
MAT 351: Partial Differential Equations
March 12, 2018
Consider the eigenvalue problem for the Laplacian on a domain D ⊂ Rd with Dirichlet boundary
conditions

−∆u = λu on D , u = 0 on ∂D .

We assume that D is bounded and that its boundary is smooth (e.g., the domein could be defined by
an inequality D = {x ∈ Rd | g(x) > 0}, where g is a smooth function that satisfies the hypotheses
of the Implicit Function Theorem at every point where g(x) = 0.) Our goal is to prove that there
is an infinite sequence of positive eigenvalues λ1 < λ2 ≤ . . ., whose growth is governed by Weyl’s
law: λn ∼ (4π2)

(
n

VolD

) 2
d . Furthermore, we have completeness, i.e., L2(Rd) has an orthonormal basis

consisting of the corresponding eigenvectors {vn}.

The main tool for the proof is the variational characterization of eigenvalues:

• max-min: λn = max
w1,...wn−1

{
min

u⊥w1,...,wn−1

∫
D
|∇u|2 dx
|u|2

}
;

• min-max: λn = min
w1,...,wn

{
max

u∈span{w1,...,wn}

∫
D
|∇u|2 dx
||u||2

}
.

In these variational problems, the eigenvalues play the role of Lagrange multipliers. The objective
functions is called the Rayleigh quotient. It is minimized by the lowest eigenvalue

λ1 = min
||u||=1

∫
D

|∇u|2 dx .

In these formulas, it is understood that w1, . . . , wn and u should all satisfy the Dirichlet boundary
conditions. For both the max-min and the min-max principle, the functions wi must be linearly inde-
pendent (but they need not be orthonormal). The min-max principle is widely used to obtain upper
bounds on eigenvalues. The max-min principle can provide lower bounds, but it is difficult to ap-
ply, since it requires to solve two infinite-dimensional problems. The following finite-dimensional
approximation method is surprisingly powerful.

• Rayleigh-Ritz principle: Choose n orthonormal “trial functions” w1, . . . wn that satisfy the
Dirichlet boundary conditions. Define a symmetric matrix A by

Aij =

∫
D

∇wi · ∇wj dx ,

and let µ1 ≤ · · · ≤ µn be its eigenvalues. Then λi ≤ µi for each i = 1, . . . , n.

(There are more complicated versions of this that do not require orthogonality.)

The proof of Weyl’s law proceeds by comparing D with a finite union of rectangles. Once we have
Weyl’s law, we will obtain completeness of the eigenfunctions from the min-max principle.
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Read: Sections 11.1 - 11.3.

Hand-in (due March 23):

(H1) Let f(x) be a function on the interval [0, 3] such that

f(0) = f(3) = 0 ,

∫ 3

0

|f(x)|2 dx = 1 ,

∫ 3

0

|f ′(x)|2 dx = 1 .

Find such a function if you can. If it cannot be found, explain why not.

(H2) Estimate the first eigenvalue of −∆ with Dirichlet boundary conditions in the triangle

D = {(x, y) | x+ y < 1, x > 0, y > 0} ,

using the Rayleigh quotient with trial function xy(1− x− y).

(H3) Let D be a smooth, bounded domain in Rd.

(a) Show that the smallest Neumann eigenvalue for −∆ on D is given by µ0 = 0. What is the
corresponding eigenfunction?

(b) If, moreover D is connected, show that µ0 is simple, by arguing that the next eigenvalue
µ1 is strictly positive. (You may use, without proof, that a smooth eigenfunction exists.)

(H4) Let D be a smooth bounded domain in Rd. Denote by (λn)n≥1 the sequence of eigenvalues of
the negative Dirichlet Laplacian −∆, and by (φn)n≥1 an orthonormal basis of corresponding
eigenfunctions.

Assume that u solves the heat equation ut = ∆u on D, with Dirichlet boundary conditions
u|∂d = 0 and initial values u(x, 0) = f(x). Express u in terms of the Dirichlet eigenvalues and
eigenfunctions defined above.

For discussion and practice: Problems in Section 11.2 of Strauss.
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