− a. Thus

P [{St ≥ a, Bt ≤ b}] = P [{τa ≤ t, Bt ≤ b}]

= P [{τa ≤ t, B(τa)
t−τa ≤ b− a}].

By the Strong Markov property, B′ is a Brownian motion and is independent
of Στa , and therefore is independent of τa. Because both B′ and −B′ have
the same law, the pairs (τa, B

′) and (τa,−B′) also have the same law. Setting
T = {(s, f) ∈ R+ × C(R+,R) : s ≤ t, f(t − s) ≤ b − a}, we see that P [{τa ≤
t, B

(τa)
t−τa ≤ b− a}] = P [{∃t ∈ [0,∞) : (τa, B

′
t) ∈ T}]; and therefore

P [{τa ≤ t, B(τa)
t−τa ≤ b− a}] = P [{∃t ∈ [0,∞) : (τa, B

′
t) ∈ T}]

= P [{τa ≤ t, −B(τa)
t−τa ≤ b− a}]

= P [{τa ≤ t, Bt − a ≥ a− b}]
= P [{τa ≤ t, Bt ≥ 2a− b}]
= P [{St ≥ a,Bt ≥ 2a− b}]
= P [{Bt ≥ 2a− b}],

(97)
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where the last equality follows since Bt ≥ 2a− b implies St ≥ a.
Furthermore, we have

P [St ≥ a}] = P [{St ≥ a, Bt ≥ a}] + P [{St ≥ a, Bt ≤ a}]
= P [{Bt ≥ a}] + P [{Bt ≥ a}] = 2P [{Bt ≥ a}]
= P [{|Bt| ≥ a}],

(98)

which shows that St and |Bt| have the same law.

In particular, this theorem implies that the law of the pair (St, Bt) has
density

ρ(x, y) =
2(2x− y)√

2πt3
exp (− (2x− y)2

2t
)χ{a>0,b<a}. (99)

Moreover, for any a > 0, we may use the above theorem and the scaling
invariance of Brownian motion to see that

P [{τa ≤ t}] = P [{St ≥ a}]
= P [{|Bt| ≥ a}]
= P [{B2

t ≥ a2}]
= P [{B2

t ≥ a2}]
= P [{tB2

1 ≥ a2}]

= P [{ a
2

B2
1

≤ t}].

(100)

Using the fact that B1 is a centered Gaussian variable with variance 1, we can

easily calculate the density function of a2

B(1)2 as follows. Consider the random

variables X = B1, Y = X2

a2 , and Z = 1
Y with their respective densities f(x),

g(y), and h(z). Then a simple computation shows that g(y) = a
2
√
t
f(a
√
y); and

that h(z) = 1
z2 g( 1

z ) = a
2z
√
z
f( a√

z
). Substituting in f(x) = 1√

2π
exp (−x

2

2 ) and

remembering that we are conditioned on the fact that t > 0 shows the density

of a2

B2
1
, and thus the density of τa, is given by

h(t) =
a√
2πt3

exp (−a
2

2t
)χ{t>0}. (101)

.

4.3 Reflection Principles for Brownian Bridges

Assume that Y = {Yt}t∈[0,1] is a Brownian bridge.

Theorem 14. For any b ∈ R,

P [ sup
t∈[0,1]

Yt ≥ b] = exp (−2b2). (102)
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Proof. Define Bt = Yt+tB1, where B1 is N(0, 1) and is independent of Yt. Then
B = {Bt}t∈[0,1] is a Brownian motion. Since E[YtB1] = E[BtB1] − tE[B2

1 ] =
t − t = 0, Yt and B1 are independent. Setting Q = {∃t ∈ [0, 1] : Yt = b}, we
may write

Q =
P [{∃t ∈ [0, 1] : Yt = b; |B1| < ε}]

P [{|B1| < ε}]

=
P [{∃t ∈ [0, 1] : Bt = b+ tB1; |B1| < ε}]

P [{|B1| < ε}]
.

(103)

Letting Q′ be the numerator in this expression, we have the following upper and
lower bounds for Q′:

P [{∃t ∈ [0, 1] : Bt ≥ b+ ε; |B1| < ε}] ≤ Q′; (104)

Q′ ≤ P [{∃t ∈ [0, 1] : Bt ≥ b− ε; |B1| < ε}]. (105)

We will examine both the upper bound and the lower bound. We will start with
the lower bound. Consider the hitting time τ = inf {t > 0 : Bt = b+ ε}. Then
τ <∞ almost surely by Proposition 6(2). Moreover, for almost every ω we have

B
(τ)
t−τ (ω) = Bt(ω)−Bτ (ω) = Bt(ω)− (b+ ε), and therefore

Q′ = P [{τ ≤ 1;B1 −Bτ ∈ (−b− 2ε,−b)}]

= P [{τ ≤ 1;B
(τ)
1−τ ∈ (−b− 2ε,−b)}].

(106)

Using the strong Markov Property and the symmetry of Brownian motion, we
see that

Q = P [{τ ≤ 1;−B(τ)
1−τ ∈ (−b− 2ε,−b)}]

= P [{τ ≤ 1;B
(τ)
1−τ ∈ (b, b+ 2ε)}]

= P [{τ ≤ 1;B1 ∈ (2b+ ε, 2b+ 3ε)}]
= P [{B1 ∈ (2b+ ε, 2b+ 3ε)}],

(107)

where in the last line we used the fact that B1 ∈ (2b + ε, 2b + 3ε) implies that
τ ≤ 1 whenever b > 0. Thus

P [{∃t ∈ [0, 1] : Yt = b}] ≥ P [{B1 ∈ (2b+ ε, 2b+ 3ε)}]
P [{B1 ∈ (−ε, ε)}]

. (108)

Since

P [{B1 ∈ (2b+ ε, 2b+ 3ε)}]
P [{B1 ∈ (−ε, ε)}]

=

∫ 2b+3ε

2b+ε
exp (−x

2

2 )dx∫ ε
−ε exp (−x2

2 )dx
, (109)

we let ε→ 0+ to see that

P [{∃t ∈ [0, 1] : Yt = b}] ≥ e−2b2 . (110)

The upper bound my be examined similarly using the starting time τ = τ(ω) =
inf{t > 0 : Bt = b− ε}, which will yield the inequality

P [{∃t ∈ [0, 1] : Yt = b}] ≤ P [{B1 ∈ (2b− 3ε, 2b− ε)}]
P [{B1 ∈ (−ε, ε)}]

.
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Since

P [{B1 ∈ (2b− 3ε, 2b− ε)}]
P [{B1 ∈ (−ε, ε)}]

=

∫ 2b−ε
2b−3ε

exp (−x
2

2 )dx∫ ε
−ε exp (−x2

2 )dx
,

we let ε→ 0+ to see that

P [{∃t ∈ [0, 1] : Yt = b}] ≤ e−2b2 . (111)

Equality follows by combining the inequalities for the upper and lower bounds.

4.3.1 The Brownian Bridge as the Limit of the Empirical Process,
and the Kolmogorov-Smirnov Distribution

Given any sequence (Xn)∞n=1 of independent identically-distributed random
variables with (perhaps unknown) cumulative distribution function F (t) :=
P [{X1 ≤ t}], an empirical cumulative distribution function for F is a function
of the form

Fn(t) :=
1

n

n∑
i=1

χ{Xi≤t}. (112)

First consider any sequence (Xn)∞n=1 of independent identically distributed
uniform random variables on [0, 1]. Let Fn(t) := n−1

∑n
i=1 χ{Xi≤t} be an em-

pirical cumulative distribution function for F . By the Strong Law of Large
Numbers, for any t ∈ [0, 1], the sequence (Fn(t))∞n=1 converges to the cumula-
tive distribution function F (t) := P [{X1 ≤ t}] = t almost surely. Furthermore,
by the Central Limit Theorem, the empirical process {Xn

t }t∈[0,1] defined by

Xn
t :=

√
n(n−1

n∑
i=1

χ{Xi≤t} − t) (113)

converges in distribution to N(0, t(1− t)). Additionally, the process {Xn
t }t∈[0,1]

has covariance function C(s, t) = s(1− t), since s ≤ t implies

E[Xn
sX

n
t ] = E[(χ{X1≤s} − s)(χ{X1≤t} − t)] = s− ts− st+ st = s(1− t). (114)

This is the same covariance as the Brownian bridge B = {Bt}t∈[0,1] . By
the Multivariate Central Limit Theorem, the finite dimensional distributions of
the empirical process converges to the finite dimensional distributions of the
Brownian bridge, i.e, for every finite subset F ⊂ [0, 1],

L((Xn
t )t∈F )→ L((Bt)t∈F ). (115)

From the previous discussion about Brownian motion being the limit of distribu-
tions, this identifies the law of Brownian bridge B as the unique possible limit of
{L(Xn

t )}∞n=1. In fact, we have the weak convergence L(Xn
t )→ L(Bt). However,

a much stronger statement actually holds; namely, for every φ ∈ (C[0, 1], ||·||∞),
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{L(φ(Xn
t ))}∞n=1 converges weakly to L(φ(Bt)). See [1], Section 23 for more de-

tails regarding the proof of this weak convergence.

We would like to give an application of this result. In order to do this, con-
sider some independent identically distributed random variables (Xi)

∞
i=1 with

continuous cumulative distribution function F (t) = P [{X1 ≤ t}], and consider
the empirical cumulative distribution functions Fn(t) = n−1

∑n
i=1 χ{Xi≤t}. Be-

cause F is continuous, the range of F is the whole interval [0, 1]; and because
(F (Xi))

∞
i=1 are independent identically distributed uniform random variables,

we have

sup
t∈R

√
n|Fn(t)− F (t)| = sup

t∈R
|n−1

n∑
i=1

χ{Xi≤t} − F (t)|

= sup
t∈R

√
n|n−1

n∑
i=1

χ{F (Xi)≤F (t)} − F (t)|

= sup
t∈[0,1]

√
n|n−1

n∑
i=1

χ{F (Xi)≤t} − t|,

(116)

The last expression here is the distribution of supt∈[0,1]|Xn
t |. By the above

result, we have the weak convergence {L(supt∈[0,1]|Xn
t |)}∞n=1 → L supt∈[0,1]|Bt|,

where {Bt}t∈[0,1] is the Brownian bridge. The distribution L supt∈[0,1]|Bt| is
called the Kolmogorov-Smirnov distribution, and we can actually give an explicit
expression for it.

Theorem 15. (Kolmogorov-Smirnov) For any Brownian bridge Y = {Yt}t∈[0,1]

and any b > 0,

P [ sup
t∈[0,1]

|Yt| ≥ b] = 2

∞∑
n=1

(−1)n−1 exp (−2n2b2). (117)

Proof. Let An = {ω ∈ Ω : ∃0 < t1 < ... < tn ≤ 1 3 Wtj = (−1)j−1b}, and
let τb = inf{t ∈ [0, 1] : Yt = b} and τ−b = {t ∈ [0, 1] : Yt = −b} be the hitting
times of b and b, respectively. Set Qn = P [An ∩ {τb < τ−b}]. Because Qn+1 is
unchanged by interchanging Yt and −Yt, we see that Qn = P [An] −Qn+1. By
Theorem 14, P [A1] = exp (−2b2).

We now need to make the following observation. The probability that |Yt|
reaches b is the same as the probability that Yt reaches b or −b, which is twice the
probability that Yt reaches bminus the probability that Yt reaches both b and−b.
Now consider the Brownian motion B = {Bt}t∈[0,1] defined by Bt = Yt + tB1,
where B1 is N(0, 1) and is independent of Yt. By Theorem 11, we need only
consider the probability that Bt reaches b, then reaches −b, and then |Bt| < ε.
This is the same as the probability that Bt reaches b, then reaches 3b, and then
satisfies |Bt − 4b| < ε. But whenever ε < b, this inequality implies that Xt has
reached both b and 3b, and therefore the probability being considered is just the
probability that |B1 − 4b| < ε. In particular, we have that
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P [A2] = lim
ε→∞

P [{|B1 − 4b| < ε}]

= exp (−1

2
(4b)2) = exp (−8b2) = exp (−2(2)2b2).

(118)

Now consider A3. Again by Theorem 11, we need only consider the proba-
bility that Bt hits b, then hits −b, then hits b, and then satisfies |B1| < ε. This
is the probability that Bt hits b, then hits 3b, then hits 5b, and then satisfies
|B1−6b| < ε. The event that Bt hits b, then hits 3b, and finally hits 5b contains
the event that |B1 − 6b| < ε, and therefore the probability being considered is
simply the probability of the event {|B1 − 6b| < ε}. This gives

P [A3] = lim
ε→∞

P [{|B1 − 6b| < ε}]

= exp(−36b2

2
) = exp(−18b2) = exp(−2(3)2b2).

(119)

In a more general setting considering An, we can apply Theorem 11 and the
reflection principle to the Brownian motion B and to see that P [An] is the limit
as ε → 0 of the probability that we first hit b, and then make n − 1 successive
increasing jumps of size 2b, and then satisfy |B0−(2+2(n−1))b| = |B0−2nb| < ε.
The sequence of hits is contained in the event that |B0 − 2nb| < ε, and so the
desired probability is simply the latter probability. Letting ε → 0 gives that
P [An] = exp(−2n2b2). This implies that Qn → 0 as n→∞; and therefore that

P [ sup
t∈[0,1]

|Wt| ≥ b] = 2Q1 = 2[P [A1]−Q2]

= 2[P [A1]− P [A2] +Q3]

= · · ·

= 2[

∞∑
n=1

(−1)n−1P [An]]

= 2[

∞∑
n=1

(−1)n−1 exp (−2n2b2)].

(120)

Remark: This distribution is often given by.

P [ sup
t∈[0,1]

|Yt| < b] = 1− 2

∞∑
n=1

(−1)n−1 exp (−2n2b2). (121)

4.3.2 More Bounds for Probabilities Regarding the Brownian Bridge

We also can give an explicit expression for the probability that a Brownian
bridge remains between the levels −a or b for any given a, b > 0.
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Theorem 16. (Two Sided Boundary) For any Brownian bridge Y = {Yt}t∈[0,1]

and any a, b > 0,

P [∃t : Yt = −a or b] =

∞∑
n=0

(e−2(na+(n+1)b)2 +e−2((n+1)a+nb)2)−2

∞∑
n=1

e−2n2(a+b)2 .

(122)

Proof. Let An = {∃t1 < ... < tn : Ytj = −a, j odd;Yti = b, i even}, and let
Bn = {∃t1 < ... < tn : Ytj = −a, j even;Yti = b, i odd}. Consider the hitting
times τ−a = inf{t : Yt = −a} and τb = inf{t : tt = b}. Then we have

P [∃t : Yt = −a or b] = P [∃t : Yt = −a; τ−a < τb] + P [∃t : Yt = b; τb < τ−a].
(123)

Similarly to the previous theorem, we can see that

P [Bn; τb < τ−a] = P [Bn]−P [Bn; τ−a < τb] = P [Bn]−P [An+1; τ−a < τb]; (124)

and

P [An; τ−a < τb] = P [An]−P [An; τb < τ−a] = P [An]−P [Bn+1; τb < τ−a]. (125)

By induction, we therefore have

P [∃t : Yt = −a or b] =

∞∑
n=1

(−1)n−1(P [An] + P [Bn]). (126)

It only remains to calculate the probabilities P [An] and P [Bn] and substitute
them into this expression. This is easy, and can be done using the previous
reflection principles to get

P [A2n] = P [B2n] = e−2n2(a+b)2 ; (127)

P [B2n+1] = e−2(na+(n+1)b)2 ; and (128)

P [A2n+1] = e−2((n+1)a+nb)2 . (129)

Our final theorem gives an exact expression for the cumulative distribution
function for the random variable Y ′ = supt∈[0,1] Yt − inft∈[0,1] Yt, where Y =
{Yt}t∈[0,1] is a Brownian bridge.

Theorem 17. For any Brownian bridge Y = {Yt}t∈[0,∞) and any h > 0,

P [ sup
t∈[0,1]

Yt − inf
t∈[0,1]

Yt ≤ h] = 1−
∞∑
n=1

(8n2h2 − 2)e−2n2h2

. (130)
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Proof. Let X = − inft∈[0,1] Yt and let Z = supt∈[0,1] Yt, and let F (a, b) be the
joint cumulative distribution function of (X,Z). This function we already know,
since

F (a, b) = P [X < a;Z < b] = P [−a < inf
t∈[0,1]

Yt; sup
t∈[0,1]

Yt < b] = 1−P [∃t : Yt = −a or b],

where the last expression can be calculated using Theorem 16. Letting f(a, b) =
∂2F
∂a∂b be the joint distribution function of X and Z, we can calculate the cumu-
lative distribution function of X + Z as follows:

P [X + Z ≤ h] =

∫ h

0

∫ h−a

0

f(a, b)dbda. (131)

Evaluating the inner integral gives∫ h−a

0

f(a, b)db =
∂F

∂a
(a, h− a)− ∂F

∂a
(a, 0). (132)

Differentiating the expression in Theorem 16, we can calculate ∂F
∂a as follows:

∂F

∂a
(a, b) =

∞∑
n=0

4n(na+ (n+ 1)b)e−2(na+(n+1)b)2

+

∞∑
n=0

4(n+ 1)((n+ 1)a+ nb)e−2((n+1)a+nb)2

−
∞∑
n=1

8n2(a+ b)e−2n2(a+b)2 .

(133)

Setting b = h − a and b = 0 above and subtracting the latter from the former
gives ∫ h−a

0

f(a, b)db =

∞∑
n=0

4n((n+ 1)h− a)e−2((n+1)h−a)2

+

∞∑
n=0

4(n+ 1)(nh+ a)e−2(nh+a)2

−
∞∑
n=1

8n2h2e−2n2h2

.

(134)

Finally, integrating this expression over a ∈ [0, h] gives us

P [X + Z ≤ h] =

∞∑
n=0

(2n+ 1)(e−2n2h2

− e−2(n+1)2h2

)−
∞∑
n=1

8n2h2e−2n2h2

= 1−
∞∑
n=1

(8n2h2 − 2)e−2n2h2

(135)

as wanted.
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5 Appendix

5.1 Kolmogorov’s Inequality

Lemma 6. (Kolmogorov’s Inequality) Let (Xn)∞n=1 be any sequence of inde-
pendent random variables, and set Sn :=

∑n
i=1Xi. If, for every j ≤ n we have

that

P [{|Sn − Sj | ≥ a}] ≤ p < 1,

then whenever x > a,

P [{ max
1≤j≤n

|Sj | ≥ x}] ≤
1

1− p
P [{|Sn| > x− a}]. (136)

I will not give the proof of this inequality here, since it requires a bit of work.
Refer to [1], Theorem 16 for the proof.

5.2 The Central Limit Theorem and the Law of Large
Numbers

Theorem 18. ((Strong) Law of Large Numbers) Let {Xn}∞n=1 be a sequence of
independent, identically-distributed random variables on the same probability
space (Ω,Σ, P ), and assume that E[|X1|] <∞. Then almost surely,

1

n

n∑
i=1

Xi → E[X1] (137)

as n→∞.

Theorem 19. (Central Limit Theorem) Let {Xn}∞n=1 be any independent,
identically-distributed copies of a random variable X on the probability space
(Ω,Σ, P ), each with mean 0 and finite variance σ2. Then

Sn =
1

σ
√
n

n∑
i=1

Xi (138)

converges in distribution to N(0, 1) as n→∞.

Theorem 20. (Multivariate Central Limit Theorem) Let X = (x1, ..., xn) be
any random vector on the probability space (Ω,Σ, P ) with mean 0 and covari-
ance matrix C, and let {Xn}∞n=1 be any sequence of independent, identically-
distributed copies of X. Then

Sn =
1√
n

n∑
i=1

(Xi − E[Xi]) (139)

converges in distribution to N(0, C) as n→∞.
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