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Introduction

0.1 Overview

This paper is organized into four sections, followed by an appendix.

Section 1 will begin with overview of some definitions from probability the-
ory for clarity of presentation, along with some notation. The rest of this sub-
section will then be centered on stochastic processes, and will end with the
Borel-Cantelli and a double-sided inequality for the standard normal distribu-
tion function.

Section 2 introduces the definition Brownian motion and some properties
of Brownian motion. After this, two constructions of pre-Brownian motion
will be given, followed by two methods to generate Brownian motion from pre-
Brownain motion. A third construction of pre-Brownian motion, due to Lévy
and Ciesielski, will be given; and by construction, this pre-Brownian motion will
be sample continuous, and thus will be Brownian motion. To finish this section,
a discussion of Donsker’s Theorem, which shows how Brownian motion arises
as the limit of a particular sequence of laws, will be given.

Section 3 presents some more detailed properties of Brownian sample paths,
including its nowhere monotonicity, nowhere differentiability, and its modulus
of continuity. The almost sure finiteness of hitting times will also be proven.

Section 4 is dedicated to the Brownian bridge, and giving some explicit
expressions concerning its probability. Stopping times will be defined and three
examples will be given, which will consequently be followed by the proof of
the strong Markov property of Brownian motion. This will be used to prove
the reflection principles for Brownian motion and the Brownian bridge. After
this, a rather brief discussion of the appearance of the Kolmogorov-Smirnov
distribution in statistics will be given, followed by an explicit expression for this
distribution. To end, two other bounds for probabilities of the Brownian bridge
will be proven.

The appendix consists of the statement of Kolmogorov’s Inequality, as well
as the statements of the Strong Law of Large Numbers and the Central Limit
Theorem (both single dimensional and multivariate).

1 Definitions and Inequalities

1.1 Notation

‘

Given a collection of sets A, the o-algebra generated by A will be denoted by
o(A). The letter P will only be used for probability measures. The conditional
probability of B with respect to A will be denoted by P[B|A].

Random variables will usually be denoted by X,Y, and Z. The law of a
random variable X will be denoted by £(X).

The set of all square-integrable functions a probability space (2,3, P) will
be denoted by L2(£2, %, P), or just L?(Q) if there will be no ambiguity.



The characteristic function for the set A will be denoted by x4, i.e,

XA(:c){l’ ifz € A Q)

0, otherwise.

1.2 Stochastic Processes

Let (£2,%, P) be a probability space.

Let T be any indexing set. T need not even be ordered, but it will be
assumed to be ordered for simplicity. Furthermore, T' will mainly be taken as
[0,00) or [a,b], where 0 < @ < b; but whenever the index set is just written as
T, it will be assumed that T is an arbitrary ordered set.

A collection of random variables X = {X;}:cr, where each X; has values
in a measure space (£2',Y'), is called a stochastic process, or just a process.
Stochastic processes could just as easily have been defined as functions

X:TxQ—=Q (tw)— Xi(w) = X(tw)

such that, for every t € T, X; : @ = @, w — X;(w) is measurable, i.e. is a
random variable. For our purposes, it will be assumed that the X; are real-
valued. The process X is sample continuous if, for every w € (2, the function
t — X;(w) is almost surely continuous. X is a Gaussian process if, for every
finite I/ C T and any a; € €, i € I, the random variable Ziel a; X; is centered
Gaussian. The covariance function C': T'x T — T of the process X is given by

O(s,t) == E[X,X,] — E[X,|E[X].

In particular, if X is a Gaussian process, then C(s,t) = E[XX¢].

The finite dimensional distributions of a process X = {X;}ier are the dis-
tributions of the random vectors (Xy,, ..., X, ), where t; < ... < t, € T (here
we’re using the order assumption on T').

1.3 Important Inequalities

A few inequalities will be used throughout the text, and will be given here
for reference.

Lemma 1. (Borel-Cantelli Lemma) Let {A,}22, be a sequence of events in a
probability space (2,3, P).

L If Y0 | P[A,] < oo, then PN, U>_, Ayl =0;

2. If the A, are independent and y -, P[A,] = oo, then P[>~ _, An] =
1.



Proof. 1. Let B, = U::n Ay, Then B, 41 C B, for all n and by measure

continuity,
P U Al = U B,] = lim P[B,).

n—oo
n=1m=n n=1

Furthermore, by countable subadditivity we have

o0

= P| U Ap] < Z P[A,].

Since the series Y ~_, P[A,,] converges, the series > _  P[A,,] converges
to 0; and thus lim,,_,, P[B,] = 0.

2. Let B,, be as above. Then

PIQ — B,] Q—UA
= P[[) (2= An)]

o0

= [ Plo-4.1=JJ -

where we have used the independence of the A,, in the third line. Now,
using the fact that 1 — P[A,,] < e~ P4l (this is valid since 0 < P[A4,,] <
1),

H (1= P[A;]) <exp( Z P[A

m=1
By assumption, the right hand side of this expression goes to 0 as n — oo.
Hence P[Q2—B,] = 0, and so P[B,,] = 1. This gives that P[(\,—; U,-_,, Am] =
PN, B, = 1.

n=1
O
Lemma 2. For every a > 0,
2 ) 2 2
@ra ) lep(-5) < [ ew(-Pir<aten(-G). @
Furthermore,
L e 3)
e 2dr<e 2
Vo Ja B
Proof. We have
oo 2 o 2
/ exp(——)darg/ —exp (——)dz
2
=a 1eXp(—a—)



For the other inequality, note that X exp(—“;) = [F(1+5%) exp(—z;)dx. Thus

1 2 o] 1 2
EGXP(_%) /a 1+ ?)exp(—%)dx
2

(1+a™?) /aoo exp(f%)d:c.

IN

Dividing both sides by 1+ - and simplifying gives the desired inequality.

a2

If a > \/%?, then we can apply the inequality on the right that was just
proved to get the desired inequality. If a < \/%, then we have

1 /°° m2d 1 /°° w2d
— e 2dr < — e 2dx
\/271' a o \/271' 0




2 Brownian Motion

2.1 Definition of Brownian Motion
2.1.1 One-Dimensional Brownian Motion

We can now state the definition of Brownian motion. The index set T" will be
assumed to be the set [0, 00), but everything detailed in this section is equally
as valid for any closed subinterval of [0, 00).

Definition 1. Brownian motion is a sample continuous centered Gaussian pro-
cess B = { B }1e[0,00) such that C(s,t) = min{s,t} for all s,¢ € [0, 00).

Remark: If B is not sample continuous, but has the other properties in
this definition, then B is called pre-Brownian motion. Note that in order to
construct Brownian motion, we will first construct pre-Brownian motion, and
then will modify it in order to make it sample continuous and hence Brownian
motion. Therefore, for most of this section I will be focusing on properties of
pre-Brownian motion (which will themselves be valid for Brownian motion).

Pre-Brownian motion has the following useful properties:

Proposition 1. Let B = {B;}c[0,0c) be pre-Brownian motion. Then
1. By = 0 almost surely;
2. Forall 0 < s <t < oo, By — Bs is N(0,t — s);

3. Forall 0 < t; < ... <ty, the increments By, , By, — By, ..., Bt, — B, _, are
independent.

In order to prove this result, we will need the following technical lemma.
Here, a Gaussian space is defined to be any closed linear subspace of L?(2, 3, P)
that solely consists of centered Gaussian variables.

Lemma 3. Let A be a Gaussian space and let {4; : ¢ € T'} be a collection
of vector subspaces of A. Then the subspaces A; are pairwise orthogonal with
respect to the covariance function C(X,Y) = E[XY] on L?(Q2, %, P) if and only
if the o(A;) are pairwise independent.

I will forego the proof of this lemma. It requires an application of the mono-
tone class lemma, and the fact that, given a Gaussian vector X = (X,..., X},)
(i.e, any n-tuple of random variables on the same probability space (2, %, P)
such that, for all ai,...,a, € R, the random variable Y. | a;X; is centered
Gaussian) has independent coordinates if and only if the covariance matrix
(C(X;, X;))ij=1,..n is diagonal. See [3], Theorem 1.2 for the proof.

Using this, we can prove Proposition 1.

Proof. Suppose that {B;};c[0,00) is a Gaussian process and for every s, t € [0, oc],
E[B;B;] = min{s, t}. Since By is N(0,0), By = 0 almost surely. This gives (1).

Fix any s > 0. Let A be the Gaussian space generated by {B;}:c[0,00), let
A be the vector space spanned by {B;}ie[o,s), and let A} be the vector space



spanned by {Bsy: — Bs}ic[o,00)- Then A, and A are both vector subspaces of
the Gaussian space A. Furthermore, whenever r € [0, s],

E[Br(Bs+u - BS)] :E[BTBS-‘:-u] - E[BTBS]
=min{r, s + u} — min{r, s} (4)

=r—r=020.

This implies that As and A’ are orthogonal. We may now apply Lemma 3 to
see that the o-algbras generated by A, and A’ are independent. Since B is a
Gaussian process, B; — B, is centered Gaussian; and since

E[(Bi — B,)’] = E[B]] — E[B,B] — E[BB] + E[B]
=t¢t—2min{s,t} +s=1t—s,

(5)

it follows that By — B, is N(0,t — s). This gives (2).

To prove (3), let 0 = tg < t1 < ta < -+ < t, be given and set s =
tn—1 and t = t,. Then B, — B,  , is independent of the Gaussian vector
(Bty, -y B, ). Furthermore, B(t,_1)— B(t,—2) is independent of the Gaussian
vector (By,, ..., Bt,_,), and so on. This implies that the variables By, — By,_,,
i =1,...,n are independent. O

A remark needs to be made regarding Proposition 1:

1. Any sample continuous process that satisfies properties 1 - 3 in Proposition
1 is in fact Brownian motion. To see this, note that the independent
increments property implies that B is a Gaussian process. Furthermore,
whenever 0 < s < t, we have

E[B.B;] = E|Bs(B; — B,) + B
= E[B,|E[B; — B,] + E|B] (6)
=04 s=s,

so that C(s,t) = min{s,t}. In particular, we could just as easily taken
this as the definition of Brownian motion.

Using this proposition, we can compute the densities of the finite dimensional
distributions of B.

Proposition 2. If B = {B; : t € [0,00)} is a pre-Brownian motion, then for
any choice of 0 =ty < t; < ... < tp, the law of the vector (By,,..., B, ) has
density given by

_ 1 oxp (S @i m@i1)?
p(xl’""x")_\/(27r)"t1(t2—t1)...(tn—tn_l) p{ ;2(@—%71) - @

where we have set x¢g = 0.



Proof. Assume that B is a Brownian motion. Then the variables By, , By, —
By, ..., B, — By, _, are independent and have N(0,t1), N(0,ta—¢1), ..., N(0,t,, —
tn—1) distributions, respectively. This implies the density of the vector (B, —
By, ..., B, — B, _,) is the product of the densities of these vectors, or

p(ULy ey Uy) = ! exp ( Z (8)

V@)t (te — t) . (b — 1) 2t —tl 1)

Making the change of variables x; = Z;:o u; completes the proof.
O

Note that this proposition, together with the property that By = 0 almost
surely, characterizes the collection of finite dimensional distributions of Brow-
nian motion. In particular, any sample continuous stochastic process with the
same finite dimensional distributions as Brownian motion is itself Brownian
motion. We will use this fact in the first construction of pre-Brownian motion

Brownian motion sample paths have the following elementary properties:

Proposition 3. Let B = {B;}c[0,0c) be a Brownian motion. Then
L. (Symmetry) {—DBi}ie[o,00) 15 @ Brownian motion;

2. (Invariance under scaling) For every A > 0, {%B/\t}tG[O,oo) is a Brownian
motion;

3. (Simple Markov property) For every s > 0, {Bs1¢ — Bs }ie[o,00) 18 a Brow-
nian motion. Furthermore, it is independent of o ({ B, },¢o,5); and

4. (Time Reversal) If { B }4¢(o,7) is a Brownian motion, then { By —Br_¢ }+e(0,7]
is a Brownian motion.

Proof. For w € §, define ¢, () := Bi(w) for t € [0,00). It is immediate that B
being a Gaussian process implies all of the listed processes are Gaussian. Thus,
to show that each process is a Brownian motion, we must show the covariances
are the minimum function, and that each of the processes are sample continuous.
These will all be straightforward computations:

1. For every s,t € [0,00) we have

C(s,t) = E[(—B,)(~By)] = E[B,B;] = min{s, t}.

Now let f(t) = —t. Then f is continuous on R; and because mapping ¢,
is continuous for every w, so is the mapping (f o ¢,)(t) = —Bi(w).

2. For every s,t € [0,00),

1
~FE[Bx:Bxs]

! Bi)( ! Bys)| = 3

VAU
1
" min{As, At} = min{s, t}.

C(s:t) = E[(



Furthermore, for every A € [0,00), the function f(t) = At is continuous,

and its image on [0,00) is [0,00). Since ¢, is continuous for every w, it
follows that \%}\(gﬁw o f)(t) = %B,\t (w) is continuous.

3. For any r,t € [0,00), we have

C(r,t) = E[(Bs+r — Bs)(Bs+t — Bs)]
= E[BS+TBs+t] - E[BS+TBS] - E[BSBS-H] + E[(BS)Q]
= (s + min{r,t}) — 2s + s = min{r, t}.

Now note that for any fixed s € [0, 00), the mapping f(t) = ¢+ s is contin-
uous, and for every w, the constant mapping ¢g(t) = Bs(w) is continuous.
Therefore, for every w the mapping (¢, o f + ¢)(t) = Bsii(w) — Bg(w) is
continuous.

To show the independence part of the statement, let A be the Gaus-
sian space generated by the process B, and let As and A, be the vec-
tor spaces generated by {B}icjo,s) and {Bsys — Bs}ic[o,00), respectively.
Then o({A,}) and o({AL}) are independent by Proposition 1, and hence
{Bs4t — Bs}ieo,00) is independent of o({B(t)}+e[o,s])-

4. For every t,s € [0,T], we have

C(s,t) = E[(Br — Br—s)(Br — Br—)]
= E((Br)* — E[BrBr—i] — E[Br_sBr| + E[Br_sBr_4]
=T—(T—-t)— (T —s)+ (T — max{s,t})
= t+ s —max{s,t} = min{s, t}.

The argument for sample continuity is the same as for the simple Markov
property.

O

Further properties of the Brownian sample paths can be found in the next
section of the paper.

2.1.2 Higher-Dimensional Brownian Motion

Now that we have defined Brownian motion in one dimension, we can easily
define it in higher definitions. An n-dimensional Brownian motion is the Carte-
sian product of n one-dimensional Brownian motions (in the sense of the first
two definitions). With this definition, we need to only study one-dimensional
Brownian motions. Therefore, the constructions in the next section will solely
be of one-dimensional Brownian motion.



Not only does n-dimensional Brownian motion share the same properties
of one-dimensional Brownian motion, but n-dimensional Brownian motion is
also independent of rotations: for any m x n rotation matrix R and any n-
dimensional Browian motion and any n X n rotation matrix R, the stochastic
process B’ := RB is also a Brownian motion.

2.2 Constructions of Pre-Brownain Motion and Brownian
Motion

2.2.1 Kolmogorov’s Consistency Theorem

Often times one may one to specify a stochastic process by its finite dimen-
sional distributions. To be more specific, let T' be an index set, and let T C T
be finite (say, with n elements). Suppose we are given a collection of laws Pj
on (R",B(R™)) for each finite I C T. The question posed is as follows : Does
there exist a probability space (2, X, P) and a stochastic process X = {X;} on
this space whose finite dimensional distributions are the P;r? In general, the
answer is no; but under certain consistency conditions, we can always guarantee
the existence of such a probability space and such a process. The following
theorem, due to Kolmogorov, gives precise conditions under which the answer
to this question is affirmative.

Theorem 1. (Kolmogorov’s Consistency Theorem) Let T be some indexing
set. Suppose that for every finite subset I := {t¢1,...,t,} C T, we are given a
probability measure P; on the space (R™,B(R")). Furthermore, suppose that
these probabilities are consistent, in the following senses:

1. For every permutation 7 : {1,...,n} — {1,...,n},

Pyt = Pt and 9)

7(1)s-rta(n))?

2. Whenever I C J C T are finite (where J has m elements), and B € B(R)",

Pi(B) = Py(B x R™™). (10)

Then there is a probability space (2, %, P) and a stochastic process X :=
{Xi}ter on this space whose finite dimensional distributions are precisely the
Pr, I CT finite.

Proof. T will give an outline of the proof. Refer to [1], Section 3 for all of the
details.

Let R” denote the set of all functions from 7" to R. Define 2 := R7”.

Let A be the collection of all cylinder sets of R, i.e, the collection of all sets
of the form

C:={BxRI=1.TcCT, I finite (n elements), B C B(R™)}.  (11)

This collection is an algebra, but it is not a o-algebra. So, define ¥ = o(A).



Finally, define P : A — [0, o0] by
P(B xRT-1) .= P/(B) (12)

for every I C T finite (with n elements), and every B € B(R").

P is well-defined by the consistency conditions. It is a pre-measure on A,
and by the Carathéodory-Hahn Extension Theorem, we can extend P to a
probability measure (which will still be denoted by P) on X.

The space (2,3, P) is the probability space we will work with. On this
space, define the process X := {X;}ter by

Xi(w) == w(t) (13)
for every w € RT. This process satisfies the desired conditions. O

We can actually use this theorem in order to construct pre-Brownian motion.
Let T = [0,00), and for each I = {t1,...,t,} C T with t; < ta < ... < ty, let

Pr(t) L )ffoo exp(—>" w) (i.e, the P; are

- V@mY (a1 (b —tn—1 i=1 2(t;—ti—1)
just the finite dimensional distributions of pre-Brownian motion). These laws
are consistent, since, for s < t,

—(b—zx)2 (r—a)?
1 “(b—a) _ [* P exp =t dz

ex = .
V2nt Py oo \/2m(t —s) V2rs

By Kolmogorov’s Consistency Theorem, there exists an appropriate probability
space (2,%, P) and a stochastic process X = {X¢}c[0,00) On this space whose
finite dimensional distributions are the P;. In particular, X has the same finite
dimensional distributions as pre-Brownian motion, and therefore is itself pre-
Brownian motion.

2.2.2 Fourier Series Expansion

In this subsubsection, I will give another construction of pre-Brownian mo-
tion, using Gaussian white noise.

For that purpose, let (M, 9) be a measurable space and let p be any o-finite
measure on (M, ). An isometry ~ from L?(M, 90, 1) onto some Gaussian space
A is called a Gaussian white noise with intensity p.

One question that immediately arises is whether or not there exists a Gaus-
sian white noise with intensity p for any given o-finite measure . The answer
is, in fact, in the affirmative. To be more specific, we have the following propo-
sition.

Proposition 4. For every measure space (M, ) and any o-finite measure p
on (M,9N), there exists an appropriate probability space (€, 3, P), a Gaussian
space A in L2(Q, %, P), and a Gaussian white noise v : L2(M, M, u) — A with
intensity pu.

10



Proof. First note that L?(M, 9, i) is a Hilbert space (with usual inner product
(-,-) given by (f,g) = [y, fgdu). Let {fi}ier be an orthonormal basis for
L?(M, DM, i). Then for every f € L?(M,9M, 1), we may write

F=> ) fis (14)

teT
where the coefficients in this expansion satisfy Parseval’s identity with re-
spect to the orthonormal basis { f; }rer:

> (£ = 1IfIIP < oo (15)

teT
We now use the fact that there exists an appropriate probability space
(©2,%, P) and a family X = {X;},cr of independent identically distributed stan-
dard normal Gaussian variables indexed by the set T. Now define A to be the
Gaussian space generated by the collection X. Finally, for any f € L?(M,90, i),
define

V() =Y (s f) X (16)

teT
Writing out the inner product, this can be expressed as

)= X @@)dn() e

teT

~ is then a Gaussian white noise with intensity p. To see this, note that the
sum of the coefficients of X; in ~(f) is finite by Parseval’s identity. Because
the X; form an orthonormal system in L2(£2, ¥, P), the sum on the right-hand
side above actually converges in L?(, %, P). By definition, 7 takes values in
the Gaussian space A. Fixing any t; € T and using the orthonormality of the
system { f }rer, it follows that

V(ftl) = Z<ft7 ft1>Xt

teT

= (ft17ft1>Xt1
= th.

This implies that 7 is an isometry from L?(Q2) to A = span(X; : t € T'). Thus
v is Gaussian white-noise with intensity . O

Now let v be any Gaussian white noise with intensity p, defined on L?(M, 9N, u)
and with values in L?(€2, ¥, P). Then:

1. For every f € L*(M,9M, ), v(f) is a centered Gaussian variable, with
variance

Eh(f)Q] = H“Y(f)||2L2(Q,27P) = \|f||2L2(M,<m,M) = /deN; and (17)

11



2. for every f,g € L?(M, 9, 1), we have

Ely(Hv(@)] = (1), 7)) r20.5,p)

(18)
= (1,9 2o ) = /fgdu~

With the existence of Gaussian white noise in mind, we can easily construct
pre-Brownian motion. Consider the measure space (R,B(R),u), where p is
Lebesgue measure. From the above remarks, there exists an appropriate prob-
ability space (€, %, P) and a Gaussian white noise vy with intensity u, defined
on (R, B(R), 1) and with values in (2, X, P). For every t € [0, 00), define

Xt = v(X0,4)- (19)

Because the 7(xo,) belong to some common Gaussian space, it follows

immediately that X = {X}}+c[0,0c) is @ Gaussian process. Furthermore, for any
s,t € [0,00), we have

E[X:X,] = Elv(x0,0)7(X[0,5)] = / X0, (%) X[0,s) (7)dp(x) = min{s, t}.
0
Hence X is pre-Brownian motion.

2.2.3 Moving from Pre-Brownian Motion to Brownian Motion

Here, I will give two separate methods from moving from pre-Brownian mo-
tion to Brownian motion. The first method heavily relies on the Gaussian
properties of pre-Brownian motion, while the second method generates a mod-
ification of pre-Brownian motion that is actually Holder continuous.

Method 1: Let X = {X;},c[0,00) be any pre-Brownian motion. It suffices
to construct a stochastic process with the same finite-dimensional distributions
as X.

To do this, for every n > 1, define

Yk = Xk:+1 - X

Pi

(20)

k
g’

where k = 0,1,...,2" — 1. Since X is pre-Brownian motion, Y is N(0, 2%) By
Lemma 2, we have

n—1

1 1 2
n n+1
P[SgplYkl 2 S| S2PVi] 2 5] < 2% exp (=) (21)

The right hand side of this expression is the general term of a convergent
series. By the Borel-Cantelli Lemma,

PIN U fsuplil = ) =0, (22)

m>1k>m

12



For any t € [0,1], consider its dyadic expansion ¢ := Y | £ where t; = 0,1
for every i. For every n > 1, define

n

ty = Z 7 (23)

i=1

L\J‘g

This definition implies that X, — X;, , € {0,Y1,...,Yan_1} for every n > 1.
Noticing that X, = Y71 | (X¢, =Xy, ), and using the fact that P[,,,>1 Ugs, {5ups Y| >
% ] =0, we see that there exists an N > 0 such that n > N implies

PI{X0, ~ Xo, | < 25} =1 (24)

Therefore, the sequence {X; }°° ; converges almost surely to some limit Z; on
[0,1]. We will show that Z is the desired sample continuous process.

By construction, Z; = X; for any dyadic ¢ € [0,1]. Now, choose any ¢, s €
[0,1] with [t —s| < 27" Ifin fact t = ¢, = & and s = s, = 22, then
|k —m| = 0,1. In particular, either |X;, — X, | = 0; or | X, — X, | = |Z|
for some k; and in this case we have | X;, — X, | < % for large enough n. By
definition of Z;, it follows that for large enough n,

|Zy — Zs| < | Zp — Xy, | + | X, — X, | + X5, — Zs

=1 1 =1

2oEtat 2l (25)
C

Si

n

IN

for some constant C. Thus t — Z;(w) is continuous for all w € {|X;, — X¢,_,| <
n%} Since this set has probability one, it follows that Z is sample continuous.
On the complement of this set, set Z; = 0. Using the sample continuity and the
fact that Z agrees with X on a dense subset of [0, 1], we can conclude that Z has
the same finite-dimensional distributions as Brownian motion. In particular, Z
is itself Brownian motion.

Method 2: For this method, we will first need to give two definitions.

Definition 2. Let X = {X;}ier and Y = {Yi}ier be stochastic processes
defined on the same index set T' and with values in a mutual measure space
(M,9). ThenY is a modification of X if forevery t € T, P({Y; = X;}) = 1; and
Y is indistinguishable from X if P({X, = Y;,¥t € T}) = 1, or, equivalently, if
there is a subset NV C Q of measure zero such that X; = Y; whenever w € Q— N.

The goal of this section is to show that there exists a suitable modification of
pre-Brownian motion that is sample continuous. In fact, we will show something
much stronger: namely, it will be shown that every pre-Brownian motion can be
modified to be Holder continuous. This is the contents of the following theorem.
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Theorem 2. Let X = {X;}/c0,00) be a pre-Brownian motion. There exists
a modification of X that is sample continuous, and is in fact locally Holder
continuous with exponent % —n whenever 7 € (0, 3).
Proof. We need two lemmas in order to prove this result.
Lemma 4. Let (E, d) be any metric space, let D = {zﬁn neN1<k<2"—1},
and let f : D — E be a mapping. Assume that there exists an o > 0 and
some finite constant C such that for every n € N and for every £ € N with
1<k<2" -1,

d(f((G - 1)27"), f2")) < C2me, (26)

Then whenever s,t € D,

C

A(f(s), F(1) < = It = sl (27)

Proof. Fix any s,t € D with s < t. Let n be the smallest positive integer
such that 27" <t — s, and let m be the smallest nonnegative integer such that
m2~™ > s. Then we can write

s=m2™" —ep2 "t — . —e,27" k. and (28)

t=m27" 27" + .+ €27, (29)
for some nonnegative integers k,p and constants e, e;j that are either 0 or 1 for
every i =0,...,p and j =0, ..., k. Furthermore, define

s;j=m27 " —ep2 " — . —¢;27"77; and (30)

ti=m2" b2 " b L el2T (31)
Since t, =t and s, = s, we can apply the assumptions of the Lemma to each

of the pairs (So,to), (Sj_l,Sj), and (ti—17ti)7 to get

d(f(s), f()) = d(f(sk), f(tp))

< d(f(s0,t0)) + > d(f(s5), f(s;-1)) + Y d(f(t:), f(ti1))

j=1 i=1

k P
<C2(l4 Y 277 4y 2T
j=1 i=1

<C2(1+2) 27
i=1

_ 2—04)—12—na

- 2_“)_1(15 —5)“.

The second to last inequality follows from the fact that (1 +2) 2, 27%) <
2(3°72,27%) = —2—; and the last line follows from 27" < ¢ — s. O
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Lemma 5. (Kolmogorov’s Lemma) Let X = {X;}:cr be a stochastic process
indexed by some real bounded interval T, where all the X; take values on
some complete metric space (F,d). Assume that there are three real numbers
q,€,C > 0 such that whenever s,t € T,

Eld(X,, X)) < C|t — 5", (33)

Then there exists a modification Y of X whose paths are Holder continuous
with exponent « € (0, g), i.e, for every w € Q and every « € (0, 2), there exists

a constant Cy(w) < oo such that for every s,t € T,
d(Y,(),Yi(w)) < Ca(w)lt — s|”. (34)
In particular, ¥ has continuous sample paths.

Proof. For simplicity, take 7" = [0, 1]; and fix any a € (0, ¢). Our assumptions
and Chebyshev’s Inequality imply, for any a > 0 and s,t € T, that

Eld(X,, X))

< Ca 9t — o't
a4

Pld(X,, X;) > a] = Pld(X,, X;) > a¥] <

Applying this inequality to s = (i — 1)27", ¢t = 27", and a = 27" for i =
1,...,2", we get
P[d(X(i_l)Q—n,XiQ—n) Z a] S CQn(qa_(l—‘re)).

Summing over all 7, it follows that
U{d S Xy > a}] € 21(02M@059)) = gpmniean),

By assumption, € — ga > 0, from which is follows that the right-hand side
of the above expression is the general term of an absolutely convergent series.
Summing over all n, we then have

on

ZPU{dX(HZn, i2-n) > a}] < Z ne=90) o oo,

By the Borel-Cantelli lemma, there almost surely exists an Ny = Ny(w) such
that whenever N > Ny and whenever i = 1,2, ..., 2",

d(X(,L‘_l)Q—n 5 Xiz—n) S 2—77,04.
In particular, the constant

d(X(i—1)2-n, Xiz-n)
9—na ]

K, (w) :=sup[ sup
n>11<i<2n

15



is almost surely finite (i.e, P[{K, < oo}] = 1), since whenever N > Ny the
supremum inside parentheses is bounded above by 1; and since there are only
finitely many terms less than Ny. Applying Lemma 4 on the event {K, < oo},
we see that for every s,t € D,

d(Xs, X2) < Calw)|t — 5%, (36)

where Cy(w) = 2(1 — 27%)K,(w). Thus, on the event {K,(w) < oo}, the
sample path ¢ — X;(w) is Holder continuous on D, and therefore is uniformly
continuous on D. Because (E,d) is a complete metric space, there is a unique
continuous extension of this mapping to the interval T = [0, 1], which also is
Holder continuous with exponent a.

Now fix some x¢ € E. Define the process Y := {Y;};c[0,1] by

Yi(w) := (37)

hmsﬁt, s€D Xs(w)a if Ka(w) < 00;

o, if Ka (w) = B
It is evident that ¥; is a random variable for each ¢ € [0,1]. Furthermore, the
comments above imply that the sample paths of Y are Holder continuous with
exponent . Moreover, whenever ¢ € [0, 1],

X, > X, (38)

in probability as s — t for s € D. Since Y; is defined as the almost sure limit of
X, as s > t, s € T, this implies that X; = Y, almost surely. In particular, Y is
indeed a modification of X. O

Having established these two lemmas, the theorem can be proved quickly. If
s < t, then because the random variable X; — X is N(0,¢ — s), there is some
random variable Y that is N(0,1) such that X; — X, = /t — sY. Therefore,
whenever a > 0,

E[|X; — X" = (t—s)2 E[|Y]|"] < o0.

Whenever o > 2, we may apply Lemma 5 with € = § to generate a modification
of X that is sample continuous and, in fact, has sample paths which are locally
a—2

Holder continuous with exponent 8 for any 8 < %-=. Letting o tend to oo

allows us to take 8 arbitrarily close to % O

By construction, the modification Y of the stochastic process X in the proof
is unique up to indistinguishability.

2.2.4 Lévy-Ciesielski’s Construction

This construction is due to Lévy, but was simplified by Ciesielski. I will give
Ciesielski’s simplified version of the construction. Ultimately, this construc-
tion is akin to the previous construction of pre-Brownian motion (as both use
Fourier series in order to construct the pre-Brownain motion), but the process
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constructed will actually be sample continuous by definition (this we still will
have to show).

The goal of this section is to first construct Brownian motion with index
set [0, 1], and then extend this construction to generate Brownian motion with
index set [0, 00).

Let (€2, X, P) be the probability space constructed in Kolmogorov’s Theorem
(except, assume that the original index set is T' = [0, 1] instead of T' = [0, 00)), so
that the Pj are just the finite dimensional distributions of pre-Brownian motion.

Let n > 1 be given, and let 1 < k < 2™ be odd. The Haar functions, defined
on [0, 1], are given by

2%, if(k—1)2 " <t< k277
fron(t)={ =27, ifk2 " <t< (k+1)27 (39)
0, otherwise,

together with the function fy = 1. This collection is a complete orthonormal
system in L2([0,1]), and hence is a basis. To see this, note that

1 (i+1)2~"
| fa®fpntie= [ 21t = 1. (40)
0 (i—1)2—7
If instead 2™ # j27™ then either n # m or n = m but i # ¢. In the second
case, the intervals on which the Haar functions are nonzero do not overlap, and
therefore the integral evaluates to 0. So now assume n # m; without loss of
generality we may assume that n < m. Then either [L-, ZtL) ¢ [i=L SEL))
or these two intervals are disjoint. If they’re disjoint, we’re done. Otherwise,
the first interval must be contained in one of the halves of the second interval,
since it’s length is less than % of the length of the second interval. In particular,

fj2—m is constant on the support of f;5-n, which gives

1 1
| fintae=c [ game =0
0 0

It is also complete: if g € L%([0, 1]) is perpendicular to every Haar function,

then the integral
(k+1)27"
/ g(t)dt
(

k)2—n

is independent of off 0 < k < 2". To prove this, for any integer n € N and

k=0,1,...,2" — 1, define
(k+1)2™"
I ::/ g(z)dzx.
k

2—n

Our assumptions on the f.o—» imply that I, = I for every k, and therefore the
integral above is independent of k. In particular, we have

g2 " 1
[ stoa=2G-0) [ gwar—o

—n
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for every 0 <7 < j < 2" and any n > 1. Thus

/ab g(x)dx = 0.

holds for all dyadic rationals a,b € [0,1]. This is enough to show that the Haar
system is complete.

We can now begin out construction of Brownian motion with index set [0, 1].
Let {gpo-» : Kk = 0 orodd k < 2™,1 < n} be any collection of independent
identically distributed standard Gaussian variables (they can be on any space);
and for each ¢ € [0,1] define

By = 90/0 fow)dz +Y " > gszn/o fr2—n (z)dz. (41)

n=1 k odd<2—"

If the right-hand side of the B; converge, then it immediately follows that B =
{Bi}+ej0,1) is a Gaussian process by assumption on the gpp—n.

Therefore, the first goal is to show that this sum converges on [0, 1], and in
fact converges uniformly on [0, 1] to a continuous path.

To do this, consider the Schauder functions Syo-» (t) = fg fro—n(z)dz. These

are just little tents of height 2" . With this in mind, it follows that

1S g / Fras (2)da]|,

k odd<2m

= maX]| Z gk?n/o fro—n(2)dz| (42)

telo,1
€l k odd<2m

en

n—1
=272 max —n
k odd<2n k2|

Therefore, for any constant C' > 0, we have

Ple, > C(27"log(27"))2] = P[ max  gpp-n > Cy/2nlog(2) ]

k odd <2-n
<9.gn! / 1 <=,
<2 ——dx

C(y/2nlog(2)) V2w (43)
< n—%QnKe—Cznlog(Z)
_ nf%Qn(lfCQ)K’

where K > 0 is constant, and where we have used Legnma 2 in the third in-
o) _1 _

equality. Whenever C' > 1, the series >~ | n 227(1=C7) converges absolutely;
so by the Borel-Cantelli Lemma,

Pllimsupe, < C(27 " log(27"))?] = 1. (44)

n—oo

This implies that the series converges absolutely on [0, 1] and that the process
B ={B;:t€|0,1]} is actually sample continuous.
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In order to finish the proof, we need to show that E[B(t)B(s)] = min{s, t}
whenever 0 < s,t < 1. For every such s,t, we have

E[B(H)B(s)] = El(g0 / fo@dz+S Y g / fra-n (x)dz)

n=1 k odd<2—n

(90 /Osf()(x)d:wz S g /Osszux)dx)]

n=1 k odd<2—"

= /Ot fo(x)dx /OS fo(z)dx + g(/ot szn(l“)dl")(/os fi2-n()d)

1
=/ X[0,(%)x[0,s)(x)dxr = min{s, t}.
0

X

(45)
Here we used the independence of the g.o-» to get the second inequality; and
to get the third equality, we have used Parseval’s Inequality with respect to the
the Haar orthonormal system applied to the characteristic functions xo and
X[0,s]- B is therefore a Brownian motion on [0, 1].

We can use this to construct a Brownian motion on [0, 00). Use this construc-
tion of Brownian motion to construct some sequence {B"}52 ; of independent
copies of a Brownian motion. Define the stochastic process B := {B;}c[0,00) by

B, if0<t<1;
Bl + B% |, if1<t<2;

Byi=( i (46)
Bi4+-- 4+ B+ B, ifn<t<n+1

This is sample continuous, since each of the B™ are sample continuous and
lim;_,,, By = B% + ... + B7 regardless of the direction that ¢ approaches n. It
is indeed a Gaussian process, since the B™ are Gaussian processes and are all
mutually independent. It remains to show that this has the desired covariance.
To do this, let 0 < s < t be given. We have two cases:

1. s, t €[j,j+1) for some j > 1 € Z. Then B, — B, = B}*! — BJ*  which
implies
E[BB,| = E[(B/"; + B{ + ...+ B})(B!; + B + ...+ B})]
J
+1 +1
= E[B{*]BIT)1+ > El(B})*]
k=1
=(s=Jj)+ti=s

2. selj,j+1)and t € [i,i+1), where 1 < j < i; i, j € Z. Then B; — B, =
Bl 4 Bi 4. 4+ BT~ Bgfjl Furthermore, using the independence of the

i
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B", we have

E[BB,] = E[(B{Z; + B{ + ...+ B )(B!'} + B{ + ... + B]]
Bz+1 Jr ZE Bk
=(s—i)+i=s

B then has the desired covariance, and hence is Brownian motion.

This type of extension makes it very easy to move from a Brownian motion
with index set [0,1] to a Brownian motion with index set [0, c0), and allows us
to solely focus on Brownian motions with index set [0, 1]. Indeed, we also could
have used this after the first construction of Brownian motion with index set
[0,1] in order to extend it to a Brownian motion with index set [0, c0).

2.3 Brownian motion as the Limit of Distributions

In this section, I will discuss the Donsker Theorem, which is a classical
central limit theorem on C[0, 00).
Define the metric d : C[0,0) — [0, 00) by

dn(f,9)

(f’ )' —12n1+d(f’g)7

(47)
where dy,(f,g) = supicpo,,|f(t) — g(t)|. This function is indeed a metric, and
actually metricizes uniform convergence on compact sets in C[0, 00).

Consider any sequence (X,)52; of independent identically-distributed ran-
dom variables, each with mean 0 and finite variance 0. For every n € Z>; and
every t € [0,00), let |nt] be the smallest integer less than or equal to nt, and
define

A X X+t Lot S22, (18)
i<|nt|

Set B" := { B} }+c[0,00)- Simply put, B" is a random walk at integer values
of nt, and is just hnear 1nterpolated for all other values. The goal of this section
is to prove the following theorem:

Bl =

Theorem 3. (Donsker’s Theorem) The stochastic process B" = { B[ };¢[0,00)
converges in distribution to Brownian motion B; on the metric space (C([00)), d)
as n — oo. In particular, for every ¢ € [0, 00),

L(By) — £(By).

The proof of this theorem requires some work. First of all, probabilities on
C[0,00) are completely determined by the finite dimensional distributions. In
particular, the cylindrical o-algebra on C[0,00) (namely, the o-algebra gener-
ated by the events {f € C[0,00) : (f(t1),..., f(tn)) € B, B € B(R™)} for some
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fixed B and fixed ¢t; < ... < t, in [0,00)) coincides as the Borel o-algebra on
C[0,00). This is a rather simple consequence of C[0, 00) being a separable metric
space. This implies that, if the finite dimensional distributions of the sequence
of stochastic processes B™ converge to the finite dimensional distributions to
some stochastic process B, then B is the unique possible distributional limit of
this sequence.

Now notice that because the second term in the expression for B} is of
the order n™2, we can simplify our argument by treating tn as an integer and
writing BY' = =37, Xi. Writing

Vit
O'\/TEZXZ‘?

i<nt

1
i 22

i<nt

we may apply the Central Limit Theorem to see that B™(t) converges in dis-
tribution to N(0,¢). Furthermore, whenever s < ¢, we can express By as the
sum .
Bl =Bl+— > X,
U\/ﬁ ns<i<nt

Because BY and B}’ — B} are independent, it follows that

E[BYB}'] = E[B! (B} - BY)] + E[(B{)*]
= E[(BY)’],

which converges to s as n — oo. It follows that the finite dimensional distri-
butions of B™ converge to the finite dimensional distributions of a Brownian
motion B = {B;}c[0,0c), and therefore, by the previous discussion, identifies
the Brownian motion B = {B;} as the unique possible limit of the sequence

{B"}as-

It therefore remains to show that the sequence actually converges. In order
to do this, we will need the Selection Theorem, which concerns uniform tight
sequences of laws on probability spaces.

To be specific, let (P,,)22; be any sequence of laws on a metric space (E,d).
We say that (P,)52; is uniformly tight if for every € > 0, there exists some
compact set K C E such that for every n, P,[K] > 1 —e. We have the following
theorem:

Theorem 4. (Selection Theorem) For any uniformly tight sequence of laws
(Py)5%; on the metric space (E,d), there exists a subsequence (ng)g>, such
that (P, )5, converges weakly to some probability law P.

From this, it follows that if we can show that the sequence of laws {£(B}*)}52,
is uniformly tight for each ¢, then there will exist a subsequence {£(B;"*)}2,
that converges weakly to some probability law P. But the unique possible limit
of this sequence will necessarily be £(B;); and the existence of one convergent
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subsequence, together with the fact that the finite dimensional distributions con-
verge and identify a unique possible limit, will imply that {£(B}")}2; — £(B;)
weakly in (C]0,00),d), which will complete the proof of the Theorem.

The rest of this section will therefore be devoted to finding a convenient
characterization of uniform tightness.
For any given §, T > 0 and any given function f € C([0,T1]), define

mT(f.8) == sup{| f(b) — f(a)| : |b—al <4, a,be [0,T]}. (49)

mT is just the modulus of continuity for the function f. We have the follow-
ing version of the Arzela-Ascoli Theorem using the aforementioned notation:

Theorem 5. (Arzeld-Ascoli Theorem) The set K is compact in (C([0,00)),d)
if and only if for every T' > 0,

sup|f(0)] < oo and lim sup m” (f,8) = 0. (50)
fek 020 fek

We can use this to prove the following result to give an equivalent statement
of uniform tightness.

Proposition 5. A sequence of laws (P,,)22; on (C((0, 00]), d) is uniformly tight
if and only if

1.
Jim_ sup Pl{f € C((0,00]) : [f(0)] > a}] = 0; and (51)

2. for every T,e > 0, we have

lim sup P.[{f € C((0,00]) : mT(f,8) > €}] = 0. (52)

For proofs of these statements, see [1], Section 22.
The second condition in this statement is usually difficult to show, so we
instead will use the following asymptotic equicontinuity condition:

lim lirgsolip P,J{f € C((0,]) : mT(f,8) > e}] = 0. (53)

This statement implies the second statement in Proposition 5. To see this,
suppose this holds for every T' > 0 and every € > 0. Then for every a > 0 there
exists a §p > 0 and a N € N such that whenever n > N,

P.[{f € C((0,00]) : mT'(f,8) > €}] < a.

Since every f € C((0,00]) is continuous by definition, the modulus of conti-
nuity m? (f,d) goes to 0 as § — 0. Furthermore, m’ is a decreasing function of
d. Therefore, for every n < N, there exists a §,, > 0 such that
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Pu[{f € C((0,0¢]) : T (£,6n) > €}] < a3

and whenever n > 1 and § < min{dy, d1, ..., 0, }, we have

P[{f € C((0,00]) : m" (£,0) > e}] < a.

In particular, lims_osup,>, Pa[{f € C((0,00]) : m"(f,d) > €}] = 0 holds
for every € > 0 and every T > 0.

We can now complete the proof of the uniform tightness of the sequence
{L(B}")}52, using Proposition 5. By definition, B = 0 almost surely, so it
suffices to check that the asymptotic equicontinuity condition holds for this
sequence.

Note that whenever s < t,

1
T n
m* (B",9) = sup |—= E: Xil
t,s€[0,T]; |t—s|< av/n ns<t<nt (54)

1
< max — Z X;l.
~ 0<k<nT; 0<j<né
<k<nT; 0<j<n U\/ﬁ k<i<k-+j
To maximize this expression over all 0 < k < nT', we can set m = % and can
maximize over all indices k := Ind, where 0 <[ < m — 1. Since we also need to
maximize over 0 < j < nd, and since both of the maximums being considered
are taken over increments of size nd, it follows that

1 1
<, ax 6|7 E Xi| <3 o, Ax 6|7 E X;l.
0<k<nT; 0<j<né o+/1 0<I<m—1; 0<j<né o+/1
=h=n J=m k<i<k-+j == I=n In6<i<Ind+j

This implies that whenever m” (B™,§) > e, there exists some 0 <1 <m — 1
such that

Pl == Y Xil>£)=1

Ind<i<ind+j

Since the number of events of this type is m = %, we therefore have

P[{m™(B",5) > €}] <mP[{ max | = > Xil> =} (55)

Setting S, = Y., X;, we see by Kolmogorov’s inequality’ that whenever
maxi<j<n P{|Sn — 5| > a}] <p <1, we have

P max |51 > 20)] < 7= P[{1S.] > a}].

1See the Appendix for the statement
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Setting o = wg/ﬁ and applying Chebyshev’s

inequality gives

629no? B @

Z Xi > ea\f

j+1<z<m5

In particular, if 366¢~2 < 1, then

ea\f 1

1<

e2no? e’

ea\f

>, Xill>

j+1<i<né

}<

Pi{ max|

— 360e2

Lastly, using the Central Limit Theorem,

Pl > Xil>

1<i<né

Ho (56)

it follows that

: T n m 60’\/5
hrrlnﬁsolipP[{m (Bf,0) > ¢€}] < WhmsupP {|1<ZZ<MX il > 5 }
m
= W2N(O’ 1)(m,oo)
2T exp(— €2 )
= 501 = 360e-2) TPV o(620)

and this goes to 0 as § — 0. Therefore, for every T, e > 0 we have that

lim lim sup P[{m” (B™

=0 n—oo

8) > )] = 0. (57)

We have therefore shown asymptotic equicontinuity holds, and hence Donsker’s

Theorem follows.
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3 Detailed Properties of Brownian Sample Paths

Brownian motion sample paths have very many properties, some desirable,
and others not as much. Many of the proofs for these properties require the
strong Markov property of Brownian motion, which we will address in the next
section of the paper. As a result, we will only state and prove properties of Brow-
nian sample paths that do not require the strong Markov property of Brownian
motion. For more properties of Brownian sample paths, see the Exercises at
the end of Chapter 2 in Le Gall’s text [3]. Before any results can be given, it is
necessary to introduce a third definition of Brownian motion.

3.1 Filtrations

Let B = {B;}1c[0,00) be a Brownian motion on the probability space (€2, ¥, P).
Define the o-algebras 3; for t € [0, 00) by

Yy = 0({Bs}se[0,t])-
Then
1. whenever 0 < s < t, 3g C 3 C 3
2. for all ¢, B; is ¥; measurable; and
3. for all t, the process {Bs — Bi}ie[s,0) is independent of 3.

The first and second points are obvious; the third point follows from the simple
Markov property of Brownian motion.

The collection {X;}c[0,00) is an example of a filtration. To be specific, a
filtration on a measurable space (£2, ) is any collection of o-algebras {X¢ }+<(0,00)
on {2 that satisfy statements 1-3 as given above. We have just shown that
associated to every Brownian motion is a filtration. This filtration will be called
the standard filtration for B. Filtrations give us a tactical advantage in proving
some more advanced properties of Brownian motion. From here on out we
will then write a Brownian motion B = {B;}:c[0,00) as {(Bt, £t) }+e[0,00), Where
{Xt}e[0,00) 1 the standard filtration for B.

For the remainder of this section, let {(B¢, X¢) }+e[0,00) be Brownian motion.

3.2 Blumenthal’s Zero-One Law
Define Yo := ;20 Xt We have the following 0 — 1 law.

Theorem 6. (Blumenthal’s zero-one law) For every A € Xg, either P[A] =1
or P[A] =0.

Proof. Consider any 0 < t; < ... < t,, < 00, any bounded continuous function
g : R¥ — R, and any fixed A € ¥ y. Because g is continuous, B is sample
continuous, and By = 0 almost surely, we have that

Blxag(Bu - Bi,)) = lim Elxag(By, = Bey.oos B, — Bl (58)
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By the simple Markov property, whenever € < ¢; the increments B, — Bk, ..., By, —
B, are independent of ¥, and therefore are independent of ¥y. Hence

E[XAg(Btl, ...,Btn)] = g% P[A]E[Q(Bfl — BE, ---7Btn — BF)] (59)
- P[A]E[Q(Bh?)Btn)]

This implies that o ({ B, }?_;) is independent of ¥y. Since the t; were arbitrary,
this implies that X4 is independent of o({ By }+c(0,00)). Furthermore, for almost
every w, By is the pointwise limit of B; as t — 0, and therefore o ({ Bt }+¢(0,00)) =
o({Bt}ie[0,00))- Finally, because Yoy C o({Bt}ieo,o0)); We see that Yoy is
independent of itself. In particular, this implies that for every A € %o, P[A] =
P[AN A] = P[A)?, so either P[A] =0 or P[A] = 1. O

We can use this prove the following proposition.

Proposition 6. 1. For every € > 0, we almost surely have

B;>0and inf B; <O0. 60
ol B e L B < o

2. For every a € R, we almost surely have
inf{t >0: B, =a} < cc. (61)
In particular, we almost surely have

limsup B; = oo and liminf By = —c0. (62)
t—00 t—o0

Remarks:

1) To see that the function f.(w) = supy<;<. B:(w) is a random variable, we
need only notice that by sample continuity, supy<,<, Bt(w) = sup< <. 1cq Bt(w).
Since the supremum of a countable collection of measurable functions is itself
measurable, it follows that supy<,<. B: is measurable, and hence a random vari-
able. o

2) Random variables of the form 7, = inf{¢ > 0 : B; = a} for some Brownian
motion {By, ¥ }ie(0,00) are called hitting times, and will be discussed in the
section about stopping times later on. The first statement of part b of this
proposition then states that hitting times are almost surely finite.

Proof. 1. Consider any decreasing sequence of positive real numbers (€)$ ;
converging to 0. For each n = 1,2, ..., define
Ay i={w: sup Bi(w) > 0}. (63)
0<t<en

Then A,,+1 C A, for every n, and hence A = ﬂzozl A, is ¥ yo-measurable.
By Blumenthal’s zero-one law, either P[A] = 0 or P[A] = 1. From measure

continuity,
P[A] = lim P[A,], (64)

n— oo
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and since P[A,] > P[{B., > 0}] = 1 (B, is N(0,¢,) for every n), we see
that P[A] > 1. It follows that P[A] = 1, and in particular that for every
€ > 0, supg<;<. Bt > 0 almost surely.

By the symmetry property of Brownian motion, we see that for every

€e>0,
1=P[{ sup (—=By) > 0}]
P OSt'_ef B (65)
= Pl{— nf B,>0}],
from which the other assertion follows.
2. By the previous part of the proposition and by measure continuity,
1= P[{ sup B, > 0}] = lim P[{ sup B; > €¢}]. (66)
0<t<1 e—=0 0<t<1

Furthermore, by the scaling invariance property of Brownian motion,

P[{ sup By > €} =P[{ sup By >1} =P[{ sup B, >1}] (67)

0<t<1 0<t< % 0<t< %
O
3.3 Zero Set
Define the set Z by
7Z :={(t,w) € [0,00) x Q: B(t,w) = 0}; (68)
and for any fixed w € 2, define
Z(w) :={t €[0,00) : B(t,w) = 0}. (69)

We have the following theorem concerning the sets Z(w):
Theorem 7. For almost every w € €,
1. Z(w) has Lebesgue measure 0; and
2. Z(w) is closed.
Proof. 1. Noticing that Z(w) C (2B(]0,00),%), we may apply the Fubini-
Tonelli Theorem to get
Blu(Z@)] = (nx P)(Z) = [ Pl € 2 Byw) = 0}ldt 0. (70

This implies p(Z(w)) = 0.

2. By definition, for almost every w € Q, the sample path ¢ : t = Bi(w) is
continuous; and since Z(w) = ¢~ 1(0), we see that Z(w) is closed.
U
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3.4 Nowhere Monotonicity

Theorem 8. For almost every w € , the sample path ¢t — B;(w) is not
monotone on any nontrivial interval.

Proof. Fix some w € € such that the sample path f : ¢ +— B;(w) is continuous,
and such that Proposition 6(1) holds. Consider the stochastic process {B; —
Bs}iels,o0), for s > 0 is rational. By the simple Markov property, this is a
Brownian motion. By Proposition 6(1), for every ¢ > 0 we almost surely have

sup Bi(w) > Bs(w) and inf Bi(w) < Bg(w). (71)
t€(s,s+e t€[s,s+¢]

This implies that f is not monotone on any nontrivial closed interval of [0, c0).
To prove this, suppose on the contrary that f is monotone increasing on some
interval [a, b] for a,b € Q,a < b. Since f is continuous and monotonic increasing
on the closed interval [a, b], then inf,c[, 5] Bi(w) = B,(w). But setting e = b—a >
0, the above inequalities imply B,(w) < By (w), a contradiction. In particular,
this proves that f cannot be monotonic increasing on [a, b]. Since a and b were
arbitrary rationals with a < b, it follows that f cannot be monotone increasing
on any nontrivial interval of [0, c0). O

3.5 Nowhere Differentiability

Theorem 9. The Brownian sample path is nowhere differentiable.

Proof. Tt suffices to consider a Brownian motion B on a probability space
(Q,%,P) with index set [0,1]. For I € Z,I > 1, let A, = {s € [0,1]

limy_, B;:ff < I}. Our goal is to show that P[A4;] = 0 for every [, since
this will imply that the collection of all w € € for which the derivative exists
has measure zero. For that purpose, assume that s € A;. I will actually show
that there are no three consecutive increments that belong to A; for any given

I If s € [, £21], where n > 2, then for every 1 < j < n,

125+ 1)
|Bk2# - Bk+;];171))| S T (72)

2’!1.
Then by the scaling invariance of Brownian motion,

Let A, 1 be the event that |B¥ - Bk+(j_1>)\ < 12541 polds for j =1,2,3.
= LasCab)}

PlAn ) < P[|By| < 7127 3P < (T1278)?, (73)
where the last inequality follows since B; is N(0,1). Therefore,

P[U App] <2727 %) = (T1)327 2. (74)
k=1
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Notice that the term on the rightmost hand side is the general term of an
absolutely convergent series. Summing over all n > 1 thus gives P [Ui:l Ap il <
oo. By the Borel-Cantelli lemma,

P U (Y 4nsll=0. (75)

m>1n>m k<27

Since A; is a subset of (51 Upsm (Up<an Ank), it follows that P[4;] = 0%, O

3.6 Modulus of Continuity

The following theorem, due to Lévy, gives the exact modulus of continuity
of the Brownian sample path.

Theorem 10. For any Brownian motion B = {Bi}c[0,00), We almost surely
have B B
lim sup [Bi, = Bui| =

0<ti<t2<1; t=ta—t10  [9¢]pg 1
t

Proof. Set h(t) = y/2tlog(1),let 0 < § < 1, and let k,n be nonnegative integers.
We have

1 (76)

o) 2

1 X n
Pl{max(Bjs-» — B,_1y9-n) < (1 — §)h(27" :1—/ —— exp(——=)dz)?
[{glggf( k2 (k—1)2-n) < ( Jh(27™)}] = ( = xp( 2) )

e 1 x?
< exp(—2"/ exp(——)dz)
(1-6)h(2-7) V2m 2
By Lemma 3, there exists a constant C' > 0 such that
/OO L exp( x2)dx > 2% exp(—(1— 5)2log(2)) > 2% (77)
xp(—— — exp(—(1—
(1-8)h(2-7) V2T 2 Vn

whenever n is large enough. Applying the Borel-Cantelli lemma then gives that

P[{r,?gf (Bkz”h_(zBflk)—l)Q") > 1) = 1. (78)

This proves
By, — B
lim sup [Bi, = Bu| > 1.

0<ti<teSLi t=to—t1=0  [9r]og L
¢

2The first result concerning the nowhere differentiability of the Brownian sample path was
given by Wiener. The proof given here is due to Dvoretsky et al, and is a much simplified
version of Wiener’s original proof.

(79)
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P

To show the reverse inequality, let 0 < § < 1 and € >

1—"'? — 1 be given. We

1—

0<j—i<278; 0<i<j<2n

<« C on+0-(1-0)1+0?)
<=

9

where C' > 0 is a constant. Because % < (1 + €)?, the last expression on
the right is the general term of an absolutely convergent series. By the Borel-
Cantelli lemma, for 0 <i < j < 2", 0 < j —i < 2™ and large enough n we have
that

|Bj27n - B,L'Z—n

< +eh((G-1)27"). (80)

Choose m large enough so that the inequality above holds whenever n > m,
and choose any 0 < s <t <1 such that t — s < 2-m(1+9)  Pick some n > m so
that 2=("+D(=9) <t _ 5 < 277(1-9) "and expand t and s dyadically as follows:

§=427" —27P1 —27P2 4 (81)
where n < p; < ps < ...; and
t=42"" 4270 4272 | (82)

where n < ¢1 < g2 < .... It is easy to see then that s < 27" < 527" <t and
that j —i < 27" < 2", By sample continuity of the process B, we see that

|Bt — Bs| < |Big-n — Bs| + |Bja-—n — Big—n| + |B; — Bjon
< D A+OR@ )+ (L +Oh((t—5)27")+ Y (1+e)h27P).
p=n-+1 p=n-+1

Whenever n is large enough, there exists a constant C' > 0 such that
> h(27P) < Ch(27") < eh(27 (DU, (83)
p=n+1
and for small enough ¢, we have
|B; — Bs| < (1 + 3¢+ 2€%)h(t). (84)

Because € can be chosen however as small as wanted by choosing a sufficiently
X : . T |Biy — Bt |
small §, it follows that lim supg<;, <1, <1, t—t,—t; -0 ﬁ < 1. The theorem

now follows. O
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then have
|Bj271L - B1;27’VL /CXD
max — 1> 1+¢< 2 o
0<j—i<2m; 0<i<j<2n  h((j —4)27") } ) Z (1+6),/2log(75;2-™) V2T

2
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4 The Brownian Bridge

Throughout this section we will argue on a probability space (2, %, P).

Definition 3. A Brownian bridge is a sample continuous centered Gaussian
process W = {W;};¢(0,1] such that for all 0 < s <t <1,

C(t,s) =s(1—1t). (85)

Brownian bridges exist: for any Brownian motion B = {B;}co,1), set W; =
By —tBy. Then W = {W,;},¢p0,1] is a centered Gaussian process, and for any
0 <s<t<1 wehave

E[W,W,] = E[(B; — tB1)(Bs — sB1)]
= E[B;B,] — sE[B;B1| — tE[B;B,] + stE|[Bj}]
=s—st—st+st=s(1—1).

It is important to note that we can ’extract’ a Brownian motion from any
given Brownian bridge. To see this, let Y = {Y;},cj0,1) be a Brownian bridge.
Choose any standard Gaussian variable By that is independent of Y; for every
t € [0,00). Then the process B = {Bi};c[0,1] defined by

Bi =Y +tB (86)

is a Brownian motion. This is easy to see: B is a Gaussian process since Y is
and since B is independent of all Y;. Furthermore, whenever 0 < s <t <1,

E[ByB;] = E[Y,Y;] + sE[Y,B1] + tE[Y; B;] + stE[B?]
=s(1—t)+ st = s = mins,t.

In particular, there is a naturally defined bijection between Brownian motions
and Brownian bridges. From now on, whenever we consider a Brownian bridge
Y = {Yi}te[oﬁl] we will always express it as Y; = B; — tB; for some Brownian
motion B = {B;};c[0,1]. We can actually use this characterization of Brownian
bridges in order to compute its probabilities.

To be more specific, let Y = {Y;}4c[o,1) be the Brownian bridge given by
Y; = B; — tB; for the Brownian motion B = {Bi}c[p,1]- For every € > 0,
P[{|B1| < oo}] # 0; and therefore the conditional law £(B||B;| < ¢) is well-
defined on C]0,1]. Equipping C0,1] with the usual supremum norm, we get
the following theorem.

Theorem 11. On C[0, 1], for every ¢ € [0, 1] we have

lim £(B,||B1| < €) = £(Y,). (87)
e—0t

Proof. Since E[Y;B;] = E[B;B;] — tE[B?] =t — t = 0, the variables Y; and B;
are independent. This allows us to write By = Y; + tBq, i.e, we can write B; as
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the sum of the Brownian bridge Y and a standard Gaussian variable B that is
independent of Y.

Let N. be the distribution of By given that |Bi| < €, and let Z. be any
random variable that has the distribution N, and is independent of Y;. Then

L(By||B1| <€) = £(Yy + tZ:) = £(Y2) + £(tZ), (88)
and letting e — 0+, we see that for all ¢ € [0, 1],

lim £(B,||B1] <€) = £(Y}). (89)
e—0+

O

4.1 Stopping Times and the Strong Markov Property

Let {(Bt, Xt) }+c[0,00) be a Brownian motion on the probability space (2, X, P).
A stopping time for {;},c[0,00) is @ random variable 7 > 0 such that, for every
t € [0,00), the event {7 < t} is contained in %;.

Stopping times exist. Consider the following three examples:

1. Constant stopping times: The constant time variable 7(w) = ¢ is a stop-
ping time, since

@EEt, if t < ¢

: (90)
Qe ift>c

{wGQ:T(w)gt}{

2. Hitting times: The hitting time 7.(w) = inf {¢ > 0: B(t,w) = ¢} is a stop-
ping time, since

{weQ:r(w) <t} = ﬂ U {we:B(g) >ptex (91)
p<c, peQ q<t, q€Q

by sample continuity.

3. Dyadic stopping times: Let T be any stopping time for the filtration {X;}.
Let | 7(w)] denote the smallest integer greater than 7(w). The the random
variable

[2"T| +1
Ty i = ——————
2n
is a stopping time, called the dyadic stopping time. To see this, note that
if 2% <7< k;;l, then 7,, = k;;,l; whence it follows that for every ¢ > 0,

g i+ il
5w <t < 55 implies

J J
{Tngt}:{Tngﬁ}:{T<2—n
U tr<gex.

a<z, q€Q

Note that 7,, > 7 for every n € N, and that 7, | 7 as n — oo.

32



If {(Xt,%¢)}ie0,00) s a Brownian motion, and 7 is a stopping time on
{2t }e[0,00), then we define

Y, ={AeXe :Vt€[0,00), AN{r <t} € &;}. (92)

It is a quick and easy exercise to show that X, is in fact a o-algebra.

We will need the following important fact about stopping times: any stopping
time T for the filtration {3 }1c(0,00) i85 Xr-measurable.

To see this, first let 7 be a stopping time. It suffices to show that the inverse
image of every closed interval [0, s] under 7 belongs to .. So, let s € [0, 00) be
given. For every t € [0,00), we have

{r <spn{r <t} ={r <min{s, t}} € XBnings, ¢ C St (93)
It follows that {r < s} € X,

We can now move on to our main result concerning stopping times, namely,
the strong Markov property of Brownian motion. Colloquially, this result states
that Brownian motion begins afresh at stopping times. We will use this result
frequently for the rest of the paper, as it will be an essential ingredient in proving
many of the different bounds for probabilities concerning Brownian bridges.

Theorem 12. (Strong Markov Property) On the event {r < oo}, the process
B’ = {B;} defined by
B; - B‘r+t - B‘r

is Brownian motion, independent of X.,.

Proof. Consider the dyadic stopping times 7, as defined before. Since B is
sample continuous and 7, | 7, it follows that B, — B, almost surely. Since
B’ is sample continuous by definition, it suffices to check that B’ has the same
finite dimensional distributions as pre-Brownian motion. To do this, let k € Zx>,
be given. Choose any 0 < t; < t3 < ... < t}, any bounded continuous function
F:RF 5 R, and fix A € ¥,. Define

G(t) := F(Byyt, — Bry ..., Bris, — By). (94)

Then G is bounded and continuous on R*. Furthermore, whenever j > 0, the
event

J J—1 J
Am{Tn:ﬁ}:Bﬂ{ S ST<oi}EX,

-t), which in turn implies

on

EG(ra)XaX (o)) = 3 EIG(Z) g — i)

is independent of G(

on
>0

= Y ElCGIENsn(r,— )]
>0

= FE[G(0)] ZE[XBm{Tn:;%L}]

>0
= E[G(0)]E[XBX {r<o0}]-
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Here, we used the independence as stated above in the second line, and the
homogeneity of Brownian motion in the third line in order to write E [G (2n )] =
E[G(0)]. By continuity of G, G(r,,) — G(7), and hence

E[G(T)XBX{T<OO}] = nli_{I;oE[G(Tn)XBX{T<oo}] = E[G(O)]E[XBX{T<00}] (95)

In particular, since B € ¥; was arbitrary, this shows that the the increments
(Bi,, ..., Bi,) are independent of the o- algebra Y;. Furthermore, it shows that,
on the event {7 < oo}, the distribution of (B , ..., By, ) is the same as the distri-
bution of (By,, ..., By, ), so that B’ has the same finite dimensional distributions
as pre-Brownian motion, and hence is itself Brownian motion. O

4.2 Reflection Principle for Brownian Motion
Let {(Bt,X¢) }+e[o,00) be a Brownian motion on (€2, 3, P). We have the fol-
lowing "reflection principle”:
Theorem 13. For any t € [0,1], set S; = sup¢(o4) Bs. Then for any a € [0, 00)
and any b € (—o0, a], we have
P[{S; > a and B; < b}] = P[{B: > 2b—a}] (96)
In particular, S; and |B;| have the same distribution.

Remark: This result will be referred to as the reflection principle for Brow-
nian motion.

Proof. Consider the hitting time 7, = inf {t > 0 : B; = a}. We have that {supy<,<; Bs >
a} = {inf{s >0: Bs; =a} < t}; and, from Proposition 6(2), we have that
Ta < 00 almost surely. Furthermore, using the notation from the statement
of the strong Markov property, we have by definition of 7, that B; , (w) =
Bi(w) — By, (w)(w) = Bt(w) — a. Thus
PUS: = a, Bi < b}] = Pl{ra <t, B, < b}
= Pl{r, <t, BT <b—a}].
By the Strong Markov property, B’ is a Brownian motion and is independent
of ¥, , and therefore is independent of 7,. Because both B’ and —B’ have
the same law, the pairs (7, B’) and (7,, —B’) also have the same law. Setting
T={(s,f) e Rt x C(R",R) : s <t, f(t—s)<b—a}, we see that P[{r, <
t, Bt(Z“T) <b-a}]=PH{3t €[0,00): (74, B;) € T}]; and therefore
Pl{r. <t, BT%) <b—a}] = P[{3t € [0,00) : (ra, B) € T}]

= P| , =B <b—a}]
:P[{Ta<t7 Bt—aza—b}] (97)

= P[{r, <t, By > 2a — b}]

=P

=P

{S; > a, By > 2a — b}]
{B; > 2a — b}],
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where the last equality follows since B; > 2a — b implies S; > a.
Furthermore, we have

P[S; > a}] = P[{S; > a, B; > a}] + P|{S; > a, B; < a}]

— P{{B, > a}) + PB, 2 a}) =2P[(Bi 2 a}]  (98)
= P[{|Bi| = a}],
which shows that S; and |Bi| have the same law. O

In particular, this theorem implies that the law of the pair (S, B;) has
density

202z —y) (- (22 —y)?

. 99
i3 €xXp 2 )X{a>0,b<a} ( )

p(r,y) =

Moreover, for any a > 0, we may use the above theorem and the scaling
invariance of Brownian motion to see that

(100)

Using the fact that B; is a centered Gaussian variable with variance 1, we can
2
easily calculate the density function of ﬁ as follows. Consider the random

variables X = By, Y = f—;, and Z = % with their respective densities f(x),

g(y), and h(z). Then a simple computation shows that g(y) = QLﬁf(a\/@); and
. . . .'L'2

that h(z) = Lg(2) = 22’%]”(%) Substituting in f(z) = \/%exp (-%) a.nd

remembering that we are conditioned on the fact that ¢ > 0 shows the density

of g—i, and thus the density of 7, is given by
1

2
a a

4.3 Reflection Principles for Brownian Bridges
Assume that Y = {Y; };c[0,1] is a Brownian bridge.

Theorem 14. For any b € R,

P[ sup Y; > b] = exp (—2b°). (102)
t€[0,1]
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Proof. Define B; = Y;+tB1, where By is N(0,1) and is independent of Y;. Then

B = {Bi}tcj0,1) is a Brownian motion. Since E[Y;B| = E[B;Bi] — tE[B?] =

t—t=0,Y; and B; are independent. Setting @ = {3t € [0,1] : ¥; = b}, we

may write

P[{3t €[0,1]: Y; = b;|B1| < €}]
P{|B1] < €}]

Pl{3t €[0,1]: By =b+1tBy;|B1| < e}]

P[{|Bi1] < e}]
Letting Q" be the numerator in this expression, we have the following upper and
lower bounds for Q':

Q=
(103)

P{3te€[0,1]: B, >b+¢|B1| <e}] <Q (104)
Q' < P[{3te[0,1]: By >b—¢€|B1| <€} (105)

We will examine both the upper bound and the lower bound. We will start with
the lower bound. Consider the hitting time 7 = inf {¢ > 0: By = b+ €}. Then
T < 0o almost surely by Proposition 6(2). Moreover, for almost every w we have
Bt(z)T (w) = Bi(w) — Br(w) = By(w) — (b+ ¢€), and therefore
"= P{r<1;B; — —b—2¢,—
Q {r<1;B; — B, € (—b—2¢,-b)}] (106)
— P{r <1;B\” € (=b—2¢,—b)}].

Using the strong Markov Property and the symmetry of Brownian motion, we
see that
{r<1;-B7_€ (=b—2¢,-b)}]

Pl
P{T <L Bgr)-r € (b,0+2¢)}] (107)
[

{r <1;B; € (2b+¢€,2b+ 3¢)}]
{B1 € (2b+¢,2b+ 3¢)}],

where in the last line we used the fact that By € (2b + €, 2b + 3¢) implies that
7 < 1 whenever b > 0. Thus

P
P
P

P[{By € (2b+ €,2b + 3¢)}]

PIEE € 01): Ve =b)] 2 == (108)
Since
PUB; € (2b+¢,2b+30)}]  Jorr exp(—5)dx
P[{B; € (—¢,¢€)}] B [S exp(— "L—;)dx (109)
we let € — 04 to see that
P[{3t€[0,1]:Y; = b}] > e 2", (110)

The upper bound my be examined similarly using the starting time 7 = 7(w) =
inf{t > 0: By = b — €}, which will yield the inequality
P[{B; € (2b— 3¢,2b — €)}]

P{3t€[0,1]: Y, =b}] < P[{B; € (—¢,€)}]
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Since
PI{Bi € (2~ 36,2 — )] _ Joy s, exP(—F)de
P{Bi € (—¢,¢)}] J5 exp (fg)dx 7

we let € — 0+ to see that

PH{3te0,1]:Y, =b}] <e 2. (111)

Equality follows by combining the inequalities for the upper and lower bounds.
O

4.3.1 The Brownian Bridge as the Limit of the Empirical Process,
and the Kolmogorov-Smirnov Distribution

Given any sequence (X,,)5; of independent identically-distributed random
variables with (perhaps unknown) cumulative distribution function F(t) :=
P[{X; < t}], an empirical cumulative distribution function for F is a function
of the form

1 n
Fo(t) := - ZX{Xigt}~ (112)
i=1

First consider any sequence (X,,)22; of independent identically distributed
uniform random variables on [0,1]. Let F,(¢) :=n~'>" | X{x,<;} be an em-
pirical cumulative distribution function for F. By the Strong Law of Large
Numbers, for any ¢ € [0, 1], the sequence (Fy,(t))52,; converges to the cumula-
tive distribution function F'(t) := P[{X; < t}] =t almost surely. Furthermore,
by the Central Limit Theorem, the empirical process {X{*}4cjo,1) defined by

Xp = Vn(n™ ZX{Xigt} —t) (113)
i=1

converges in distribution to N(0,#(1 —t)). Additionally, the process {X}"}+cjo,1]
has covariance function C(s,t) = s(1 —t), since s < ¢ implies

EIXIXP] = El(xgxi<sy —8) (Xgxa<yy — 1) = s —ts —st+ st = s(1—1). (114)

This is the same covariance as the Brownian bridge B = {Bi}icjo,1) - By
the Multivariate Central Limit Theorem, the finite dimensional distributions of
the empirical process converges to the finite dimensional distributions of the
Brownian bridge, i.e, for every finite subset F' C [0, 1],

LX) ter) = L((Br)ier)- (115)

From the previous discussion about Brownian motion being the limit of distribu-
tions, this identifies the law of Brownian bridge B as the unique possible limit of
{£(X})}22 ;. In fact, we have the weak convergence £(X]") — £(B;). However,
a much stronger statement actually holds; namely, for every ¢ € (C[0,1], ||| ),
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{L(d(X])) 5L, converges weakly to £(¢(By)). See [1], Section 23 for more de-
tails regarding the proof of this weak convergence.

We would like to give an application of this result. In order to do this, con-
sider some independent identically distributed random variables (X;)$2, with
continuous cumulative distribution function F(¢t) = P[{X; < t}], and consider
the empirical cumulative distribution functions F,,(t) = n~" > | x{x,<s}- Be-
cause F' is continuous, the range of F is the whole interval [0,1]; and because
(F(X;))2, are independent identically distributed uniform random variables,
we have

sup V1| F (1) — F()] = supln™ 'S e — F(0)

teR i—1

= supv/n|n~ ZX{F(X)<F(t)} — F()| (116)

teR

sup v/nln” ZX{F(X y<t} =t

te[0,1]

The last expression here is the distribution of sup,¢o [X{'|. By the above
result, we have the weak convergence {£(sup;c(o,1|X;') }nz1 — £supsejo 17| Bil,
where {B:}ic(o,) is the Brownian bridge. The distribution £sup,¢(g7|B:| is
called the Kolmogorov-Smirnov distribution, and we can actually give an explicit
expression for it.

Theorem 15. (Kolmogorov-Smirnov) For any Brownian bridge Y = {Y; }+¢j0,1)
and any b > 0,

Pl sup |V;| > ] _22 )" Lexp (—2n%b?). (117)
t€(0,1] ot

Proof. Let A, = {w € Q:30 <ty <..<t, <135W, =(-1)"'b}, and
let 7, = inf{t € [0,1] : Y; = b} and 7, = {t € [0,1] : Y; = —b} be the hitting
times of b and b, respectively. Set @, = P[A, N {7 < 7_p}]. Because Q11 is
unchanged by interchanging Y; and —Y;, we see that @, = P[A,] — Qn+1. By
Theorem 14, P[A;] = exp (—2b?).

We now need to make the following observation. The probability that |Yy|
reaches b is the same as the probability that Y; reaches b or —b, which is twice the
probability that Y; reaches b minus the probability that Y; reaches both b and —b.
Now consider the Brownian motion B = {B;}c[o,1) defined by B; = Y; + 1By,
where By is N(0,1) and is independent of Y;. By Theorem 11, we need only
consider the probability that B; reaches b, then reaches —b, and then |B| < e.
This is the same as the probability that B; reaches b, then reaches 3b, and then
satisfies | By — 4b| < e. But whenever € < b, this inequality implies that X; has
reached both b and 3b, and therefore the probability being considered is just the
probability that |B; — 4b| < e. In particular, we have that
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PlAg] = lim P[{|By —4b] < e}]
) (118)
= exp (—5(4b)2) = exp (—8b%) = exp (—2(2)b?).

Now consider Az. Again by Theorem 11, we need only consider the proba-
bility that By hits b, then hits —b, then hits b, and then satisfies |B;| < €. This
is the probability that B; hits b, then hits 3b, then hits 5b, and then satisfies
| By — 6b] < e. The event that By hits b, then hits 3b, and finally hits 5b contains
the event that |By — 6b] < ¢, and therefore the probability being considered is
simply the probability of the event {|B; — 6b| < €}. This gives

P[4g] = lim P[{|B) - 6] < €]

5 (119)
= exp(—%) = exp(—18b%) = exp(—2(3)%v?).

In a more general setting considering A,,, we can apply Theorem 11 and the
reflection principle to the Brownian motion B and to see that P[A,] is the limit
as € — 0 of the probability that we first hit b, and then make n — 1 successive
increasing jumps of size 2b, and then satisfy |Bo—(2+2(n—1))b| = |Bo—2nb| < €.
The sequence of hits is contained in the event that |By — 2nb| < ¢, and so the
desired probability is simply the latter probability. Letting ¢ — 0 gives that
P[A,] = exp(—2n?b?). This implies that @Q,, — 0 as n — oo; and therefore that

P[tZ}équt' > b] = 2Q1 = 2[P[A1] — Q2]
= 2[P[A1] — P[A2] + Q3]

% (120)
= 2> (—1)"'P[A4,]
n=1
=20} (=1)" " exp (—2n°b%)].
n=1
O

Remark: This distribution is often given by.

Plsup Vi <bl=1-2 i(fl)"*l exp (—2n2b?). (121)

te[0,1] ne1

4.3.2 More Bounds for Probabilities Regarding the Brownian Bridge

We also can give an explicit expression for the probability that a Brownian
bridge remains between the levels —a or b for any given a,b > 0.
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Theorem 16. (Two Sided Boundary) For any Brownian bridge Y = {Y; }/cj0.1)
and any a,b > 0,

Pt Yy = —aort] = 3 (e 2nat(mrDh)® L o=2((nDasnb)®y o § o=2n(ath)?,
n=0 n=1

(122)

Proof. Let A, = {3t < ... <t,:Y;, = —a, jodd;Y;, = b, ieven}, and let
B, ={3t1 < ..<ty: Y, = —a, jeven;Y;, =0, i odd}. Consider the hitting
times 7_, = inf{¢t : ¥; = —a} and 7, = inf{¢ : ¢, = b}. Then we have

PEt:Yi=—aorb=P[Ft:Y;=—a; 7o <7p)+ P[Ft: Y =0 7 < 7_4].
(123)
Similarly to the previous theorem, we can see that

P[Bpn;mh < T—q) = P[Bpn]—P|Bpn;T—a < 7] = P|Bp]—P[Ant1; T—a < T; (124)
and
PlAp;7—q < 7] = P[An]—P[An; 7o < T—a] = P[An]—P[Bpi1; 7 < T—a). (125)

By induction, we therefore have
o0

P[Et:Y, = —aor b =Y (—1)"""(P[A,] + P[By)). (126)

n=1

It only remains to calculate the probabilities P[4,] and P[B,] and substitute
them into this expression. This is easy, and can be done using the previous
reflection principles to get

P[As,] = P[Bay] = e~ 20 (040, (127)
P[Bay 1] = e~ 2(at(n+ 0 anq (128)
P[Agp 1] = e7 2 Datnd)”, (129)
O

Our final theorem gives an exact expression for the cumulative distribution
function for the random variable Y" = sup,c(g 1) Y; — inficpo,1) Yz, Where YV =
{Yi}ieqo,1) is a Brownian bridge.

Theorem 17. For any Brownian bridge Y = {Y; };c[0,00) and any h > 0,

Plsup Y;— inf Y, <hl=1-) (8n2h?—2)e 2", (130)

tef0,1] t€[0,1] ot
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Proof. Let X = —inficpo.1)Y; and let Z = sup,¢(o1) Yz, and let F'(a,b) be the

joint cumulative distribution function of (X, Z). This function we already know,
since

F(a,b)=P[X <a;Z<b=P]-a< inf Y;; sup V; <b]=1-P[3t:Y, = —aorb,
te0,1]  ¢e[0,1)

where the last expression can be calculated using Theorem 16. Letting f(a,b) =

gang be the joint distribution function of X and Z, we can calculate the cumu-

lative distribution function of X + Z as follows:

PIX+2<h = /h /h_a f(a, b)dbda. (131)
0 0

Evaluating the inner integral gives

h—a
oFr OF
b)db = 5 -(a,h—a) = 5-(a,0). 132
A f(a, ) Ja (CL CL) D0 (a ) ( )
Differentiating the expression in Theorem 16, we can calculate ?TF as follows:
oF ©
= ;471(% + (n+ 1)b)e2nact(ri 1))’

+ Z4(n+ 1)((’”-‘1- 1)a+nb)e—2((n+1)a+nb)2

n=0

(133)

%)
_ Z8n2(a—|— b)e—an(a+b)2.

n=1

Setting b = h — a and b = 0 above and subtracting the latter from the former
gives

h—a oo
/ f(a,b)db = Z 4n((n+1)h — a)e—Q((n+l)h—a)2
0

n=0

+ 3 4(n+ 1)(nh + a)e 2+ (134)
n=0
o0
- Z8n2h26_2"2h2.
n=1
Finally, integrating this expression over a € [0, h] gives us

oo

P[X +7< h] — Z(2n + 1)(6_2"2h2 _ e—2(n+1)2h2) _ Z8n2h26_2n2h2
n=0 n=1 (135)
=1- Z(8n2h2 - 2)6_2"2h2
n=1

as wanted.
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5 Appendix

5.1 Kolmogorov’s Inequality

Lemma 6. (Kolmogorov’s Inequality) Let (X,)52; be any sequence of inde-
pendent random variables, and set S, := Y. | X;. If, for every j < n we have
that

P{|Sn = 55| = a}] <p <1,

then whenever x > a,
1
1>zl < —— —all.
Pl{ max |5, > 2} < - PH{|S.| > = - a}] (136)

I will not give the proof of this inequality here, since it requires a bit of work.
Refer to [1], Theorem 16 for the proof.

5.2 The Central Limit Theorem and the Law of Large
Numbers

Theorem 18. ((Strong) Law of Large Numbers) Let {X,,}52, be a sequence of
independent, identically-distributed random variables on the same probability
space (€2, %, P), and assume that E[|X;|] < co. Then almost surely,

%i){l — E[X4] (137)

as n — oQ.

Theorem 19. (Central Limit Theorem) Let {X,,}52; be any independent,
identically-distributed copies of a random variable X on the probability space
(©,%, P), each with mean 0 and finite variance o2. Then

1 n
S, = P~ ;X (138)

converges in distribution to N(0,1) as n — oco.

Theorem 20. (Multivariate Central Limit Theorem) Let X = (21, ...,x,) be
any random vector on the probability space (2, %, P) with mean 0 and covari-
ance matrix C, and let {X,}>2; be any sequence of independent, identically-
distributed copies of X. Then

1 n
Sn=—= ;(Xi — E[X3)) (139)

converges in distribution to N(0,C) as n — oo.
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