
MAT 351: Partial Differential Equations
February 9, 2018
For the wave equation utt = c2∆u, the heat equation ut = k∆u, and the Schrödinger equation
iut = −∆u, separation of variables leads to the same eigenvalue problem

−∆u = λu .

It turns out that this eigenvalue problem has no solutions on Rn that decay at infinity or are even
square integrable. (For every vector k, the function u(x) = e−ik·x is a bounded solution with
λ = |k|2 but these don’t lie in L2.) So we had to investigate other methods of solutions.

• The solutions of the wave equation in one, two, and three spatial dimensions are given by
the formulas of D’Alembert, Poisson and Kirchhoff. Similar formulas can be derived in
higher dimensions.

• The solution of the heat equation with u(x, u) = φ(x) is given by

u(x, t) = (4πkt)−n/2
∫
Rn

e−
|x−y|2

4kt φ(y) dy .

(The solution is not unique — the formula defines the solution that decays as |x| → ∞,

provided that φ itself decays.) The positivity of the heat kernel (4πkt)−n/2e−
|x|2
4kt is a mani-

festation of the maximum principle.

• The solution formula for the heat equation remains valid, if k is a complex number with
positive real part, provided that we take the square root

√
k to have positive real part. The

integral converges and defines a smooth function, so long as φ is bounded and integrable.

• By analytic continuation to k = i, we obtain for the Schrödinger equation the solution
formula

u(x, t) = (4πit)−n/2
∫
Rn

e−
|x−y|2

4it φ(y) dy .

Here, the square root in the first factor should be chosen as
√
i = 1+i√

2
. Note that the integral

is now oscillatory, and will diverge unless φ itself decays at infinity. This is related to the

wave-like properties of Schrödinger’s equation. The fact that the kernel (2πit)−n/2e−
|x−y|2

4it

never vanishes indicates infinite speed of propagation.

All the formulas above are for solutions that live on the entire space, Rn. We now return to the
study of these equations on finite domains, with suitable boundary conditions, and revisit the Sepa-
ration of Variables technique, separating the radial from the angular variables in polar coordinates.
The resulting equations for the radial dependence give rise to special functions, such as Bessel
functions. The angular part will be solved by spherical harmonics.

Read: The rmaining part of Chapter 9. Then move on into Chapter 10.
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Assignment 13 (due Friday, February 16):

(H1) The solution of the wave equation utt = c2∆u in space dimension n = 2 is given by Pois-
son’s formula. Starting from this formula, use Hadamard’s method of descent to recover
D’Alembert’s formula for the solution of the wave equation in space dimension n = 1.

(H2) (Strauss, Problem 9.4.2) Suppose that γ satisfies the eikonal equation

|∇γ(x)| = 1

c
, for x ∈ Rn .

(a) Differentiate the equation to show that
∑n

j=1 γxixj
γxj

= 0 for each i = 1, . . . , n.

(b) Let x(t) be a solution of the differential equation ẋ = c2∇γ(x). Show that ẍ = 0, and
hence x(t) is a ray.

(c) Moreover, h(x, t) = t− γ(x) is constant along this ray.
(d) Conclude that S = {(x, t) ∈ Rn×Rn

∣∣ t− γ(x) = 0} is a characteristic surface for the
wave equation utt = c2∆u.

(H3) Let u be a solution of the two-dimensional wave equation with initial data supported on a
disk BR(0).

(a) Prove that tu(x, t) is bounded in t for fixed x ∈ R2, that is,

u(x, t) = O(t−1) as t→∞ textforeach x ∈ R2 .

(b) Also prove that t1/2u(·, t) is bounded uniformly in x as t→∞, that is,

sup
x∈R2

|u(x, t)| = O(t−1/2) as t→∞ .

(H4) Derive the conservation of energy for the wave equation on a domain D with Dirichlet or
Neumann boundary conditions. What about the Robin condition?

For discussion and practice:

1. (a) Solve the heat equation
ut = k∆u , u(x, 0) = φ(x)

for x ∈ Rn and t > 0 in the case where the initial values are given by a product of
continuous functions with compact support

φ(x) =
n∏

i=1

φi(xi) .

Assume that the solution is a product, u(x, t) =
∏n

i=1 u(xi, t). Use the solution in one
dimension that we have constructed previously. Simplify your formula by combining
the integrals and applying the rules of exponentiation.

(b) Argue that the formula holds in fact for every continuous function φ on Rn with com-
pact support.
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