
MAT 351: Partial Differential Equations
Assignment 16, March 23, 2018
• A test function on a domain D ⊂ Rd is a smooth function with compact support in D.

The space of test functions on Rd will be denoted by D. We say that limφj = φ in D, if (i) the
functions are supported on a common compact set K ⊂ Rd, (ii) the functions converge uniformly to
φ, and (iii) all their derivatives converge uniformly as well.

• A distribution is a linear transformation mapping test functions to R (or C).

In other words, a distribution f assigns to each φ ∈ D a scalar f(φ). We require that this transformation
be continuous on D, in the sense that

limφj = φ ⇒ lim f(φj) = f(φ) .

We denote the space of distributions by D′, and think of it as the dual space of D.

• A sequence of distributions {fj} converges weakly to f , if lim fj(φ) = f(φ) for all φ ∈ D.

Functions are important special cases of distributions. If f is a continuous function on Rd, we can
define the corresponding distribution by

f(φ) =

∫
f(x)φ(x) dx .

We often write distributions in this form, even when they are not given by a function. For example, the
Dirac δ-distribution is defined by

δ(φ) =

∫
φ(x)δ(x) dx := φ(0) .

The δ-distribution on Rd can be obtained as the weak limit of a Dirac sequence ε−df(ε−1x), where f
is a nonnegative integrable function with

∫
f(x) dx = 1, and ε→ 0+.

• Distributional derivatives of f are defined by
(
Dif)(φ) = −f

(
∂
∂xi
φ
)

for all test functions φ.

Distributional derivatives are also called weak derivatives. If f is given by a differentiable function,
then its distributional derivatives are given by the classical derivatives of f . To give another example,
the derivative of the δ-distribution is one dimension is defined by δ′(φ) = −φ′(0).

When solving a linear PDE Lu = 0, it is often useful to consider distributional solutions. For example,
the fundamental solution of the Laplacian on Rd, given by

Φ(x) = −Cd|x|2−d ,
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(where d ≥ 3 and Cd is a specific dimension-dependent constant) solves

−∆u = δ

in the sense of distributions. In this case, both Φ and its gradient∇Φ turn out to be functions. But note
that distributional solutions make no sense for nonlinear equations, because a nonlinear function of a
distribution is not a distribution. (For example, δ2 has no meaning.)

Read: Sections 1 and 2 of Chapter 12 in Strauss.

Hand-in (due Monday, April 2):

(H1) Compute the first three distributional derivatives of the function

f(x) = max{0, 1− x2} .

(H2) Let f be a distribution on R with f ′ = 0.

(a) What does that mean?

(b) Prove that f(φ) = 0 for all test functions φ with
∫
R φ(x) dx = 0.

(c) Conclude that f is given by a constant function f(x) = c, by showing that

f(φ) = c

∫
R
φ(x) dx

for all test function φ. (Hint: First consider the case where
∫
R φ(x) dx = 0.)

(H3) Consider Burger’s equation

ut + uux = 0 , u(x, 0) = u0(x) (1)

for x ∈ R and t > 0. An integral solution of the equation is a function u such that∫ ∞
0

∫ ∞
−∞

uφt +
1

2
u2φx dxdt+

∫ ∞
−∞

u0(x)φ(0, x) dx = 0 (2)

holds for every smooth test function φ(x, t) with compact support in R× [0,∞).
(Note that φ need not vanish on the line t = 0.)

(a) Suppose u itself is smooth. Verify that then Eq. (2) and Eq. (1) are equivalent.

(b) Let u be a smooth solution of Burger’s equation. Assume that, for each t ≥ 0, u(·, t) has
compact support, and define its mass by

M(t) =

∫ ∞
−∞

u(x, t) dx .

Prove that mass is conserved, i.e., M(t) is constant in time. (Hint: Compute d
dt
M(t).)

(c) Suppose u is a continuous integral solution of Burger’s equation, i.e., u satisfies Eq. (2).
Assume furthermore that u(·, t) has compact support for each t ≥ 0. Show that mass is
conserved also in this case. (Hint: Use test functions of the form φ(x, t) = a(x)b(t).)
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