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Multi-graded C[Z] -modules
that refine colored Jones at roots of unity.

For a root q of unity of degree r > 2 ,
and a classical link L with components L1, . . . , Ln

colored by pairs (λi, µi) of natural numbers ≤ r − 2 ,
we construct a finite-dimensional vector space Qλ,µ(L)

and invertible operator Tλ,µ ∶ Qλ,µ(L)→ Qλ,µ(L) .

⊕λ,µQλ,µ is a multi-graded C[Z] -module.

Let Lλ1,...,λn
be the link L with components colored with λ1, . . . λn .

Colored Jones of Lλ1,...,λn
can be recovered from ⊕λ,µQλ,µ :

JLλ1,...,λn
(q) =∑µ dimq Vµ1

. . .dimq Vµn
trTλ1,...,λn;µ1,...,µn

.
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Bi-graded Z[Z] -modules for surfaces
generically immersed in 4-manifolds.

Let Λ be a smooth closed 2-manifold generically immersed in S3 × S1 .

Λ may be non-orientable .
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We will construct a bi-graded Z[Z] -module
invariant under ambient diffeotopy of Λ .
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invariant under ambient diffeotopy of Λ .

It is trivial , unless χ(Λ) = e(Λ) = 2d(Λ) .
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Bi-graded Z[Z] -modules for surfaces
generically immersed in 4-manifolds.

Let Λ be a smooth closed 2-manifold generically immersed in S3 × S1 .

We will construct a bi-graded Z[Z] -module
invariant under ambient diffeotopy of Λ .

It is trivial , unless χ(Λ) = e(Λ) = 2d(Λ) .

Immersed surfaces in S4 transversal to a standardly embedded S2 .
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Let X be a compact manifold, p ∶ Y →X be its infinite cyclic covering

defined by ξ ∈H1(X ;Z) ;
i.e., induced by a map f ∶X → S1 from R→ S1 ∶ x↦ exp(2πix) .

Let F = f−1(pt) be the pre-image of a regular value pt of f .

p−1(F ) = F̃ = ⋃
n∈ZFn divides Y into Xn with ∂Xi = Fn+1 ∪ −Fn .

FnFn−1 Fn+1Fn−2 Fn+2

Y

Xn−2 Xn−1 Xn+1Xn

FX

R

S1
f
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Let dimX =m , and Z be an m-dimensional TQFT.

Z(Xn) ∶ Z(Fn)→ Z(Fn+1) is the map induced by cobordism Xn .
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KerZ(X0) ⊂ KerZ(X1 ∪X0) ⊂ KerZ(X2 ∪X1∪X0) ⊂ ⋅ ⋅ ⋅ ⊂ Z(F0)
stabilizes.
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Let dimX =m , and Z be an m-dimensional TQFT.

Z(Xn) ∶ Z(Fn)→ Z(Fn+1) is the map induced by cobordism Xn .

The increasing sequence

KerZ(X0) ⊂ KerZ(X1 ∪X0) ⊂ KerZ(X2 ∪X1∪X0) ⊂ ⋅ ⋅ ⋅ ⊂ Z(F0)
stabilizes.

Let Q(X, ξ) = Z(F0)/Ker(Z( ∞⋃
n=0Xn))

≅

∞
⋂
j=1 Im(Z(

−1
⋃

n=−jXn)) ⊂ Z(F0).
Theorem. Q(X, ξ) does not depend on F .

Proof:

GFF G F G
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Let dimX =m , and Z be an m-dimensional TQFT.

Z(Xn) ∶ Z(Fn)→ Z(Fn+1) is the map induced by cobordism Xn .

The increasing sequence

KerZ(X0) ⊂ KerZ(X1 ∪X0) ⊂ KerZ(X2 ∪X1∪X0) ⊂ ⋅ ⋅ ⋅ ⊂ Z(F0)
stabilizes.

Let Q(X, ξ) = Z(F0)/Ker(Z( ∞⋃
n=0Xn))

≅

∞
⋂
j=1 Im(Z(

−1
⋃

n=−jXn)) ⊂ Z(F0).
Theorem. Q(X, ξ) does not depend on F .

Deck transformations determine an action of Z in Q(X, ξ) .

If X = S3 ∖K , Z(F ) =H1(F ;Q) , then
this is Seifert’s calculation of the Alexander module H1(Y ;Q) of K .
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Let dimX =m , and Z be an m-dimensional TQFT.

Z(Xn) ∶ Z(Fn)→ Z(Fn+1) is the map induced by cobordism Xn .

The increasing sequence

KerZ(X0) ⊂ KerZ(X1 ∪X0) ⊂ KerZ(X2 ∪X1∪X0) ⊂ ⋅ ⋅ ⋅ ⊂ Z(F0)
stabilizes.

Let Q(X, ξ) = Z(F0)/Ker(Z( ∞⋃
n=0Xn))

≅

∞
⋂
j=1 Im(Z(

−1
⋃

n=−jXn)) ⊂ Z(F0).
Theorem. Q(X, ξ) does not depend on F .

Deck transformations determine an action of Z in Q(X, ξ) .

For 3-manifolds and various TQFT’s, it was studied by Pat Gilmer in 90s.
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Homomorphisms A ∶ V → V , B ∶W →W are said to be
elementary strong shift equivalent

if ∃ P ∶ V →W and R ∶W → V such that A = RP and B = PR .

Diagram

B

V
A

V

WW

RP P commutes.

P , Q induce isomorphisms between the stable images of A and B .

The transitive closure of elementary strong shift equivalence is called
strong shift equivalence .

Z(X1) ∶ Z(F1)→ Z(F2) is defined by X and ξ up to strong shift
equivalence.
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can be collapsed.
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An n-skeleton of a manifold M is an n-polyhedron S to which
the union of all handles of indices ≤ n in a handle decomposition of M

can be collapsed.

There is no natural n-skeleton, but there are generic n-skeletons,
and their generic transformations to each other.

A generic graph that cannot be diminished by a collapse is trivalent.

A non-generic graph:
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An n-skeleton of a manifold M is an n-polyhedron S to which
the union of all handles of indices ≤ n in a handle decomposition of M

can be collapsed.

There is no natural n-skeleton, but there are generic n-skeletons,
and their generic transformations to each other.

A generic non-collapsible 2-polyhedron has local structure of a foam:

stratified with trivalent 1-strata:

and vertices of one kind:
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Theorem (Casler, 1965). A closed oriented 3-manifold can be
recovered from its generic 2-skeleton.

An oriented smooth closed 4-manifold
cannot be recovered from its generic 2-skeleton.

A 2-stratum of a generic 2-skeleton in an oriented 4-manifold has

self-intersection number ∈
1

2
Z .

Theorem (Turaev, 1991). An oriented smooth closed 4-manifold can be
recovered from its generic 2-skeleton equipped with self-intersection
numbers of 2-strata.

Self-intersection numbers are called gleams ,
a generic 2-polyhedron with gleams is a shadowed 2-polyhedron .

A generic 2-polyhedron that is not equipped with gleams
is considered shadowed with all gleams equal zero .
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Corollary. Any quantity calculated for a generic 2-polyhedron and
invariant with respect the three Matveev-Piergallini moves is a
topological invariant of a 3-manifold .
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Theorem (Turaev). Any two shadowed 2-skeletons of an oriented
smooth closed 4-manifold can be transformed to each other by a
sequence of moves of the following 4 types.
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Theorem (Turaev). Any two shadowed 2-skeletons of an oriented
smooth closed 4-manifold can be transformed to each other by a
sequence of moves of the following 4 types.

Gleams change as follows:
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Theorem (Turaev). Any two shadowed 2-skeletons of an oriented
smooth closed 4-manifold can be transformed to each other by a
sequence of moves of the following 4 types.

Gleams change as follows:

0

0

x
x
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Theorem (Turaev). Any two shadowed 2-skeletons of an oriented
smooth closed 4-manifold can be transformed to each other by a
sequence of moves of the following 4 types.

Gleams change as follows:

0x+y
x

y



How 2-skeletons move in 4D

Table of Contents p. 62 – 12 / 38

Theorem (Turaev). Any two shadowed 2-skeletons of an oriented
smooth closed 4-manifold can be transformed to each other by a
sequence of moves of the following 4 types.

Gleams change as follows:

0
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Theorem (Turaev). Any two shadowed 2-skeletons of an oriented
smooth closed 4-manifold can be transformed to each other by a
sequence of moves of the following 4 types.

Gleams change as follows:

+1/2 +1/2−1/2

+1/2 −1/2

0

0
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The boundary of a generic 2-polyhedron is a generic 1-polyhedron.
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A generic 2-polyhedron with boundary has interior points with

neighborhoods homeomorphic to R2 , or , or ,

and boundary points with no neighborhoods of these sorts,

but with neighborhoods homeomorphic to or .

The boundary of a generic 2-polyhedron is a generic 1-polyhedron.

A generic 2-polyhedron X whose boundary ∂X is a disjoint union of
3-valent graphs Γ0 and Γ1 is a cobordism between Γ0 and Γ1 .
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A generic 2-polyhedron with boundary has interior points with

neighborhoods homeomorphic to R2 , or , or ,

and boundary points with no neighborhoods of these sorts,

but with neighborhoods homeomorphic to or .

The boundary of a generic 2-polyhedron is a generic 1-polyhedron.

A generic 2-polyhedron X whose boundary ∂X is a disjoint union of
3-valent graphs Γ0 and Γ1 is a cobordism between Γ0 and Γ1 .

Generic shadowed 2-polyhedra with boundary are called equivalent ,
if they can be transformed to each other by the moves.

Recall: moves do not affect the boundary.
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A generic 2-polyhedron with boundary has interior points with

neighborhoods homeomorphic to R2 , or , or ,

and boundary points with no neighborhoods of these sorts,

but with neighborhoods homeomorphic to or .

The boundary of a generic 2-polyhedron is a generic 1-polyhedron.

A generic 2-polyhedron X whose boundary ∂X is a disjoint union of
3-valent graphs Γ0 and Γ1 is a cobordism between Γ0 and Γ1 .

Generic shadowed 2-polyhedra with boundary are called equivalent ,
if they can be transformed to each other by the moves.

Recall: moves do not affect the boundary.

Any two trivalent graphs are cobordant,
but there are many non-equivalent generic shadowed 2-polyhedra.
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A relative generic 2-skeleton of a compact 3-manifold W is a generic
2-polyhedron X with boundary such that W ∖ finite set can collapse
to X in such a way that the collapsing would preserve the boundary

so that ∂W ∖ finite set would collapse to ∂X =X ∩ ∂W .
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A relative generic 2-skeleton of a compact 3-manifold W is a generic
2-polyhedron X with boundary such that W ∖ finite set can collapse
to X in such a way that the collapsing would preserve the boundary

so that ∂W ∖ finite set would collapse to ∂X =X ∩ ∂W .

A relative generic 2-skeleton of an oriented smooth compact
4-manifold W is a generic 2-polyhedron X with boundary such that
the union of all handles of W of indices ≤ 2 can collapse to X in such
a way that the collapsing would preserve the boundary

so that ∂W ∖ graph would collapse to ∂X =X ∩ ∂W .
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A relative generic 2-skeleton of a compact 3-manifold W is a generic
2-polyhedron X with boundary such that W ∖ finite set can collapse
to X in such a way that the collapsing would preserve the boundary

so that ∂W ∖ finite set would collapse to ∂X =X ∩ ∂W .

A relative generic 2-skeleton of an oriented smooth compact
4-manifold W is a generic 2-polyhedron X with boundary such that
the union of all handles of W of indices ≤ 2 can collapse to X in such
a way that the collapsing would preserve the boundary

so that ∂W ∖ graph would collapse to ∂X =X ∩ ∂W .

For 2-strata of X adjacent to ∂X , self-intersections are not defined.
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A relative generic 2-skeleton of a compact 3-manifold W is a generic
2-polyhedron X with boundary such that W ∖ finite set can collapse
to X in such a way that the collapsing would preserve the boundary

so that ∂W ∖ finite set would collapse to ∂X =X ∩ ∂W .

A relative generic 2-skeleton of an oriented smooth compact
4-manifold W is a generic 2-polyhedron X with boundary such that
the union of all handles of W of indices ≤ 2 can collapse to X in such
a way that the collapsing would preserve the boundary

so that ∂W ∖ graph would collapse to ∂X =X ∩ ∂W .

For 2-strata of X adjacent to ∂X , self-intersections are not defined.

Choose a framing of ∂X in ∂W .
Now all 2-strata of X have self-intersections.
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A relative generic 2-skeleton of a compact 3-manifold W is a generic
2-polyhedron X with boundary such that W ∖ finite set can collapse
to X in such a way that the collapsing would preserve the boundary

so that ∂W ∖ finite set would collapse to ∂X =X ∩ ∂W .

A relative generic 2-skeleton of an oriented smooth compact
4-manifold W is a generic 2-polyhedron X with boundary such that
the union of all handles of W of indices ≤ 2 can collapse to X in such
a way that the collapsing would preserve the boundary

so that ∂W ∖ graph would collapse to ∂X =X ∩ ∂W .

Any compact 3-manifold W has a relative generic 2-skeleton.
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A relative generic 2-skeleton of a compact 3-manifold W is a generic
2-polyhedron X with boundary such that W ∖ finite set can collapse
to X in such a way that the collapsing would preserve the boundary

so that ∂W ∖ finite set would collapse to ∂X =X ∩ ∂W .

A relative generic 2-skeleton of an oriented smooth compact
4-manifold W is a generic 2-polyhedron X with boundary such that
the union of all handles of W of indices ≤ 2 can collapse to X in such
a way that the collapsing would preserve the boundary

so that ∂W ∖ graph would collapse to ∂X =X ∩ ∂W .

Any compact 3-manifold W has a relative generic 2-skeleton.

Any smooth oriented compact 4-manifold W

has a relative generic 2-skeleton.
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A relative generic 2-skeleton of a compact 3-manifold W is a generic
2-polyhedron X with boundary such that W ∖ finite set can collapse
to X in such a way that the collapsing would preserve the boundary

so that ∂W ∖ finite set would collapse to ∂X =X ∩ ∂W .

A relative generic 2-skeleton of an oriented smooth compact
4-manifold W is a generic 2-polyhedron X with boundary such that
the union of all handles of W of indices ≤ 2 can collapse to X in such
a way that the collapsing would preserve the boundary

so that ∂W ∖ graph would collapse to ∂X =X ∩ ∂W .

Any compact 3-manifold W has a relative generic 2-skeleton.

Any smooth oriented compact 4-manifold W

has a relative generic 2-skeleton.

In both dimensions, any generic 1-skeleton of ∂W
bounds a relative generic 2-skeleton of W .
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A relative generic 2-skeleton of a compact 3-manifold W is a generic
2-polyhedron X with boundary such that W ∖ finite set can collapse
to X in such a way that the collapsing would preserve the boundary

so that ∂W ∖ finite set would collapse to ∂X =X ∩ ∂W .

A relative generic 2-skeleton of an oriented smooth compact
4-manifold W is a generic 2-polyhedron X with boundary such that
the union of all handles of W of indices ≤ 2 can collapse to X in such
a way that the collapsing would preserve the boundary

so that ∂W ∖ graph would collapse to ∂X =X ∩ ∂W .

Any compact 3-manifold W has a relative generic 2-skeleton.

Any smooth oriented compact 4-manifold W

has a relative generic 2-skeleton.

In both dimensions, any generic 1-skeleton of ∂W
bounds a relative generic 2-skeleton of W ,

and any two relative 2-skeletons with the same boundary are equivalent.
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Fix a finite set P called a pallet and a field k .
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Fix a finite set P called a pallet and a field k .

For a trivalent graph Γ ,
a map {1-strata of Γ}→ P is called a coloring of Γ .
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Fix a finite set P called a pallet and a field k .

For a trivalent graph Γ ,
a map {1-strata of Γ}→ P is called a coloring of Γ .

Denote by C(Γ) a vector space over k generated by colorings of Γ .
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Fix a finite set P called a pallet and a field k .

For a trivalent graph Γ ,
a map {1-strata of Γ}→ P is called a coloring of Γ .

Denote by C(Γ) a vector space over k generated by colorings of Γ .

A state or coloring of a generic polyhedron X is a map
s ∶ {2-strata of X}→ P .
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Fix a finite set P called a pallet and a field k .

For a trivalent graph Γ ,
a map {1-strata of Γ}→ P is called a coloring of Γ .

Denote by C(Γ) a vector space over k generated by colorings of Γ .

A state or coloring of a generic polyhedron X is a map
s ∶ {2-strata of X}→ P .

A state s of X induces a coloring ∂s of ∂X .
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Fix a finite set P called a pallet and a field k .

For a trivalent graph Γ ,
a map {1-strata of Γ}→ P is called a coloring of Γ .

Denote by C(Γ) a vector space over k generated by colorings of Γ .

A state or coloring of a generic polyhedron X is a map
s ∶ {2-strata of X}→ P .

A state s of X induces a coloring ∂s of ∂X .

A map Z ∶ {states of X}→ k defines a linear map
C(∂X)→ k that maps a coloring c of ∂X to ZX(c) = ∑

∂s=cZ(s) .
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Fix a finite set P called a pallet and a field k .

For a trivalent graph Γ ,
a map {1-strata of Γ}→ P is called a coloring of Γ .

Denote by C(Γ) a vector space over k generated by colorings of Γ .

A state or coloring of a generic polyhedron X is a map
s ∶ {2-strata of X}→ P .

A state s of X induces a coloring ∂s of ∂X .

A map Z ∶ {states of X}→ k defines a linear map
C(∂X)→ k that maps a coloring c of ∂X to ZX(c) = ∑

∂s=cZ(s) .

If Γ = ∅ , then there is only one coloring of Γ and C(Γ) = k .
If ∂X = ∅ , then ZX ∈ k .
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Fix a finite set P called a pallet and a field k .

For a trivalent graph Γ ,
a map {1-strata of Γ}→ P is called a coloring of Γ .

Denote by C(Γ) a vector space over k generated by colorings of Γ .

A state or coloring of a generic polyhedron X is a map
s ∶ {2-strata of X}→ P .

A state s of X induces a coloring ∂s of ∂X .

A map Z ∶ {states of X}→ k defines a linear map
C(∂X)→ k that maps a coloring c of ∂X to ZX(c) = ∑

∂s=cZ(s) .

If Γ = ∅ , then there is only one coloring of Γ and C(Γ) = k .
If ∂X = ∅ , then ZX ∈ k .

If X is a cobordism between Γ0 and Γ1 ,
then ZX(c0, c1) is a matrix defining a map ZX ∶ C(Γ0)→ C(Γ1) .
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Which Z , ZX are good for study of manifolds?
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Which Z , ZX are good for study of manifolds?
(1) Those that depend only on the equivalence class of X ,

that is only on the manifold whose skeleton is X ,
(2) those that define a TQFT (i.e, a functor Cobordisms → Vect(k) )?
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Which Z , ZX are good for study of manifolds?
(1) Those that depend only on the equivalence class of X ,

that is only on the manifold whose skeleton is X ,
(2) those that define a TQFT (i.e, a functor Cobordisms → Vect(k) )?

Fix w0 ∶ P
6 → C , w1 ∶ P

3 → C , w2 ∶ P → C , t ∶ P → C , w3 ∈ C .
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Which Z , ZX are good for study of manifolds?
(1) Those that depend only on the equivalence class of X ,

that is only on the manifold whose skeleton is X ,
(2) those that define a TQFT (i.e, a functor Cobordisms → Vect(k) )?

Fix w0 ∶ P
6 → C , w1 ∶ P

3 → C , w2 ∶ P → C , t ∶ P → C , w3 ∈ C .

w1 is symmetric (symmetric group S3 );

w0 has the symmetry of tetrahedron (S4 acting on the set of 6 edges).
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Which Z , ZX are good for study of manifolds?
(1) Those that depend only on the equivalence class of X ,

that is only on the manifold whose skeleton is X ,
(2) those that define a TQFT (i.e, a functor Cobordisms → Vect(k) )?

Fix w0 ∶ P
6 → C , w1 ∶ P

3 → C , w2 ∶ P → C , t ∶ P → C , w3 ∈ C .

w1 is symmetric (symmetric group S3 );

w0 has the symmetry of tetrahedron (S4 acting on the set of 6 edges).

For a state s , let Z(s) =
w
−χ(X)+ 1

2
χ(∂X)

3 ∏
f∈{2-strata}w2(s(f))χ(f)+ 1

2
χ(f̄∩∂X∖{vertices}) t(s(f))2f○f

× ∏
e∈{1-strata of IntX}w1(s(f)∣f ∈ St(e))χ(e)+ 1

2
χ(e∩∂X)

× ∏
v∈{vertices of IntX}w0(s(f)∣f ∈ St(v)).
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Which Z , ZX are good for study of manifolds?
(1) Those that depend only on the equivalence class of X ,

that is only on the manifold whose skeleton is X ,
(2) those that define a TQFT (i.e, a functor Cobordisms → Vect(k) )?

Fix w0 ∶ P
6 → C , w1 ∶ P

3 → C , w2 ∶ P → C , t ∶ P → C , w3 ∈ C .

w1 is symmetric (symmetric group S3 );

w0 has the symmetry of tetrahedron (S4 acting on the set of 6 edges).

For a state s , let Z(s) =
w
−χ(X)+ 1

2
χ(∂X)

3 ∏
f∈{2-strata}w2(s(f))χ(f)+ 1

2
χ(f̄∩∂X∖{vertices}) t(s(f))2f○f

× ∏
e∈{1-strata of IntX}w1(s(f)∣f ∈ St(e))χ(e)+ 1

2
χ(e∩∂X)

× ∏
v∈{vertices of IntX}w0(s(f)∣f ∈ St(v)).

Let ZX(c) = ∑
s such that ∂s=cZ(s) . What wi and t to choose?
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The usual source of the structural constants wi and t

is a modular category .



Invariants of knotted graphs

Table of Contents p. 95 – 18 / 38

The usual source of the structural constants wi and t

is a modular category .
Not all the axioms of modular category are needed.
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We may start with isotopy invariants of embedded in R3 framed
trivalent graphs with 1-strata colored with colors from a finite pallet P .
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We may start with isotopy invariants of embedded in R3 framed
trivalent graphs with 1-strata colored with colors from a finite pallet P .
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We may start with isotopy invariants of embedded in R3 framed
trivalent graphs with 1-strata colored with colors from a finite pallet P .

Assume that the invariant satisfies two axioms:
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We may start with isotopy invariants of embedded in R3 framed
trivalent graphs with 1-strata colored with colors from a finite pallet P .

Assume that the invariant satisfies two axioms:

⟨ Γ

k

j

⟩ = δkjC(Γ, j) ⟨
j

j

⟩

⟨
l

i j

k

Γ ⟩ = ∑
m∈PC(Γ, i, j, k, l,m) ⟨ m

l

i j

k

⟩.
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We may start with isotopy invariants of embedded in R3 framed
trivalent graphs with 1-strata colored with colors from a finite pallet P .

Assume that the invariant satisfies two axioms:

⟨ Γ

k

j

⟩ = δkjC(Γ, j) ⟨
j

j

⟩

⟨
l

i j

k

Γ ⟩ = ∑
m∈PC(Γ, i, j, k, l,m) ⟨ m

l

i j

k

⟩.

Theorem. If w2(j) = ⟨
j
⟩ , t(j) = ⟨ j

⟩
⟨

j

⟩ , w1(j,m, l) = ⟨ m

j

l⟩ ,

w0 (i j k

l m n
) = ⟨ kj

n m

l

i ⟩ , w3 =∑j w
2
2(j) , then ZX is

invariant under moves and defines a TQFT.
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Correction: the state sums define a functor(trivalent graphs and their cobordisms)→ Vectk .
but only a semifunctor (manifolds, their cobordisms)→ Vectk .
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Correction: the state sums define a functor(trivalent graphs and their cobordisms)→ Vectk .
but only a semifunctor (manifolds, their cobordisms)→ Vectk .

The identity cobordism of a trivalent graph Γ is Γ × I , but
if Γ is a 1-skeleton of M , then Γ × I is not a 2-skeleton of M × I .
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Correction: the state sums define a functor(trivalent graphs and their cobordisms)→ Vectk .
but only a semifunctor (manifolds, their cobordisms)→ Vectk .

The identity cobordism of a trivalent graph Γ is Γ × I , but
if Γ is a 1-skeleton of M , then Γ × I is not a 2-skeleton of M × I .

Still, the composition of cobordisms has a 2-skeleton
that is the compositions of 2-skeletons of the cobordisms.
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Correction: the state sums define a functor(trivalent graphs and their cobordisms)→ Vectk .
but only a semifunctor (manifolds, their cobordisms)→ Vectk .

The identity cobordism of a trivalent graph Γ is Γ × I , but
if Γ is a 1-skeleton of M , then Γ × I is not a 2-skeleton of M × I .

Still, the composition of cobordisms has a 2-skeleton
that is the compositions of 2-skeletons of the cobordisms.

In order to turn a functor(trivalent graphs and their cobordisms)→ Vectk

to a functor (manifolds and their cobordisms)→ Vectk ,
factorize C(1-skeleton of a manifoldM) by KerZ2-skeleton of M×I .

Denote C(1-skeleton of a manifoldM)/KerZ2-skeleton of M×I by Z(M)
and Z2-skeleton of a cobordism W by ZW . This is a TQFT!
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For 2-skeletons of 3-manifolds and the background invariants
obtained from the Kauffman bracket extended by cabling and

the Jones-Wenzl projectors and evaluated at a root q of unity ,
this is the Turaev-Viro TQFT introduced in 1991.
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For 2-skeletons of 3-manifolds and the background invariants
obtained from the Kauffman bracket extended by cabling and

the Jones-Wenzl projectors and evaluated at a root q of unity ,
this is the Turaev-Viro TQFT introduced in 1991.

The same background invariants give a new (3+1)-TQFT.
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For 2-skeletons of 3-manifolds and the background invariants
obtained from the Kauffman bracket extended by cabling and

the Jones-Wenzl projectors and evaluated at a root q of unity ,
this is the Turaev-Viro TQFT introduced in 1991.

The same background invariants give a new (3+1)-TQFT.

If the state sums come from a modular category ,
then dimZ(M) = 1 for any oriented closed connected 3-manifold M .
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For 2-skeletons of 3-manifolds and the background invariants
obtained from the Kauffman bracket extended by cabling and

the Jones-Wenzl projectors and evaluated at a root q of unity ,
this is the Turaev-Viro TQFT introduced in 1991.

The same background invariants give a new (3+1)-TQFT.

If the state sums come from a modular category ,
then dimZ(M) = 1 for any oriented closed connected 3-manifold M .

Then for any cobordism W

the map ZW is multiplication by an exponent of the signature of W .
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For 2-skeletons of 3-manifolds and the background invariants
obtained from the Kauffman bracket extended by cabling and

the Jones-Wenzl projectors and evaluated at a root q of unity ,
this is the Turaev-Viro TQFT introduced in 1991.

The same background invariants give a new (3+1)-TQFT.

If the state sums come from a modular category ,
then dimZ(M) = 1 for any oriented closed connected 3-manifold M .

Then for any cobordism W

the map ZW is multiplication by an exponent of the signature of W .

Because then ZW is invariant under cobordism (Turaev, 1991).
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For 2-skeletons of 3-manifolds and the background invariants
obtained from the Kauffman bracket extended by cabling and

the Jones-Wenzl projectors and evaluated at a root q of unity ,
this is the Turaev-Viro TQFT introduced in 1991.

The same background invariants give a new (3+1)-TQFT.

If the state sums come from a modular category ,
then dimZ(M) = 1 for any oriented closed connected 3-manifold M .

Then for any cobordism W

the map ZW is multiplication by an exponent of the signature of W .

Because then ZW is invariant under cobordism (Turaev, 1991).

It follows from the axiom requiring invertibility of S-matrix .
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For 2-skeletons of 3-manifolds and the background invariants
obtained from the Kauffman bracket extended by cabling and

the Jones-Wenzl projectors and evaluated at a root q of unity ,
this is the Turaev-Viro TQFT introduced in 1991.

The same background invariants give a new (3+1)-TQFT.

If the state sums come from a modular category ,
then dimZ(M) = 1 for any oriented closed connected 3-manifold M .

Then for any cobordism W

the map ZW is multiplication by an exponent of the signature of W .

Because then ZW is invariant under cobordism (Turaev, 1991).

It follows from the axiom requiring invertibility of S-matrix .

There are many invariants of framed colored trivalent graphs
for which the S-matrix is not invertible.
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Take for the background invariants the Kauffman bracket
extended by cabling and the Jones-Wenzl projectors

and evaluated at a root q of unity.
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Take for the background invariants the Kauffman bracket
extended by cabling and the Jones-Wenzl projectors

and evaluated at a root q of unity.

The value at q of the colored Jones polynomial of a link L equals
the state sum of a generic 2-skeleton S of X =D4 ∪⋃iHi ,

where Hi are 2-handles attached along the components of L .
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Take for the background invariants the Kauffman bracket
extended by cabling and the Jones-Wenzl projectors

and evaluated at a root q of unity.

The value at q of the colored Jones polynomial of a link L equals
the state sum of a generic 2-skeleton S of X =D4 ∪⋃iHi ,

where Hi are 2-handles attached along the components of L .

The only restriction: Hi ∩ S is a disk for each i and
in the state sum the colors of these disks

coincide with the colors of the corresponding components of L .
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Let L = ⋃
i
Li ⊂ S3 be an oriented classical link framed by its Seifert

surface, Hi be a 2-handle attached along Li and X =D4 ∪⋃
i
Hi .
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Let L = ⋃
i
Li ⊂ S3 be an oriented classical link framed by its Seifert

surface, Hi be a 2-handle attached along Li and X =D4 ∪⋃
i
Hi .

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L ;
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Let L = ⋃
i
Li ⊂ S3 be an oriented classical link framed by its Seifert

surface, Hi be a 2-handle attached along Li and X =D4 ∪⋃
i
Hi .

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L ;
(2) Extend T to a 2-skeleton R of S3 ∖L ;
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Let L = ⋃
i
Li ⊂ S3 be an oriented classical link framed by its Seifert

surface, Hi be a 2-handle attached along Li and X =D4 ∪⋃
i
Hi .

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L ;
(2) Extend T to a 2-skeleton R of S3 ∖L ;

R is also a 2-skeleton of the 4-manifold (S3 ∖L) × I .
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Let L = ⋃
i
Li ⊂ S3 be an oriented classical link framed by its Seifert

surface, Hi be a 2-handle attached along Li and X =D4 ∪⋃
i
Hi .

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L ;
(2) Extend T to a 2-skeleton R of S3 ∖L ;

R is also a 2-skeleton of the 4-manifold (S3 ∖L) × I .

(3) Adjoin to R disks mi along meridians of Li .
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Let L = ⋃
i
Li ⊂ S3 be an oriented classical link framed by its Seifert

surface, Hi be a 2-handle attached along Li and X =D4 ∪⋃
i
Hi .

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L ;
(2) Extend T to a 2-skeleton R of S3 ∖L ;

R is also a 2-skeleton of the 4-manifold (S3 ∖L) × I .

(3) Adjoin to R disks mi along meridians of Li .

The result is a 2-skeleton of S3 × I .
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Let L = ⋃
i
Li ⊂ S3 be an oriented classical link framed by its Seifert

surface, Hi be a 2-handle attached along Li and X =D4 ∪⋃
i
Hi .

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L ;
(2) Extend T to a 2-skeleton R of S3 ∖L ;

R is also a 2-skeleton of the 4-manifold (S3 ∖L) × I .

(3) Adjoin to R disks mi along meridians of Li .

The result is a 2-skeleton of S3 × I and of D4 .
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Let L = ⋃
i
Li ⊂ S3 be an oriented classical link framed by its Seifert

surface, Hi be a 2-handle attached along Li and X =D4 ∪⋃
i
Hi .

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L ;
(2) Extend T to a 2-skeleton R of S3 ∖L ;

R is also a 2-skeleton of the 4-manifold (S3 ∖L) × I .

(3) Adjoin to R disks mi along meridians of Li .

The result is a 2-skeleton of S3 × I and of D4 .

(4) Adjoin to R a disk li along longitude of each Li . Let U = R ∪⋃
i
li .
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Let L = ⋃
i
Li ⊂ S3 be an oriented classical link framed by its Seifert

surface, Hi be a 2-handle attached along Li and X =D4 ∪⋃
i
Hi .

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L ;
(2) Extend T to a 2-skeleton R of S3 ∖L ;

R is also a 2-skeleton of the 4-manifold (S3 ∖L) × I .

(3) Adjoin to R disks mi along meridians of Li .

The result is a 2-skeleton of S3 × I and of D4 .

(4) Adjoin to R a disk li along longitude of each Li . Let U = R ∪⋃
i
li .

This completes building of S = U ∪⋃
i
mi , a 2-skeleton for X .
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Let L = ⋃
i
Li ⊂ S3 be an oriented classical link framed by its Seifert

surface, Hi be a 2-handle attached along Li and X =D4 ∪⋃
i
Hi .

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L ;
(2) Extend T to a 2-skeleton R of S3 ∖L ;

R is also a 2-skeleton of the 4-manifold (S3 ∖L) × I .

(3) Adjoin to R disks mi along meridians of Li .

The result is a 2-skeleton of S3 × I and of D4 .

(4) Adjoin to R a disk li along longitude of each Li . Let U = R ∪⋃
i
li .

This completes building of S = U ∪⋃
i
mi , a 2-skeleton for X .

Choose a Seifert surface F ⊂ S3 for L such that
F is transversal to R and ∂mi and disjoint from ∂li .
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The infinite cyclic covering of S3 ∖L does not extend to disks mi .
There is no non-trivial coverings of S , since π1(S) = 0 .
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The infinite cyclic covering of S3 ∖L does not extend to disks mi .
There is no non-trivial coverings of S , since π1(S) = 0 .

Therefore one cannot apply the Turaev construction to S .
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The infinite cyclic covering of S3 ∖L does not extend to disks mi .
There is no non-trivial coverings of S , since π1(S) = 0 .

Therefore one cannot apply the Turaev construction to S .

Instead, we will apply it to S ∖ ∪i Intmi = U .
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Split the state sum that provides the value at q of the colored Jones
JLλ
(q) into partial state sums with fixed colors µi on the disks mi .
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Split the state sum that provides the value at q of the colored Jones
JLλ
(q) into partial state sums with fixed colors µi on the disks mi .

In a partial sum, take the common factor ∏iw2(µi) =∏i dimq Vµi

outside the brackets. Inside the brackets we see new state sums,
sums over colorings of the 2-strata of S that are contained in U .
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Split the state sum that provides the value at q of the colored Jones
JLλ
(q) into partial state sums with fixed colors µi on the disks mi .

In a partial sum, take the common factor ∏iw2(µi) =∏i dimq Vµi

outside the brackets. Inside the brackets we see new state sums,
sums over colorings of the 2-strata of S that are contained in U .

Apply the Turaev construction to each of them and
to the infinite cyclic covering Ũ → U defined by F ∩U = F ∩R .
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Split the state sum that provides the value at q of the colored Jones
JLλ
(q) into partial state sums with fixed colors µi on the disks mi .

In a partial sum, take the common factor ∏iw2(µi) =∏i dimq Vµi

outside the brackets. Inside the brackets we see new state sums,
sums over colorings of the 2-strata of S that are contained in U .

Apply the Turaev construction to each of them and
to the infinite cyclic covering Ũ → U defined by F ∩U = F ∩R .

This gives Tλ,µ ∶ Qλ,µ(L)→ Qλ,µ(L) with trTλ,µ equal to the part of
the state sum for JLλ

(q) that is collected in the brackets.
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Split the state sum that provides the value at q of the colored Jones
JLλ
(q) into partial state sums with fixed colors µi on the disks mi .

In a partial sum, take the common factor ∏iw2(µi) =∏i dimq Vµi

outside the brackets. Inside the brackets we see new state sums,
sums over colorings of the 2-strata of S that are contained in U .

Apply the Turaev construction to each of them and
to the infinite cyclic covering Ũ → U defined by F ∩U = F ∩R .

This gives Tλ,µ ∶ Qλ,µ(L)→ Qλ,µ(L) with trTλ,µ equal to the part of
the state sum for JLλ

(q) that is collected in the brackets.

Disks mi are not in U , but ∂mi contribute to the stratification of U by
subdividing 2-strata of R and affecting gleams of the resulting pieces.
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Split the state sum that provides the value at q of the colored Jones
JLλ
(q) into partial state sums with fixed colors µi on the disks mi .

In a partial sum, take the common factor ∏iw2(µi) =∏i dimq Vµi

outside the brackets. Inside the brackets we see new state sums,
sums over colorings of the 2-strata of S that are contained in U .

Apply the Turaev construction to each of them and
to the infinite cyclic covering Ũ → U defined by F ∩U = F ∩R .

This gives Tλ,µ ∶ Qλ,µ(L)→ Qλ,µ(L) with trTλ,µ equal to the part of
the state sum for JLλ

(q) that is collected in the brackets.

Disks mi are not in U , but ∂mi contribute to the stratification of U by
subdividing 2-strata of R and affecting gleams of the resulting pieces.

The arcs on ∂mi contribute via w1 ,
the vertices (i.e., intersections of ∂mi with 1-strata of R ) via w0 .
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Split the state sum that provides the value at q of the colored Jones
JLλ
(q) into partial state sums with fixed colors µi on the disks mi .

In a partial sum, take the common factor ∏iw2(µi) =∏i dimq Vµi

outside the brackets. Inside the brackets we see new state sums,
sums over colorings of the 2-strata of S that are contained in U .

Apply the Turaev construction to each of them and
to the infinite cyclic covering Ũ → U defined by F ∩U = F ∩R .

This gives Tλ,µ ∶ Qλ,µ(L)→ Qλ,µ(L) with trTλ,µ equal to the part of
the state sum for JLλ

(q) that is collected in the brackets.

Disks mi are not in U , but ∂mi contribute to the stratification of U by
subdividing 2-strata of R and affecting gleams of the resulting pieces.

The arcs on ∂mi contribute via w1 ,
the vertices (i.e., intersections of ∂mi with 1-strata of R ) via w0 .

The whole state sum is JLλ
(q) =∑µ dimq Vµ1

. . .dimq Vµn
trTλ,µ .
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Calculate the TQFT modules of knots and links in a traditional form:
higher colored Jones polynomials aka higher Alexander polynomials.
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Calculate the TQFT modules of knots and links in a traditional form:
higher colored Jones polynomials aka higher Alexander polynomials.

Old TQFT modules (invariants of the 3-manifold obtained by the
0-surgery along the knot) have not been studied in this way.
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Calculate the TQFT modules of knots and links in a traditional form:
higher colored Jones polynomials aka higher Alexander polynomials.

Old TQFT modules (invariants of the 3-manifold obtained by the
0-surgery along the knot) have not been studied in this way.

A sharp question:
can the new TQFT modules be reduced to the colored Jones?
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Calculate the TQFT modules of knots and links in a traditional form:
higher colored Jones polynomials aka higher Alexander polynomials.

Old TQFT modules (invariants of the 3-manifold obtained by the
0-surgery along the knot) have not been studied in this way.

A sharp question:
can the new TQFT modules be reduced to the colored Jones?

If not, how are they related to the Khovanov homology?



Khovanov homology of
framed links

Introduction

Theory of Skeletons

Face state sums

Upgrading the colored
Jones

Khovanov homology of
framed links
● Diagrams of framed
links

● Reidemeister moves
● Kauffman bracket of a
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● Cobordisms of framed
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A framed link is a link with a field of normal lines.
A link made of ribbons.
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A framed link is a link with a field of normal lines.
A link made of ribbons.

Presented by a link diagram with half-twists.
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A framed link is a link with a field of normal lines.
A link made of ribbons.

Presented by a link diagram with half-twists.

D =
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A framed link is a link with a field of normal lines.
A link made of ribbons.

Presented by a link diagram with half-twists.

D =

The left circle has framing +1
2

, the right circle −1 .
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A framed link is a link with a field of normal lines.
A link made of ribbons.

Presented by a link diagram with half-twists.

D =

The left circle has framing +1
2

, the right circle −1 .

Total framing number fr(D) = 1

2
(#( ) −#( )) .
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Reidemeister moves:
the second and third moves are the same as without framing.
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Reidemeister moves:
the second and third moves are the same as without framing.

The first Reidemeister move:
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Reidemeister moves:
the second and third moves are the same as without framing.

The first Reidemeister move:

Half-twist annihilation:
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Reidemeister moves:
the second and third moves are the same as without framing.

The first Reidemeister move:

Half-twist annihilation:

Half-twist penetration:
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Let D be a diagram of a classical framed link.
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Let D be a diagram of a classical framed link.

D =



Kauffman bracket of a framed link
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Kauffman state of D is a distribution of markers at crossings.

D =
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Kauffman state of D is a distribution of markers at crossings.



Kauffman bracket of a framed link

Table of Contents p. 155 – 29 / 38

Kauffman state of D is a distribution of markers at crossings.

Signs of markers: positive , negative .
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Kauffman state of D is a distribution of markers at crossings.

Signs of markers: positive , negative .

Numerical characteristics of a Kauffman state s :

a(s) =#( ) , b(s) =#( ) , σ(s) = a(s) − b(s) .
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Kauffman state of D is a distribution of markers at crossings.

Signs of markers: positive , negative .

Numerical characteristics of a Kauffman state s :

a(s) =#( ) , b(s) =#( ) , σ(s) = a(s) − b(s) .

∣s∣ - the number of components of Ds = smoothing of D along s :
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Kauffman state of D is a distribution of markers at crossings.

Signs of markers: positive , negative .

Numerical characteristics of a Kauffman state s :

a(s) =#( ) , b(s) =#( ) , σ(s) = a(s) − b(s) .

∣s∣ - the number of components of Ds = smoothing of D along s :

s = ↦
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Kauffman state of D is a distribution of markers at crossings.

Signs of markers: positive , negative .

Numerical characteristics of a Kauffman state s :

a(s) =#( ) , b(s) =#( ) , σ(s) = a(s) − b(s) .

∣s∣ - the number of components of Ds = smoothing of D along s :

s = ↦ Ds =
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Kauffman state of D is a distribution of markers at crossings.

Signs of markers: positive , negative .

Numerical characteristics of a Kauffman state s :

a(s) =#( ) , b(s) =#( ) , σ(s) = a(s) − b(s) .

∣s∣ - the number of components of Ds = smoothing of D along s :

s = ↦ Ds = ∣s∣ = 2 .
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Kauffman state of D is a distribution of markers at crossings.

Signs of markers: positive , negative .

Numerical characteristics of a Kauffman state s :

a(s) =#( ) , b(s) =#( ) , σ(s) = a(s) − b(s) .

∣s∣ - the number of components of Ds = smoothing of D along s :

s = ↦ Ds = ∣s∣ = 2 .

The Kauffman bracket
⟨D⟩ =∑s(−A)

3fr(D)Aσ(s)(−A2 −A−2)∣s∣
invariant under isotopy of framed links.



Khovanov homology of a framed link

Table of Contents p. 162 – 30 / 38

Enhanced state of D is a Kauffman state s of D
plus assignment to every component of Ds either 1 or x .
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Enhanced state of D is a Kauffman state s of D
plus assignment to every component of Ds either 1 or x .

For an enhanced state S , denote by τ(S)
#(components of DS with 1) −#(components of DS with x).
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Enhanced state of D is a Kauffman state s of D
plus assignment to every component of Ds either 1 or x .

For an enhanced state S , denote by τ(S)
#(components of DS with 1) −#(components of DS with x).

Let i(S) = τ(S) − fr(D) and j(S) = σ(S) − 2τ(S) + 3fr(D) .
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Enhanced state of D is a Kauffman state s of D
plus assignment to every component of Ds either 1 or x .

For an enhanced state S , denote by τ(S)
#(components of DS with 1) −#(components of DS with x).

Let i(S) = τ(S) − fr(D) and j(S) = σ(S) − 2τ(S) + 3fr(D) .
Let Ci,j(D) be the F2-vector space

generated by enhanced states S with i(S) = i and j(S) = j .
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Enhanced state of D is a Kauffman state s of D
plus assignment to every component of Ds either 1 or x .

For an enhanced state S , denote by τ(S)
#(components of DS with 1) −#(components of DS with x).

Let i(S) = τ(S) − fr(D) and j(S) = σ(S) − 2τ(S) + 3fr(D) .
Let Ci,j(D) be the F2-vector space

generated by enhanced states S with i(S) = i and j(S) = j .
There is a differential Ci,j(D) → Ci−1,j(D)

defined in the same way as in the Khovanov complex.
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Enhanced state of D is a Kauffman state s of D
plus assignment to every component of Ds either 1 or x .

For an enhanced state S , denote by τ(S)
#(components of DS with 1) −#(components of DS with x).

Let i(S) = τ(S) − fr(D) and j(S) = σ(S) − 2τ(S) + 3fr(D) .
Let Ci,j(D) be the F2-vector space

generated by enhanced states S with i(S) = i and j(S) = j .
There is a differential Ci,j(D) → Ci−1,j(D)

defined in the same way as in the Khovanov complex.
Denote the homology of Ci,j(D) by Kh

fr
i,j(D) .
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Enhanced state of D is a Kauffman state s of D
plus assignment to every component of Ds either 1 or x .

For an enhanced state S , denote by τ(S)
#(components of DS with 1) −#(components of DS with x).

Let i(S) = τ(S) − fr(D) and j(S) = σ(S) − 2τ(S) + 3fr(D) .
Let Ci,j(D) be the F2-vector space

generated by enhanced states S with i(S) = i and j(S) = j .
There is a differential Ci,j(D) → Ci−1,j(D)

defined in the same way as in the Khovanov complex.
Denote the homology of Ci,j(D) by Kh

fr
i,j(D) .

Framed Reidemeister moves induce isomorphisms of Kh
fr
i,j(D) .
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Let D0 and D1 be framed links diagrams of L0 and L1

and F ⊂ R3 × [0,1] be a compact surface
with F ∩R3 × {k} = Lk × {k} for k = 0,1 .
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Let D0 and D1 be framed links diagrams of L0 and L1

and F ⊂ R3 × [0,1] be a compact surface
with F ∩R3 × {k} = Lk × {k} for k = 0,1 .

Let e ∈ Z[1/2] be the obstruction to extension
of the framings of L0, L1 to a normal line field on F .
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Let D0 and D1 be framed links diagrams of L0 and L1

and F ⊂ R3 × [0,1] be a compact surface
with F ∩R3 × {k} = Lk × {k} for k = 0,1 .

Let e ∈ Z[1/2] be the obstruction to extension
of the framings of L0, L1 to a normal line field on F .

Then the cobordism F induces a homomorphism
Kh

fr
i,j(D0)→Kh

fr

i+χ(F )−e,j−2χ(F )+3e(D1) .
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Let D0 and D1 be framed links diagrams of L0 and L1

and F ⊂ R3 × [0,1] be a compact surface
with F ∩R3 × {k} = Lk × {k} for k = 0,1 .

Let e ∈ Z[1/2] be the obstruction to extension
of the framings of L0, L1 to a normal line field on F .

Then the cobordism F induces a homomorphism
Kh

fr
i,j(D0)→Kh

fr

i+χ(F )−e,j−2χ(F )+3e(D1) .

Duality. Let D∗ be the mirror image of D . Then the complexes
Ci,j(D∗) and C−i,−j(D) are dual, i.e.,
there exists an isomorphism Ci,j(D∗)→ HomF2

(C−i,−j(D)) .
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Kauffman skein relation ⟨ ⟩ = A⟨ ⟩ +A−1⟨ ⟩
categorifies a short exact sequence of complexes:

0 ÐÐÐ→ C∗,∗( )
α

ÐÐÐ→ C∗,∗−1( )
β

ÐÐÐ→ C∗,∗−2( ) ÐÐÐ→ 0 .
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Kauffman skein relation ⟨ ⟩ = A⟨ ⟩ +A−1⟨ ⟩
categorifies a short exact sequence of complexes:

0 ÐÐÐ→ C∗,∗( )
α

ÐÐÐ→ C∗,∗−1( )
β

ÐÐÐ→ C∗,∗−2( ) ÐÐÐ→ 0 .

It induces a bunch of long homology sequences:
∂

ÐÐÐ→ Kh
fr
i,j( )

α∗
ÐÐÐ→ Kh

fr
i,j−1( )

β∗
ÐÐÐ→ Kh

fr
i,j−2( )

∂
ÐÐÐ→

∂
ÐÐÐ→ Kh

fr
i−1,j( )

α∗
ÐÐÐ→ Kh

fr
i−1,j−1( )

β∗
ÐÐÐ→ Kh

fr
i−1,j−2( )

∂
ÐÐÐ→
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Kauffman skein relation ⟨ ⟩ = A⟨ ⟩ +A−1⟨ ⟩
categorifies a short exact sequence of complexes:

0 ÐÐÐ→ C∗,∗( )
α

ÐÐÐ→ C∗,∗−1( )
β

ÐÐÐ→ C∗,∗−2( ) ÐÐÐ→ 0 .

It induces a bunch of long homology sequences:
∂

ÐÐÐ→ Kh
fr
i,j( )

α∗
ÐÐÐ→ Kh

fr
i,j−1( )

β∗
ÐÐÐ→ Kh

fr
i,j−2( )

∂
ÐÐÐ→

∂
ÐÐÐ→ Kh

fr
i−1,j( )

α∗
ÐÐÐ→ Kh

fr
i−1,j−1( )

β∗
ÐÐÐ→ Kh

fr
i−1,j−2( )

∂
ÐÐÐ→

The cylinder of the composition of

C∗,∗( )
β

ÐÐÐ→ C∗,∗−1( ))
α

ÐÐÐ→ C∗,∗−2( )

gives rise to a long homology sequence, which
categorifies the Jones skein relation and contains the homomorphism

Kh
fr
i,j( ) →Kh

fr
i,j−2( ) .
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Let D0 and D1 be framed links diagrams of L0 and L1

and F ↬ R3 × [0,1] be an immersed compact surface
with F ∩R3 × {k} = Lk × {k} for k = 0,1

and d transversal self-intersection points.
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Let D0 and D1 be framed links diagrams of L0 and L1

and F ↬ R3 × [0,1] be an immersed compact surface
with F ∩R3 × {k} = Lk × {k} for k = 0,1

and d transversal self-intersection points.

Let e ∈ Z[1/2] be the obstruction to extension
of the framings of L0, L1 to a normal line field on F .



Cobordisms with double points

Table of Contents p. 178 – 33 / 38

Let D0 and D1 be framed links diagrams of L0 and L1

and F ↬ R3 × [0,1] be an immersed compact surface
with F ∩R3 × {k} = Lk × {k} for k = 0,1

and d transversal self-intersection points.

Let e ∈ Z[1/2] be the obstruction to extension
of the framings of L0, L1 to a normal line field on F .

Then the cobordism F induces a homomorphism
Kh

fr
i,j(D0)→Kh

fr

i+χ(F )−e,j−2χ(F )+3e−2d(D1) .
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Surfaces in S3 × S1
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Let Λ↬ S3 × S1 be a generically immersed 2-manifold.



Surfaces in S3 × S1
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Let Λ↬ S3 × S1 be a generically immersed 2-manifold.

This can be obtained from a link Λ̄↬ S4 by a surgery along an
unknotted component of Λ̄ homeomorphic to S2 .
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Let Λ↬ S3 × S1 be a generically immersed 2-manifold.

Let the intersection L = S3 × {1} ∩Λ be transversal, and Λ̃ ⊂ S3 ×R

be the preimage of Λ under S3 ×R→ S3 × S1 ∶ (x, y)↦ (x, e2πiy) .
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Let Λ↬ S3 × S1 be a generically immersed 2-manifold.

Let the intersection L = S3 × {1} ∩Λ be transversal, and Λ̃ ⊂ S3 ×R

be the preimage of Λ under S3 ×R→ S3 × S1 ∶ (x, y)↦ (x, e2πiy) .

Let Ln = Λ̃ ∩ (S3 × {n}) ⊂ S3 ×R , and Wn = Λ̃ ∩ (S3 × [n,n + 1]) .
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Let Λ↬ S3 × S1 be a generically immersed 2-manifold.

Let the intersection L = S3 × {1} ∩Λ be transversal, and Λ̃ ⊂ S3 ×R

be the preimage of Λ under S3 ×R→ S3 × S1 ∶ (x, y)↦ (x, e2πiy) .

Let Ln = Λ̃ ∩ (S3 × {n}) ⊂ S3 ×R , and Wn = Λ̃ ∩ (S3 × [n,n + 1]) .

Now apply the Turaev construction to Khovanov homology:
denote by Zi,j(Λ) the image of Khi,j(L0) under the homomorphism

induced by cobordism ∪kn=0Wn for sufficiently large k .
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Let Λ↬ S3 × S1 be a generically immersed 2-manifold.

Let the intersection L = S3 × {1} ∩Λ be transversal, and Λ̃ ⊂ S3 ×R

be the preimage of Λ under S3 ×R→ S3 × S1 ∶ (x, y)↦ (x, e2πiy) .

Let Ln = Λ̃ ∩ (S3 × {n}) ⊂ S3 ×R , and Wn = Λ̃ ∩ (S3 × [n,n + 1]) .

Now apply the Turaev construction to Khovanov homology:
denote by Zi,j(Λ) the image of Khi,j(L0) under the homomorphism

induced by cobordism ∪kn=0Wn for sufficiently large k .

Observe that Zi,j(Λ) = 0 , unless χ(Λ) = e(Λ) = 2d(Λ) .
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Let Λ↬ S3 × S1 be a generically immersed 2-manifold.

Let the intersection L = S3 × {1} ∩Λ be transversal, and Λ̃ ⊂ S3 ×R

be the preimage of Λ under S3 ×R→ S3 × S1 ∶ (x, y)↦ (x, e2πiy) .

Let Ln = Λ̃ ∩ (S3 × {n}) ⊂ S3 ×R , and Wn = Λ̃ ∩ (S3 × [n,n + 1]) .

Now apply the Turaev construction to Khovanov homology:
denote by Zi,j(Λ) the image of Khi,j(L0) under the homomorphism

induced by cobordism ∪kn=0Wn for sufficiently large k .

Observe that Zi,j(Λ) = 0 , unless χ(Λ) = e(Λ) = 2d(Λ) .

If the restriction to Λ of the projection S3 × S1 → S1 is
a locally trivial fibration, then Zi,j(Λ) =Khi,j(L) .
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Let Λ↬ S3 × S1 be a generically immersed 2-manifold.

Let the intersection L = S3 × {1} ∩Λ be transversal, and Λ̃ ⊂ S3 ×R

be the preimage of Λ under S3 ×R→ S3 × S1 ∶ (x, y)↦ (x, e2πiy) .

Let Ln = Λ̃ ∩ (S3 × {n}) ⊂ S3 ×R , and Wn = Λ̃ ∩ (S3 × [n,n + 1]) .

Now apply the Turaev construction to Khovanov homology:
denote by Zi,j(Λ) the image of Khi,j(L0) under the homomorphism

induced by cobordism ∪kn=0Wn for sufficiently large k .

Observe that Zi,j(Λ) = 0 , unless χ(Λ) = e(Λ) = 2d(Λ) .

If the restriction to Λ of the projection S3 × S1 → S1 is
a locally trivial fibration, then Zi,j(Λ) =Khi,j(L)

with an additional structure: the action of Z (the monodromy).



Surfaces in S3 × S1

Table of Contents p. 188 – 35 / 38

Let Λ↬ S3 × S1 be a generically immersed 2-manifold.

Let the intersection L = S3 × {1} ∩Λ be transversal, and Λ̃ ⊂ S3 ×R

be the preimage of Λ under S3 ×R→ S3 × S1 ∶ (x, y)↦ (x, e2πiy) .

Let Ln = Λ̃ ∩ (S3 × {n}) ⊂ S3 ×R , and Wn = Λ̃ ∩ (S3 × [n,n + 1]) .

Now apply the Turaev construction to Khovanov homology:
denote by Zi,j(Λ) the image of Khi,j(L0) under the homomorphism

induced by cobordism ∪kn=0Wn for sufficiently large k .

Observe that Zi,j(Λ) = 0 , unless χ(Λ) = e(Λ) = 2d(Λ) .

If the restriction to Λ of the projection S3 × S1 → S1 is
a locally trivial fibration, then Zi,j(Λ) =Khi,j(L)

with an additional structure: the action of Z (the monodromy).

Luoying Weng calculated Zi,j(Λ) for many such surfaces.
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Theorem. Zi,j(Λ) is invariant under isotopy of Λ in S3 × S1 .
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Theorem. Zi,j(Λ) is invariant under isotopy of Λ in S3 × S1 .

Why does it require a separate proof?
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Theorem. Zi,j(Λ) is invariant under isotopy of Λ in S3 × S1 .

Why does it require a separate proof?

Because cobordisms needed for Khovanov homology
are surfaces in S3 × I ,

while in the proof we meet
a cobordism between a link in S3 × {pt} and a skew copy of it.
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Theorem. Zi,j(Λ) is invariant under isotopy of Λ in S3 × S1 .

Proof. Let Λt , t ∈ I be an isotopy of Λ .
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Theorem. Zi,j(Λ) is invariant under isotopy of Λ in S3 × S1 .

Proof. Let Λt , t ∈ I be an isotopy of Λ .

Extend it to an isotopy ht ∶ S3 × S1 → S3 × S1 with h0 = id ,
ht(Λ) = Λt .
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Theorem. Zi,j(Λ) is invariant under isotopy of Λ in S3 × S1 .

Proof. Let Λt , t ∈ I be an isotopy of Λ .

Extend it to an isotopy ht ∶ S3 × S1 → S3 × S1 with h0 = id ,
ht(Λ) = Λt .

Let Λ̃t ⊂ S3 ×R be the preimage of Λt under
S3 ×R → S3 × S1 ∶ (x, y)↦ (x, e2πiy) .
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Theorem. Zi,j(Λ) is invariant under isotopy of Λ in S3 × S1 .

Proof. Let Λt , t ∈ I be an isotopy of Λ .

Extend it to an isotopy ht ∶ S3 × S1 → S3 × S1 with h0 = id ,
ht(Λ) = Λt .

Let Λ̃t ⊂ S3 ×R be the preimage of Λt under
S3 ×R → S3 × S1 ∶ (x, y)↦ (x, e2πiy) .

Let Lt,n = Λ̃t ∩ (S3 × {n}) ⊂ S3 ×R ,
and Wt,n = Λ̃t ∩ (S3 × [n,n + 1]) .
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Theorem. Zi,j(Λ) is invariant under isotopy of Λ in S3 × S1 .

Proof. Let Λt , t ∈ I be an isotopy of Λ .

Extend it to an isotopy ht ∶ S3 × S1 → S3 × S1 with h0 = id ,
ht(Λ) = Λt .

Let Λ̃t ⊂ S3 ×R be the preimage of Λt under
S3 ×R → S3 × S1 ∶ (x, y)↦ (x, e2πiy) .

Let Lt,n = Λ̃t ∩ (S3 × {n}) ⊂ S3 ×R ,
and Wt,n = Λ̃t ∩ (S3 × [n,n + 1]) .

Pull this new stuff back by h̃t ∶ S3 ×R→ S3 ×R :
h̃−1t (Lt,n) = Ln ⊂ h̃

−1
t (S3 × {n}) ,

h̃−1t (Wt,n) = Λ̃ ∩ h̃−1t (S3 × [n,n + 1])
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