MAT 351: Partial Differential Equations
March 12, 2018

Consider the eigenvalue problem for the Laplacian on a domain D C R¢ with Dirichlet boundary
conditions
—Au= A uon D, u=0ondD.

We assume that D is bounded and that its boundary is smooth (e.g., the domein could be defined by
an inequality D = {z € R? | g(z) > 0}, where g is a smooth function that satisfies the hypotheses
of the Implicit Function Theorem at every point where g(x) = 0.) Our goal is to prove that there
is an infinite sequence of positive eigenvalues \; < Ay < ..., whose growth is governed by Weyl’s

2
law: \, ~ (472) (ﬁ) 4. Furthermore, we have completeness, i.e., L?(R?) has an orthonormal basis

consisting of the corresponding eigenvectors {v,, }.

The main tool for the proof is the variational characterization of eigenvalues:
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In these variational problems, the eigenvalues play the role of Lagrange multipliers. The objective
functions is called the Rayleigh quotient. It is minimized by the lowest eigenvalue

A1 = min / Vul*dx .
llull=1./p

In these formulas, it is understood that wy, ..., w, and u should all satisfy the Dirichlet boundary
conditions. For both the max-min and the min-max principle, the functions w; must be linearly inde-
pendent (but they need not be orthonormal). The min-max principle is widely used to obtain upper
bounds on eigenvalues. The max-min principle can provide lower bounds, but it is difficult to ap-
ply, since it requires to solve two infinite-dimensional problems. The following finite-dimensional
approximation method is surprisingly powerful.

e Rayleigh-Ritz principle: Choose n orthonormal “trial functions” w, . ..w, that satisfy the
Dirichlet boundary conditions. Define a symmetric matrix A by

Aij == / sz . ij dx,
D

and let p; < --- < p, be its eigenvalues. Then \; < yu; foreachi =1,... n.

(There are more complicated versions of this that do not require orthogonality.)

The proof of Weyl’s law proceeds by comparing D with a finite union of rectangles. Once we have
Weyl’s law, we will obtain completeness of the eigenfunctions from the min-max principle.



Read: Sections 11.1-11.3.
Hand-in (due March 23):

(H1) Let f(z) be a function on the interval [0, 3] such that

1(0) = /|f WPdo =1, /!f (@) de =1

Find such a function if you can. If it cannot be found, explain why not.
(H2) Estimate the first eigenvalue of —A with Dirichlet boundary conditions in the triangle
D={(z,y)|e+y<1l,2>0,y >0},
using the Rayleigh quotient with trial function zy(1 — =z — y).
(H3) Let D be a smooth, bounded domain in R<.
(a) Show that the smallest Neumann eigenvalue for —A on D is given by po = 0. What is the

corresponding eigenfunction?

(b) If, moreover D is connected, show that j is simple, by arguing that the next eigenvalue
1 1s strictly positive. (You may use, without proof, that a smooth eigenfunction exists.)

(H4) Let D be a smooth bounded domain in R%. Denote by (\,),>; the sequence of eigenvalues of
the negative Dirichlet Laplacian —A, and by (¢, ),>1 an orthonormal basis of corresponding
eigenfunctions.

Assume that u solves the heat equation u; = Aw on D, with Dirichlet boundary conditions
u|ga = 0 and initial values u(x,0) = f(z). Express u in terms of the Dirichlet eigenvalues and
eigenfunctions defined above.

For discussion and practice: Problems in Section 11.2 of Strauss.



