Elevating link homology theories and TQFT'es via infinite cyclic coverings

Oleg Viro

May 27, 2011

- Results. 1
- Results. 2
- Infinite cyclic covering
- Turaev's construction
- A refinement

Theory of Skeletons
Face state sums
Upgrading the colored Jones
Khovanov homology of framed links

Khovanov homology for surfaces in $S^{3} \times S^{1}$

Introduction

Results. 1

New invariants related to old ones.

Results. 1

Multi-graded $\mathbb{C}[\mathbb{Z}]$-modules
that refine colored Jones at roots of unity.

Results. 1

Multi-graded $\mathbb{C}[\mathbb{Z}]$-modules

that refine colored Jones at roots of unity.

For a root q of unity of degree $r>2$, and a classical link L with components L_{1}, \ldots, L_{n} colored by pairs $\left(\lambda_{i}, \mu_{i}\right)$ of natural numbers $\leq r-2$, we construct a finite-dimensional vector space $Q_{\lambda, \mu}(L)$ and invertible operator $T_{\lambda, \mu}: Q_{\lambda, \mu}(L) \rightarrow Q_{\lambda, \mu}(L)$.

Results. 1

Multi-graded $\mathbb{C}[\mathbb{Z}]$-modules

that refine colored Jones at roots of unity.

For a root q of unity of degree $r>2$,
and a classical link L with components L_{1}, \ldots, L_{n} colored by pairs $\left(\lambda_{i}, \mu_{i}\right)$ of natural numbers $\leq r-2$, we construct a finite-dimensional vector space $Q_{\lambda, \mu}(L)$ and invertible operator $T_{\lambda, \mu}: Q_{\lambda, \mu}(L) \rightarrow Q_{\lambda, \mu}(L)$.
$\oplus_{\lambda, \mu} Q_{\lambda, \mu}$ is a multi-graded $\mathbb{C}[\mathbb{Z}]$-module.

Results. 1

Multi-graded $\mathbb{C}[\mathbb{Z}]$-modules

that refine colored Jones at roots of unity.

For a root q of unity of degree $r>2$, and a classical link L with components L_{1}, \ldots, L_{n} colored by pairs $\left(\lambda_{i}, \mu_{i}\right)$ of natural numbers $\leq r-2$, we construct a finite-dimensional vector space $Q_{\lambda, \mu}(L)$ and invertible operator $T_{\lambda, \mu}: Q_{\lambda, \mu}(L) \rightarrow Q_{\lambda, \mu}(L)$. $\oplus_{\lambda, \mu} Q_{\lambda, \mu}$ is a multi-graded $\mathbb{C}[\mathbb{Z}]$-module.

Let $L_{\lambda_{1}, \ldots, \lambda_{n}}$ be the link L with components colored with $\lambda_{1}, \ldots \lambda_{n}$.

Results. 1

Multi-graded $\mathbb{C}[\mathbb{Z}]$-modules

that refine colored Jones at roots of unity.

For a root q of unity of degree $r>2$, and a classical link L with components L_{1}, \ldots, L_{n} colored by pairs $\left(\lambda_{i}, \mu_{i}\right)$ of natural numbers $\leq r-2$, we construct a finite-dimensional vector space $Q_{\lambda, \mu}(L)$ and invertible operator $T_{\lambda, \mu}: Q_{\lambda, \mu}(L) \rightarrow Q_{\lambda, \mu}(L)$. $\oplus_{\lambda, \mu} Q_{\lambda, \mu}$ is a multi-graded $\mathbb{C}[\mathbb{Z}]$-module.

Let $L_{\lambda_{1}, \ldots, \lambda_{n}}$ be the link L with components colored with $\lambda_{1}, \ldots \lambda_{n}$.
Colored Jones of $L_{\lambda_{1}, \ldots, \lambda_{n}}$ can be recovered from $\oplus_{\lambda, \mu} Q_{\lambda, \mu}$:

Results. 1

Multi-graded $\mathbb{C}[\mathbb{Z}]$-modules

that refine colored Jones at roots of unity.

For a root q of unity of degree $r>2$, and a classical link L with components L_{1}, \ldots, L_{n} colored by pairs $\left(\lambda_{i}, \mu_{i}\right)$ of natural numbers $\leq r-2$, we construct a finite-dimensional vector space $Q_{\lambda, \mu}(L)$ and invertible operator $T_{\lambda, \mu}: Q_{\lambda, \mu}(L) \rightarrow Q_{\lambda, \mu}(L)$. $\oplus_{\lambda, \mu} Q_{\lambda, \mu}$ is a multi-graded $\mathbb{C}[\mathbb{Z}]$-module.

Let $L_{\lambda_{1}, \ldots, \lambda_{n}}$ be the link L with components colored with $\lambda_{1}, \ldots \lambda_{n}$.
Colored Jones of $L_{\lambda_{1}, \ldots, \lambda_{n}}$ can be recovered from $\oplus_{\lambda, \mu} Q_{\lambda, \mu}$:
$J_{L_{\lambda_{1}, \ldots, \lambda_{n}}}(q)=\sum_{\mu} \operatorname{dim}_{q} V_{\mu_{1}} \ldots \operatorname{dim}_{q} V_{\mu_{n}} \operatorname{tr} T_{\lambda_{1}, \ldots, \lambda_{n} ; \mu_{1}, \ldots, \mu_{n}}$.

Results. 2

Bi-graded $\mathbb{Z}[\mathbb{Z}]$-modules for surfaces
generically immersed in 4-manifolds.

Results. 2

Bi-graded $\mathbb{Z}[\mathbb{Z}]$-modules for surfaces
generically immersed in 4-manifolds.
Let Λ be a smooth closed 2-manifold generically immersed in $S^{3} \times S^{1}$.

Results. 2

Bi-graded $\mathbb{Z}[\mathbb{Z}]$-modules for surfaces
generically immersed in 4-manifolds.
Let Λ be a smooth closed 2-manifold generically immersed in $S^{3} \times S^{1}$.
Λ may be non-orientable.

Results. 2

Bi-graded $\mathbb{Z}[\mathbb{Z}]$-modules for surfaces

generically immersed in 4-manifolds.

Let Λ be a smooth closed 2-manifold generically immersed in $S^{3} \times S^{1}$.
We will construct a bi-graded $\mathbb{Z}[\mathbb{Z}]$-module
invariant under ambient diffeotopy of Λ.

Results. 2

Bi-graded $\mathbb{Z}[\mathbb{Z}]$-modules for surfaces

generically immersed in 4-manifolds.

Let Λ be a smooth closed 2-manifold generically immersed in $S^{3} \times S^{1}$.
We will construct a bi-graded $\mathbb{Z}[\mathbb{Z}]$-module
invariant under ambient diffeotopy of Λ.
It is trivial, unless $\chi(\Lambda)=e(\Lambda)=2 d(\Lambda)$.

Results. 2

Bi-graded $\mathbb{Z}[\mathbb{Z}]$-modules for surfaces

generically immersed in 4-manifolds.

Let Λ be a smooth closed 2-manifold generically immersed in $S^{3} \times S^{1}$.
We will construct a bi-graded $\mathbb{Z}[\mathbb{Z}]$-module
invariant under ambient diffeotopy of Λ.
It is trivial, unless $\chi(\Lambda)=e(\Lambda)=2 d(\Lambda)$.
Immersed surfaces in S^{4} transversal to a standardly embedded S^{2}.

Infinite cyclic covering

Let X be a compact manifold, $p: Y \rightarrow X$ be its infinite cyclic covering

Infinite cyclic covering

Let X be a compact manifold, $p: Y \rightarrow X$ be its infinite cyclic covering defined by $\xi \in H^{1}(X ; \mathbb{Z})$;
i.e., induced by a map $f: X \rightarrow S^{1}$ from $\mathbb{R} \rightarrow S^{1}: x \mapsto \exp (2 \pi i x)$.

Infinite cyclic covering

Let X be a compact manifold, $p: Y \rightarrow X$ be its infinite cyclic covering defined by $\xi \in H^{1}(X ; \mathbb{Z})$;
i.e., induced by a map $f: X \rightarrow S^{1}$ from $\mathbb{R} \rightarrow S^{1}: x \mapsto \exp (2 \pi i x)$.

Let $F=f^{-1}(\mathrm{pt})$ be the pre-image of a regular value pt of f.

Infinite cyclic covering

Let X be a compact manifold, $p: Y \rightarrow X$ be its infinite cyclic covering defined by $\xi \in H^{1}(X ; \mathbb{Z})$;
i.e., induced by a map $f: X \rightarrow S^{1}$ from $\mathbb{R} \rightarrow S^{1}: x \mapsto \exp (2 \pi i x)$.

Let $F=f^{-1}(\mathrm{pt})$ be the pre-image of a regular value pt of f.
$p^{-1}(F)=\widetilde{F}=\bigcup_{n \in \mathbb{Z}} F_{n}$ divides Y into X_{n} with $\partial X_{i}=F_{n+1} \cup-F_{n}$.

Infinite cyclic covering

Let X be a compact manifold, $p: Y \rightarrow X$ be its infinite cyclic covering defined by $\xi \in H^{1}(X ; \mathbb{Z})$;
i.e., induced by a map $f: X \rightarrow S^{1}$ from $\mathbb{R} \rightarrow S^{1}: x \mapsto \exp (2 \pi i x)$.

Let $F=f^{-1}(\mathrm{pt})$ be the pre-image of a regular value pt of f.
$p^{-1}(F)=\widetilde{F}=\bigcup_{n \in \mathbb{Z}} F_{n}$ divides Y into X_{n} with $\partial X_{i}=F_{n+1} \cup-F_{n}$.

Turaev's construction

Let $\operatorname{dim} X=m$, and Z be an m-dimensional TQFT.

Turaev's construction

Let $\operatorname{dim} X=m$, and Z be an m-dimensional TQFT.
$Z\left(X_{n}\right): Z\left(F_{n}\right) \rightarrow Z\left(F_{n+1}\right)$ is the map induced by cobordism X_{n}.

Turaev's construction

Let $\operatorname{dim} X=m$, and Z be an m-dimensional TQFT.
$Z\left(X_{n}\right): Z\left(F_{n}\right) \rightarrow Z\left(F_{n+1}\right)$ is the map induced by cobordism X_{n}.
The increasing sequence
$\operatorname{Ker} Z\left(X_{0}\right) \subset \operatorname{Ker} Z\left(X_{1} \cup X_{0}\right) \subset \operatorname{Ker} Z\left(X_{2} \cup X_{1} \cup X_{0}\right) \subset \cdots \subset Z\left(F_{0}\right)$ stabilizes.

Turaev's construction

Let $\operatorname{dim} X=m$, and Z be an m-dimensional TQFT.
$Z\left(X_{n}\right): Z\left(F_{n}\right) \rightarrow Z\left(F_{n+1}\right)$ is the map induced by cobordism X_{n}.
The increasing sequence
$\operatorname{Ker} Z\left(X_{0}\right) \subset \operatorname{Ker} Z\left(X_{1} \cup X_{0}\right) \subset \operatorname{Ker} Z\left(X_{2} \cup X_{1} \cup X_{0}\right) \subset \cdots \subset Z\left(F_{0}\right)$ stabilizes.
Let $Q(X, \xi)=Z\left(F_{0}\right) / \operatorname{Ker}\left(Z\left(\bigcup_{n=0}^{\infty} X_{n}\right)\right)$.

Turaev's construction

Let $\operatorname{dim} X=m$, and Z be an m-dimensional TQFT.
$Z\left(X_{n}\right): Z\left(F_{n}\right) \rightarrow Z\left(F_{n+1}\right)$ is the map induced by cobordism X_{n}.
The increasing sequence
$\operatorname{Ker} Z\left(X_{0}\right) \subset \operatorname{Ker} Z\left(X_{1} \cup X_{0}\right) \subset \operatorname{Ker} Z\left(X_{2} \cup X_{1} \cup X_{0}\right) \subset \cdots \subset Z\left(F_{0}\right)$ stabilizes.
Let $Q(X, \xi)=Z\left(F_{0}\right) / \operatorname{Ker}\left(Z\left(\bigcup_{n=0}^{\infty} X_{n}\right)\right)$

$$
\cong \bigcap_{j=1}^{\infty} \operatorname{Im}\left(Z\left(\bigcup_{n=-j}^{-1} X_{n}\right)\right) \subset Z\left(F_{0}\right) .
$$

Turaev's construction

Let $\operatorname{dim} X=m$, and Z be an m-dimensional TQFT.
$Z\left(X_{n}\right): Z\left(F_{n}\right) \rightarrow Z\left(F_{n+1}\right)$ is the map induced by cobordism X_{n}.
The increasing sequence
$\operatorname{Ker} Z\left(X_{0}\right) \subset \operatorname{Ker} Z\left(X_{1} \cup X_{0}\right) \subset \operatorname{Ker} Z\left(X_{2} \cup X_{1} \cup X_{0}\right) \subset \cdots \subset Z\left(F_{0}\right)$ stabilizes.
Let $Q(X, \xi)=Z\left(F_{0}\right) / \operatorname{Ker}\left(Z\left(\bigcup_{n=0}^{\infty} X_{n}\right)\right)$

$$
\cong \bigcap_{j=1}^{\infty} \operatorname{Im}\left(Z\left(\bigcup_{n=-j}^{-1} X_{n}\right)\right) \subset Z\left(F_{0}\right) .
$$

Theorem. $Q(X, \xi)$ does not depend on F.

Turaev's construction

Let $\operatorname{dim} X=m$, and Z be an m-dimensional TQFT.
$Z\left(X_{n}\right): Z\left(F_{n}\right) \rightarrow Z\left(F_{n+1}\right)$ is the map induced by cobordism X_{n}.
The increasing sequence
$\operatorname{Ker} Z\left(X_{0}\right) \subset \operatorname{Ker} Z\left(X_{1} \cup X_{0}\right) \subset \operatorname{Ker} Z\left(X_{2} \cup X_{1} \cup X_{0}\right) \subset \cdots \subset Z\left(F_{0}\right)$ stabilizes.
Let $Q(X, \xi)=Z\left(F_{0}\right) / \operatorname{Ker}\left(Z\left(\bigcup_{n=0}^{\infty} X_{n}\right)\right)$

$$
\cong \bigcap_{j=1}^{\infty} \operatorname{Im}\left(Z\left(\bigcup_{n=-j}^{-1} X_{n}\right)\right) \subset Z\left(F_{0}\right) .
$$

Theorem. $Q(X, \xi)$ does not depend on F.
Proof:

Turaev's construction

Let $\operatorname{dim} X=m$, and Z be an m-dimensional TQFT.
$Z\left(X_{n}\right): Z\left(F_{n}\right) \rightarrow Z\left(F_{n+1}\right)$ is the map induced by cobordism X_{n}.
The increasing sequence
$\operatorname{Ker} Z\left(X_{0}\right) \subset \operatorname{Ker} Z\left(X_{1} \cup X_{0}\right) \subset \operatorname{Ker} Z\left(X_{2} \cup X_{1} \cup X_{0}\right) \subset \cdots \subset Z\left(F_{0}\right)$ stabilizes.
Let $Q(X, \xi)=Z\left(F_{0}\right) / \operatorname{Ker}\left(Z\left(\bigcup_{n=0}^{\infty} X_{n}\right)\right)$

$$
\cong \bigcap_{j=1}^{\infty} \operatorname{Im}\left(Z\left(\bigcup_{n=-j}^{-1} X_{n}\right)\right) \subset Z\left(F_{0}\right) .
$$

Theorem. $Q(X, \xi)$ does not depend on F.
Deck transformations determine an action of \mathbb{Z} in $Q(X, \xi)$.

Turaev's construction

Let $\operatorname{dim} X=m$, and Z be an m-dimensional TQFT.
$Z\left(X_{n}\right): Z\left(F_{n}\right) \rightarrow Z\left(F_{n+1}\right)$ is the map induced by cobordism X_{n}.
The increasing sequence
$\operatorname{Ker} Z\left(X_{0}\right) \subset \operatorname{Ker} Z\left(X_{1} \cup X_{0}\right) \subset \operatorname{Ker} Z\left(X_{2} \cup X_{1} \cup X_{0}\right) \subset \cdots \subset Z\left(F_{0}\right)$ stabilizes.
Let $Q(X, \xi)=Z\left(F_{0}\right) / \operatorname{Ker}\left(Z\left(\bigcup_{n=0}^{\infty} X_{n}\right)\right)$

$$
\cong \bigcap_{j=1}^{\infty} \operatorname{Im}\left(Z\left(\bigcup_{n=-j}^{-1} X_{n}\right)\right) \subset Z\left(F_{0}\right) .
$$

Theorem. $Q(X, \xi)$ does not depend on F.
Deck transformations determine an action of \mathbb{Z} in $Q(X, \xi)$.
If $X=S^{3} \backslash K, Z(F)=H_{1}(F ; \mathbb{Q})$, then
this is Seifert's calculation of the Alexander module $H_{1}(Y ; \mathbb{Q})$ of K.

Turaev's construction

Let $\operatorname{dim} X=m$, and Z be an m-dimensional TQFT.
$Z\left(X_{n}\right): Z\left(F_{n}\right) \rightarrow Z\left(F_{n+1}\right)$ is the map induced by cobordism X_{n}.
The increasing sequence
$\operatorname{Ker} Z\left(X_{0}\right) \subset \operatorname{Ker} Z\left(X_{1} \cup X_{0}\right) \subset \operatorname{Ker} Z\left(X_{2} \cup X_{1} \cup X_{0}\right) \subset \cdots \subset Z\left(F_{0}\right)$ stabilizes.
Let $Q(X, \xi)=Z\left(F_{0}\right) / \operatorname{Ker}\left(Z\left(\bigcup_{n=0}^{\infty} X_{n}\right)\right)$

$$
\cong \bigcap_{j=1}^{\infty} \operatorname{Im}\left(Z\left(\bigcup_{n=-j}^{-1} X_{n}\right)\right) \subset Z\left(F_{0}\right) .
$$

Theorem. $Q(X, \xi)$ does not depend on F.
Deck transformations determine an action of \mathbb{Z} in $Q(X, \xi)$.
For 3-manifolds and various TQFT's, it was studied by Pat Gilmer in 90s.

A refinement

Homomorphisms $A: V \rightarrow V, B: W \rightarrow W$ are said to be elementary strong shift equivalent if $\exists P: V \rightarrow W$ and $R: W \rightarrow V$ such that $A=R P$ and $B=P R$.

A refinement

Homomorphisms $A: V \rightarrow V, B: W \rightarrow W$ are said to be elementary strong shift equivalent if $\exists P: V \rightarrow W$ and $R: W \rightarrow V$ such that $A=R P$ and $B=P R$.

commutes.

A refinement

Homomorphisms $A: V \rightarrow V, B: W \rightarrow W$ are said to be elementary strong shift equivalent
if $\exists P: V \rightarrow W$ and $R: W \rightarrow V$ such that $A=R P$ and $B=P R$.

P, Q induce isomorphisms between the stable images of A and B.

A refinement

Homomorphisms $A: V \rightarrow V, B: W \rightarrow W$ are said to be elementary strong shift equivalent
if $\exists P: V \rightarrow W$ and $R: W \rightarrow V$ such that $A=R P$ and $B=P R$.

P, Q induce isomorphisms between the stable images of A and B.
The transitive closure of elementary strong shift equivalence is called strong shift equivalence.

A refinement

Homomorphisms $A: V \rightarrow V, B: W \rightarrow W$ are said to be elementary strong shift equivalent if $\exists P: V \rightarrow W$ and $R: W \rightarrow V$ such that $A=R P$ and $B=P R$.

P, Q induce isomorphisms between the stable images of A and B.
The transitive closure of elementary strong shift equivalence is called strong shift equivalence.
$Z\left(X_{1}\right): Z\left(F_{1}\right) \rightarrow Z\left(F_{2}\right)$ is defined by X and ξ up to strong shift equivalence.

Introduction
Theory of Skeletons

- Skeletons
- Recovery from a

2-skeleton

- How 2-skeletons
move in 3D
- How 2-skeletons
move in 4D
- Generic 2-polyhedra
with boundary
- Relative 2-skeletons

Face state sums
Upgrading the colored Jones

Khovanov homology of framed links

Khovanov homology for
surfaces in $S^{3} \times S^{1}$

Theory of Skeletons

Skeletons

Table of Contents

Skeletons

An n-skeleton of a manifold M is an n-polyhedron S to which the union of all handles of indices $\leq n$ in a handle decomposition of M can be collapsed.

Skeletons

An n-skeleton of a manifold M is an n-polyhedron S to which the union of all handles of indices $\leq n$ in a handle decomposition of M can be collapsed.

There is no natural n-skeleton, but there are generic n-skeletons, and their generic transformations to each other.

Skeletons

An n-skeleton of a manifold M is an n-polyhedron S to which the union of all handles of indices $\leq n$ in a handle decomposition of M can be collapsed.

There is no natural n-skeleton, but there are generic n-skeletons, and their generic transformations to each other.

A generic graph that cannot be diminished by a collapse is trivalent.

Skeletons

An n-skeleton of a manifold M is an n-polyhedron S to which the union of all handles of indices $\leq n$ in a handle decomposition of M can be collapsed.

There is no natural n-skeleton, but there are generic n-skeletons, and their generic transformations to each other.

A generic graph that cannot be diminished by a collapse is trivalent.

A non-generic graph:

Skeletons

An n-skeleton of a manifold M is an n-polyhedron S to which the union of all handles of indices $\leq n$ in a handle decomposition of M can be collapsed.

There is no natural n-skeleton, but there are generic n-skeletons, and their generic transformations to each other.

A generic graph that cannot be diminished by a collapse is trivalent.

Make elementary collapse:

Skeletons

An n-skeleton of a manifold M is an n-polyhedron S to which the union of all handles of indices $\leq n$ in a handle decomposition of M can be collapsed.

There is no natural n-skeleton, but there are generic n-skeletons, and their generic transformations to each other.

A generic graph that cannot be diminished by a collapse is trivalent.

Make elementary collapse:

Skeletons

An n-skeleton of a manifold M is an n-polyhedron S to which the union of all handles of indices $\leq n$ in a handle decomposition of M can be collapsed.

There is no natural n-skeleton, but there are generic n-skeletons, and their generic transformations to each other.

A generic graph that cannot be diminished by a collapse is trivalent.

Perturb:

Skeletons

An n-skeleton of a manifold M is an n-polyhedron S to which the union of all handles of indices $\leq n$ in a handle decomposition of M can be collapsed.

There is no natural n-skeleton, but there are generic n-skeletons, and their generic transformations to each other.

A generic graph that cannot be diminished by a collapse is trivalent.

Perturb:

Skeletons

An n-skeleton of a manifold M is an n-polyhedron S to which the union of all handles of indices $\leq n$ in a handle decomposition of M can be collapsed.

There is no natural n-skeleton, but there are generic n-skeletons, and their generic transformations to each other.

A generic non-collapsible 2-polyhedron has local structure of a foam:

Skeletons

An n-skeleton of a manifold M is an n-polyhedron S to which the union of all handles of indices $\leq n$ in a handle decomposition of M
can be collapsed.
There is no natural n-skeleton, but there are generic n-skeletons, and their generic transformations to each other.

A generic non-collapsible 2-polyhedron has local structure of a foam:
stratified with trivalent 1-strata:
 and vertices of one kind:

Recovery from a 2-skeleton

Theorem (Casler, 1965). A closed oriented 3-manifold can be recovered from its generic 2 -skeleton.

Recovery from a 2-skeleton

Theorem (Casler, 1965). A closed oriented 3-manifold can be recovered from its generic 2-skeleton.

An oriented smooth closed 4-manifold
cannot be recovered from its generic 2-skeleton.

Recovery from a 2-skeleton

Theorem (Casler, 1965). A closed oriented 3-manifold can be recovered from its generic 2 -skeleton.

An oriented smooth closed 4-manifold cannot be recovered from its generic 2-skeleton.

A 2-stratum of a generic 2-skeleton in an oriented 4-manifold has

$$
\text { self-intersection number } \in \frac{1}{2} \mathbb{Z}
$$

Recovery from a 2-skeleton

Theorem (Casler, 1965). A closed oriented 3-manifold can be recovered from its generic 2 -skeleton.

An oriented smooth closed 4-manifold cannot be recovered from its generic 2-skeleton.

A 2-stratum of a generic 2-skeleton in an oriented 4-manifold has self-intersection number $\in \frac{1}{2} \mathbb{Z}$.
Theorem (Turaev, 1991). An oriented smooth closed 4-manifold can be recovered from its generic 2 -skeleton equipped with self-intersection numbers of 2-strata.

Recovery from a 2-skeleton

Theorem (Casler, 1965). A closed oriented 3-manifold can be recovered from its generic 2-skeleton.

An oriented smooth closed 4-manifold
cannot be recovered from its generic 2-skeleton.
A 2-stratum of a generic 2-skeleton in an oriented 4-manifold has self-intersection number $\epsilon \frac{1}{2} \mathbb{Z}$.
Theorem (Turaev, 1991). An oriented smooth closed 4-manifold can be recovered from its generic 2-skeleton equipped with self-intersection numbers of 2-strata.

Self-intersection numbers are called gleams, a generic 2-polyhedron with gleams is a shadowed 2-polyhedron .

Recovery from a 2-skeleton

Theorem (Casler, 1965). A closed oriented 3-manifold can be recovered from its generic 2-skeleton.

An oriented smooth closed 4-manifold
cannot be recovered from its generic 2-skeleton.
A 2-stratum of a generic 2-skeleton in an oriented 4-manifold has self-intersection number $\epsilon \frac{1}{2} \mathbb{Z}$.
Theorem (Turaev, 1991). An oriented smooth closed 4-manifold can be recovered from its generic 2 -skeleton equipped with self-intersection numbers of 2-strata.

Self-intersection numbers are called gleams, a generic 2-polyhedron with gleams is a shadowed 2-polyhedron.

A generic 2-polyhedron that is not equipped with gleams is considered shadowed with all gleams equal zero.

How 2-skeletons move in 3D

Theorem (Matveev, Piergallini). Any two 2-skeletons of an oriented closed 3-manifold can be transformed to each other by a sequence of moves of the following 3 -types.

How 2-skeletons move in 3D

Theorem (Matveev, Piergallini). Any two 2-skeletons of an oriented closed 3-manifold can be transformed to each other by a sequence of moves of the following 3-types.

How 2-skeletons move in 3D

Corollary. Any quantity calculated for a generic 2-polyhedron and invariant with respect the three Matveev-Piergallini moves is a topological invariant of a 3-manifold.

How 2-skeletons move in 4D

Theorem (Turaev). Any two shadowed 2-skeletons of an oriented smooth closed 4-manifold can be transformed to each other by a sequence of moves of the following 4 types.

How 2-skeletons move in 4D

Theorem (Turaev). Any two shadowed 2-skeletons of an oriented smooth closed 4-manifold can be transformed to each other by a sequence of moves of the following 4 types.

How 2-skeletons move in 4D

Theorem (Turaev). Any two shadowed 2-skeletons of an oriented smooth closed 4-manifold can be transformed to each other by a sequence of moves of the following 4 types.

Gleams change as follows:

How 2-skeletons move in 4D

Theorem (Turaev). Any two shadowed 2-skeletons of an oriented smooth closed 4-manifold can be transformed to each other by a sequence of moves of the following 4 types.

Gleams change as follows:

How 2-skeletons move in 4D

Theorem (Turaev). Any two shadowed 2-skeletons of an oriented smooth closed 4-manifold can be transformed to each other by a sequence of moves of the following 4 types.

Gleams change as follows:

How 2-skeletons move in 4D

Theorem (Turaev). Any two shadowed 2-skeletons of an oriented smooth closed 4-manifold can be transformed to each other by a sequence of moves of the following 4 types.

Gleams change as follows:

How 2-skeletons move in 4D

Theorem (Turaev). Any two shadowed 2-skeletons of an oriented smooth closed 4-manifold can be transformed to each other by a sequence of moves of the following 4 types.

Gleams change as follows:

Generic 2-polyhedra with boundary

A generic 2-polyhedron with boundary has interior points with
 and boundary points with no neighborhoods of these sorts, but with neighborhoods homeomorphic to

Generic 2-polyhedra with boundary

A generic 2-polyhedron with boundary has interior points with
 and boundary points with no neighborhoods of these sorts, but with neighborhoods homeomorphic to

The boundary of a generic 2-polyhedron is a generic 1-polyhedron.

Generic 2-polyhedra with boundary

A generic 2-polyhedron with boundary has interior points with
 and boundary points with no neighborhoods of these sorts, but with neighborhoods homeomorphic to

The boundary of a generic 2-polyhedron is a generic 1-polyhedron.
A generic 2-polyhedron X whose boundary ∂X is a disjoint union of 3 -valent graphs Γ_{0} and Γ_{1} is a cobordism between Γ_{0} and Γ_{1}.

Generic 2-polyhedra with boundary

A generic 2-polyhedron with boundary has interior points with neighborhoods homeomorphic to \mathbb{R}^{2}, or \ldots, or and boundary points with no neighborhoods of these sorts, but with neighborhoods homeomorphic to
 or

The boundary of a generic 2-polyhedron is a generic 1-polyhedron.
A generic 2-polyhedron X whose boundary ∂X is a disjoint union of 3 -valent graphs Γ_{0} and Γ_{1} is a cobordism between Γ_{0} and Γ_{1}.

Generic shadowed 2-polyhedra with boundary are called equivalent, if they can be transformed to each other by the moves.
Recall: moves do not affect the boundary.

Generic 2-polyhedra with boundary

A generic 2-polyhedron with boundary has interior points with neighborhoods homeomorphic to \mathbb{R}^{2}, or \ldots, or and boundary points with no neighborhoods of these sorts, but with neighborhoods homeomorphic to
 or

The boundary of a generic 2-polyhedron is a generic 1-polyhedron.
A generic 2-polyhedron X whose boundary ∂X is a disjoint union of 3 -valent graphs Γ_{0} and Γ_{1} is a cobordism between Γ_{0} and Γ_{1}.

Generic shadowed 2-polyhedra with boundary are called equivalent, if they can be transformed to each other by the moves.
Recall: moves do not affect the boundary.
Any two trivalent graphs are cobordant, but there are many non-equivalent generic shadowed 2-polyhedra.

Relative 2-skeletons

Relative 2-skeletons

A relative generic 2-skeleton of a compact 3-manifold W is a generic 2-polyhedron X with boundary such that W \ finite set can collapse to X in such a way that the collapsing would preserve the boundary so that ∂W, finite set would collapse to $\partial X=X \cap \partial W$.

Relative 2-skeletons

A relative generic 2-skeleton of a compact 3-manifold W is a generic 2-polyhedron X with boundary such that W \ finite set can collapse to X in such a way that the collapsing would preserve the boundary so that ∂W, finite set would collapse to $\partial X=X \cap \partial W$.

A relative generic 2-skeleton of an oriented smooth compact 4-manifold W is a generic 2-polyhedron X with boundary such that the union of all handles of W of indices ≤ 2 can collapse to X in such a way that the collapsing would preserve the boundary so that $\partial W \backslash$ graph would collapse to $\partial X=X \cap \partial W$.

Relative 2-skeletons

A relative generic 2-skeleton of a compact 3-manifold W is a generic 2-polyhedron X with boundary such that W \ finite set can collapse to X in such a way that the collapsing would preserve the boundary so that ∂W, finite set would collapse to $\partial X=X \cap \partial W$.

A relative generic 2-skeleton of an oriented smooth compact 4-manifold W is a generic 2-polyhedron X with boundary such that the union of all handles of W of indices ≤ 2 can collapse to X in such a way that the collapsing would preserve the boundary so that $\partial W \backslash$ graph would collapse to $\partial X=X \cap \partial W$.

For 2-strata of X adjacent to ∂X, self-intersections are not defined.

Relative 2-skeletons

A relative generic 2-skeleton of a compact 3-manifold W is a generic 2-polyhedron X with boundary such that W \ finite set can collapse to X in such a way that the collapsing would preserve the boundary so that ∂W, finite set would collapse to $\partial X=X \cap \partial W$.

A relative generic 2-skeleton of an oriented smooth compact 4-manifold W is a generic 2-polyhedron X with boundary such that the union of all handles of W of indices ≤ 2 can collapse to X in such a way that the collapsing would preserve the boundary so that $\partial W \backslash$ graph would collapse to $\partial X=X \cap \partial W$.

For 2-strata of X adjacent to ∂X, self-intersections are not defined.
Choose a framing of ∂X in ∂W.
Now all 2-strata of X have self-intersections.

Relative 2-skeletons

A relative generic 2-skeleton of a compact 3-manifold W is a generic 2-polyhedron X with boundary such that W \ finite set can collapse to X in such a way that the collapsing would preserve the boundary so that ∂W \ finite set would collapse to $\partial X=X \cap \partial W$.

A relative generic 2-skeleton of an oriented smooth compact 4-manifold W is a generic 2-polyhedron X with boundary such that the union of all handles of W of indices ≤ 2 can collapse to X in such a way that the collapsing would preserve the boundary so that $\partial W \backslash$ graph would collapse to $\partial X=X \cap \partial W$.
Any compact 3-manifold W has a relative generic 2 -skeleton.

Relative 2-skeletons

A relative generic 2-skeleton of a compact 3-manifold W is a generic 2-polyhedron X with boundary such that W \ finite set can collapse to X in such a way that the collapsing would preserve the boundary so that ∂W, finite set would collapse to $\partial X=X \cap \partial W$.

A relative generic 2-skeleton of an oriented smooth compact 4-manifold W is a generic 2-polyhedron X with boundary such that the union of all handles of W of indices ≤ 2 can collapse to X in such a way that the collapsing would preserve the boundary so that $\partial W \backslash$ graph would collapse to $\partial X=X \cap \partial W$.
Any compact 3-manifold W has a relative generic 2 -skeleton.
Any smooth oriented compact 4-manifold W
has a relative generic 2 -skeleton.

Relative 2-skeletons

A relative generic 2-skeleton of a compact 3-manifold W is a generic 2-polyhedron X with boundary such that W \ finite set can collapse to X in such a way that the collapsing would preserve the boundary so that ∂W \ finite set would collapse to $\partial X=X \cap \partial W$.

A relative generic 2 -skeleton of an oriented smooth compact 4-manifold W is a generic 2-polyhedron X with boundary such that the union of all handles of W of indices ≤ 2 can collapse to X in such a way that the collapsing would preserve the boundary

$$
\text { so that } \partial W \backslash \text { graph would collapse to } \partial X=X \cap \partial W \text {. }
$$

Any compact 3-manifold W has a relative generic 2-skeleton.
Any smooth oriented compact 4-manifold W
has a relative generic 2 -skeleton.
In both dimensions, any generic 1 -skeleton of ∂W bounds a relative generic 2-skeleton of W.

Relative 2-skeletons

A relative generic 2-skeleton of a compact 3-manifold W is a generic 2-polyhedron X with boundary such that W \ finite set can collapse to X in such a way that the collapsing would preserve the boundary so that ∂W, finite set would collapse to $\partial X=X \cap \partial W$.

A relative generic 2-skeleton of an oriented smooth compact 4-manifold W is a generic 2-polyhedron X with boundary such that the union of all handles of W of indices ≤ 2 can collapse to X in such a way that the collapsing would preserve the boundary

$$
\text { so that } \partial W \backslash \text { graph would collapse to } \partial X=X \cap \partial W \text {. }
$$

Any compact 3-manifold W has a relative generic 2 -skeleton.
Any smooth oriented compact 4-manifold W
has a relative generic 2 -skeleton.
In both dimensions, any generic 1 -skeleton of ∂W bounds a relative generic 2-skeleton of W, and any two relative 2 -skeletons with the same boundary are equivalent.

Introduction
Theory of Skeletons
Face state sums

- Colors and colorings
- Face state sums
- Invariants of knotted graphs
- Construction of TQFT
- Old and new TQFT'es

Upgrading the colored Jones

Khovanov homology of framed links

Khovanov homology for surfaces in $S^{3} \times S^{1}$

Face state sums

Colors and colorings

Colors and colorings

Fix a finite set \mathcal{P} called a pallet and a field k.

Colors and colorings

Fix a finite set \mathcal{P} called a pallet and a field k.
For a trivalent graph Γ,
a map $\{1$-strata of $\Gamma\} \rightarrow \mathcal{P}$ is called a coloring of Γ.

Colors and colorings

Fix a finite set \mathcal{P} called a pallet and a field k.
For a trivalent graph Γ,
a map $\{1$-strata of $\Gamma\} \rightarrow \mathcal{P}$ is called a coloring of Γ.
Denote by $C(\Gamma)$ a vector space over k generated by colorings of Γ.

Colors and colorings

Fix a finite set \mathcal{P} called a pallet and a field k.
For a trivalent graph Γ,

$$
\text { a map }\{1 \text {-strata of } \Gamma\} \rightarrow \mathcal{P} \text { is called a coloring of } \Gamma \text {. }
$$

Denote by $C(\Gamma)$ a vector space over k generated by colorings of Γ.
A state or coloring of a generic polyhedron X is a map
$s:\{2$-strata of $X\} \rightarrow \mathcal{P}$.

Colors and colorings

Fix a finite set \mathcal{P} called a pallet and a field k.
For a trivalent graph Γ,

$$
\text { a map }\{1 \text {-strata of } \Gamma\} \rightarrow \mathcal{P} \text { is called a coloring of } \Gamma \text {. }
$$

Denote by $C(\Gamma)$ a vector space over k generated by colorings of Γ.
A state or coloring of a generic polyhedron X is a map
$s:\{2$-strata of $X\} \rightarrow \mathcal{P}$.
A state s of X induces a coloring ∂s of ∂X.

Colors and colorings

Fix a finite set \mathcal{P} called a pallet and a field k.
For a trivalent graph Γ,

$$
\text { a map }\{1 \text {-strata of } \Gamma\} \rightarrow \mathcal{P} \text { is called a coloring of } \Gamma \text {. }
$$

Denote by $C(\Gamma)$ a vector space over k generated by colorings of Γ.
A state or coloring of a generic polyhedron X is a map $s:\{2$-strata of $X\} \rightarrow \mathcal{P}$.
A state s of X induces a coloring ∂s of ∂X.
A map $Z:\{$ states of $X\} \rightarrow k$ defines a linear map
$C(\partial X) \rightarrow k$ that maps a coloring c of ∂X to $Z_{X}(c)=\sum_{\partial s=c} Z(s)$.

Colors and colorings

Fix a finite set \mathcal{P} called a pallet and a field k.
For a trivalent graph Γ,

$$
\text { a map }\{1 \text {-strata of } \Gamma\} \rightarrow \mathcal{P} \text { is called a coloring of } \Gamma \text {. }
$$

Denote by $C(\Gamma)$ a vector space over k generated by colorings of Γ.
A state or coloring of a generic polyhedron X is a map

$$
s:\{\text { 2-strata of } X\} \rightarrow \mathcal{P} .
$$

A state s of X induces a coloring ∂s of ∂X.
A map $Z:\{$ states of $X\} \rightarrow k$ defines a linear map
$C(\partial X) \rightarrow k$ that maps a coloring c of ∂X to $Z_{X}(c)=\sum_{\partial s=c} Z(s)$.
If $\Gamma=\varnothing$, then there is only one coloring of Γ and $C(\Gamma)=k$. If $\partial X=\varnothing$, then $Z_{X} \in k$.

Colors and colorings

Fix a finite set \mathcal{P} called a pallet and a field k.
For a trivalent graph Γ,

$$
\text { a map }\{1 \text {-strata of } \Gamma\} \rightarrow \mathcal{P} \text { is called a coloring of } \Gamma \text {. }
$$

Denote by $C(\Gamma)$ a vector space over k generated by colorings of Γ.
A state or coloring of a generic polyhedron X is a map

$$
s:\{\text { 2-strata of } X\} \rightarrow \mathcal{P} .
$$

A state s of X induces a coloring ∂s of ∂X.
A map $Z:\{$ states of $X\} \rightarrow k$ defines a linear map
$C(\partial X) \rightarrow k$ that maps a coloring c of ∂X to $Z_{X}(c)=\sum_{\partial s=c} Z(s)$.
If $\Gamma=\varnothing$, then there is only one coloring of Γ and $C(\Gamma)=k$. If $\partial X=\varnothing$, then $Z_{X} \in k$.
If X is a cobordism between Γ_{0} and Γ_{1}, then $Z_{X}\left(c_{0}, c_{1}\right)$ is a matrix defining a map $Z_{X}: C\left(\Gamma_{0}\right) \rightarrow C\left(\Gamma_{1}\right)$.

Face state sums

Which Z, Z_{X} are good for study of manifolds?

Face state sums

Which Z, Z_{X} are good for study of manifolds?
(1) Those that depend only on the equivalence class of X, that is only on the manifold whose skeleton is X,
(2) those that define a TQFT (i.e, a functor Cobordisms $\rightarrow \operatorname{Vect}(k)$)?

Face state sums

Which Z, Z_{X} are good for study of manifolds?
(1) Those that depend only on the equivalence class of X, that is only on the manifold whose skeleton is X,
(2) those that define a TQFT (i.e, a functor Cobordisms $\rightarrow \operatorname{Vect}(k)$)?

Fix $w_{0}: \mathcal{P}^{6} \rightarrow \mathbb{C}, w_{1}: \mathcal{P}^{3} \rightarrow \mathbb{C}, w_{2}: \mathcal{P} \rightarrow \mathbb{C}, t: \mathcal{P} \rightarrow \mathbb{C}, w_{3} \in \mathbb{C}$.

Face state sums

Which Z, Z_{X} are good for study of manifolds?
(1) Those that depend only on the equivalence class of X, that is only on the manifold whose skeleton is X,
(2) those that define a TQFT (i.e, a functor Cobordisms $\rightarrow \operatorname{Vect}(k)$)?

Fix $w_{0}: \mathcal{P}^{6} \rightarrow \mathbb{C}, w_{1}: \mathcal{P}^{3} \rightarrow \mathbb{C}, w_{2}: \mathcal{P} \rightarrow \mathbb{C}, t: \mathcal{P} \rightarrow \mathbb{C}, w_{3} \in \mathbb{C}$.
w_{1} is symmetric (symmetric group S_{3});
w_{0} has the symmetry of tetrahedron (S_{4} acting on the set of 6 edges).

Face state sums

Which Z, Z_{X} are good for study of manifolds?
(1) Those that depend only on the equivalence class of X, that is only on the manifold whose skeleton is X,
(2) those that define a TQFT (i.e, a functor Cobordisms $\rightarrow \operatorname{Vect}(k))$?
Fix $w_{0}: \mathcal{P}^{6} \rightarrow \mathbb{C}, w_{1}: \mathcal{P}^{3} \rightarrow \mathbb{C}, w_{2}: \mathcal{P} \rightarrow \mathbb{C}, t: \mathcal{P} \rightarrow \mathbb{C}, w_{3} \in \mathbb{C}$.
w_{1} is symmetric (symmetric group S_{3});
w_{0} has the symmetry of tetrahedron (S_{4} acting on the set of 6 edges).
For a state s, let $Z(s)=$
$w_{3}^{-\chi(X)+\frac{1}{2} \chi(\partial X)} \prod_{f \in\{2 \text {-strata }\}} w_{2}(s(f))^{\chi(f)+\frac{1}{2} \chi(\bar{f} \cap \partial X \backslash\{\text { vertices }\})} t(s(f))^{2 f \circ f}$

$$
\times \prod_{e \in\{1 \text {-strata of } \operatorname{Int} X\}} w_{1}(s(f) \mid f \in S t(e))^{\chi(e)+\frac{1}{2} \chi(e \cap \partial X)}
$$

$$
\times \quad \prod_{0} \quad w_{0}(s(f) \mid f \in S t(v))
$$

Face state sums

Which Z, Z_{X} are good for study of manifolds?
(1) Those that depend only on the equivalence class of X, that is only on the manifold whose skeleton is X,
(2) those that define a TQFT (i.e, a functor Cobordisms $\rightarrow \operatorname{Vect}(k))$?

Fix $w_{0}: \mathcal{P}^{6} \rightarrow \mathbb{C}, w_{1}: \mathcal{P}^{3} \rightarrow \mathbb{C}, w_{2}: \mathcal{P} \rightarrow \mathbb{C}, t: \mathcal{P} \rightarrow \mathbb{C}, w_{3} \in \mathbb{C}$.
w_{1} is symmetric (symmetric group S_{3});
w_{0} has the symmetry of tetrahedron (S_{4} acting on the set of 6 edges).
For a state s, let $Z(s)=$

$$
\begin{aligned}
w_{3}^{-\chi(X)+\frac{1}{2} \chi(\partial X)} & \prod_{f \in\{2 \text {-strata }\}} w_{2}(s(f))^{\chi(f)+\frac{1}{2} \chi(\bar{f} \cap \partial X \backslash\{\text { vertices }\})} t(s(f))^{2 f \circ f} \\
& \times \prod_{e \in\{1 \text {-strata of } \operatorname{Int} X\}} w_{1}(s(f) \mid f \in S t(e))^{\chi(e)+\frac{1}{2} \chi(e \cap \partial X)} \\
& \times \prod_{0}(s(f) \mid f \in S t(v))
\end{aligned}
$$

$$
\text { Let } Z_{X}(c)=\sum Z(s) \text {. }
$$

What w_{i} and t to choose? s such that $\partial s=c$

Invariants of knotted graphs

The usual source of the structural constants w_{i} and t
is a modular category.

Invariants of knotted graphs

The usual source of the structural constants w_{i} and t
is a modular category .
Not all the axioms of modular category are needed.

Invariants of knotted graphs

We may start with isotopy invariants of embedded in \mathbb{R}^{3} framed trivalent graphs with 1 -strata colored with colors from a finite pallet \mathcal{P}.

Invariants of knotted graphs

We may start with isotopy invariants of embedded in \mathbb{R}^{3} framed trivalent graphs with 1 -strata colored with colors from a finite pallet \mathcal{P}.

Invariants of knotted graphs

We may start with isotopy invariants of embedded in \mathbb{R}^{3} framed trivalent graphs with 1 -strata colored with colors from a finite pallet \mathcal{P}.

Assume that the invariant satisfies two axioms:

Invariants of knotted graphs

We may start with isotopy invariants of embedded in \mathbb{R}^{3} framed trivalent graphs with 1 -strata colored with colors from a finite pallet \mathcal{P}.

Assume that the invariant satisfies two axioms:

$$
\begin{gathered}
\left.\left|\Gamma_{\Gamma}^{\Gamma_{j}^{k}}\right|=\delta_{j}^{k} C(\Gamma, j)| |_{j}^{j}\right\rangle \\
|\overbrace{k}^{i} \Gamma_{l}^{j}\rangle=\left.\sum_{m \in \mathcal{P}} C(\Gamma, i, j, k, l, m)\right|_{k} ^{i} \sum_{l}{ }_{l}^{j}\rangle .
\end{gathered}
$$

Invariants of knotted graphs

We may start with isotopy invariants of embedded in \mathbb{R}^{3} framed trivalent graphs with 1 -strata colored with colors from a finite pallet \mathcal{P}.

Assume that the invariant satisfies two axioms:

$$
\begin{gathered}
\left.\left|\Gamma_{\Gamma}^{\Gamma_{j}^{k}}\right|=\left.\delta_{j}^{k} C(\Gamma, j)| |\right|_{j} ^{j}\right\rangle \\
\left|\Gamma_{k}^{i} \zeta_{l}^{j}\right|=\left.\sum_{m \in \mathcal{P}} C(\Gamma, i, j, k, l, m)\right|_{k} ^{i} \sum_{l}^{j}{ }_{l}^{j} \mid .
\end{gathered}
$$

Theorem. If $w_{2}(j)=\left\langle\bigcirc_{j}\right\rangle, t(j)=\frac{\left|\bigcirc_{j}\right\rangle}{\left\langle\bigcirc_{j}\right\rangle}, \quad w_{1}(j, m, l)=\left\langle\left(\Im_{j}^{l}\right\rangle\right.$,
 invariant under moves and defines a TQFT.

Construction of TQFT

Correction: the state sums define a functor
(trivalent graphs and their cobordisms) \rightarrow Vect k. but only a semifunctor (manifolds, their cobordisms) \rightarrow Vect k.

Construction of TQFT

Correction: the state sums define a functor
(trivalent graphs and their cobordisms) \rightarrow Vect k. but only a semifunctor (manifolds, their cobordisms) \rightarrow Vect k.

The identity cobordism of a trivalent graph Γ is $\Gamma \times I$, but if Γ is a 1 -skeleton of M, then $\Gamma \times I$ is not a 2 -skeleton of $M \times I$.

Construction of TQFT

Correction: the state sums define a functor
(trivalent graphs and their cobordisms) \rightarrow Vect k. but only a semifunctor (manifolds, their cobordisms) \rightarrow Vect k.

The identity cobordism of a trivalent graph Γ is $\Gamma \times I$, but if Γ is a 1 -skeleton of M, then $\Gamma \times I$ is not a 2 -skeleton of $M \times I$.

Still, the composition of cobordisms has a 2-skeleton
that is the compositions of 2-skeletons of the cobordisms.

Construction of TQFT

Correction: the state sums define a functor (trivalent graphs and their cobordisms) \rightarrow Vect k. but only a semifunctor (manifolds, their cobordisms) \rightarrow Vect k.

The identity cobordism of a trivalent graph Γ is $\Gamma \times I$, but if Γ is a 1 -skeleton of M, then $\Gamma \times I$ is not a 2 -skeleton of $M \times I$.

Still, the composition of cobordisms has a 2-skeleton
that is the compositions of 2-skeletons of the cobordisms.
In order to turn a functor
(trivalent graphs and their cobordisms) \rightarrow Vect k
to a functor
(manifolds and their cobordisms) \rightarrow Vect k, factorize $C(1$-skeleton of a manifold $M)$ by $\operatorname{Ker} Z_{2 \text {-skeleton of } M \times I}$.

Denote $C(1$-skeleton of a manifold $M) / \operatorname{Ker} Z_{2 \text {-skeleton of } M \times I}$ by $Z(M)$ and $Z_{2 \text {-skeleton of a cobordism } W}$ by Z_{W}. This is a TQFT!

Old and new TQFT'es

For 2-skeletons of 3-manifolds and the background invariants obtained from the Kauffman bracket extended by cabling and the Jones-Wenzl projectors and evaluated at a root q of unity, this is the Turaev-Viro TQFT introduced in 1991.

Old and new TQFT'es

For 2-skeletons of 3-manifolds and the background invariants obtained from the Kauffman bracket extended by cabling and the Jones-Wenzl projectors and evaluated at a root q of unity, this is the Turaev-Viro TQFT introduced in 1991.

The same background invariants give a new (3+1)-TQFT.

Old and new TQFT'es

For 2-skeletons of 3-manifolds and the background invariants obtained from the Kauffman bracket extended by cabling and the Jones-Wenzl projectors and evaluated at a root q of unity, this is the Turaev-Viro TQFT introduced in 1991.

The same background invariants give a new (3+1)-TQFT.
If the state sums come from a modular category, then $\operatorname{dim} Z(M)=1$ for any oriented closed connected 3-manifold M.

Old and new TQFT'es

For 2-skeletons of 3-manifolds and the background invariants obtained from the Kauffman bracket extended by cabling and the Jones-Wenzl projectors and evaluated at a root q of unity, this is the Turaev-Viro TQFT introduced in 1991.

The same background invariants give a new (3+1)-TQFT.
If the state sums come from a modular category, then $\operatorname{dim} Z(M)=1$ for any oriented closed connected 3-manifold M.

Then for any cobordism W
the map Z_{W} is multiplication by an exponent of the signature of W.

Old and new TQFT'es

For 2-skeletons of 3-manifolds and the background invariants obtained from the Kauffman bracket extended by cabling and the Jones-Wenzl projectors and evaluated at a root q of unity, this is the Turaev-Viro TQFT introduced in 1991.

The same background invariants give a new (3+1)-TQFT.
If the state sums come from a modular category, then $\operatorname{dim} Z(M)=1$ for any oriented closed connected 3-manifold M.
Then for any cobordism W
the map Z_{W} is multiplication by an exponent of the signature of W.
Because then Z_{W} is invariant under cobordism (Turaev, 1991).

Old and new TQFT'es

For 2-skeletons of 3-manifolds and the background invariants obtained from the Kauffman bracket extended by cabling and the Jones-Wenzl projectors and evaluated at a root q of unity, this is the Turaev-Viro TQFT introduced in 1991.

The same background invariants give a new (3+1)-TQFT.
If the state sums come from a modular category, then $\operatorname{dim} Z(M)=1$ for any oriented closed connected 3-manifold M.
Then for any cobordism W
the map Z_{W} is multiplication by an exponent of the signature of W.
Because then Z_{W} is invariant under cobordism (Turaev, 1991).
It follows from the axiom requiring invertibility of S-matrix.

Old and new TQFT'es

For 2-skeletons of 3-manifolds and the background invariants obtained from the Kauffman bracket extended by cabling and the Jones-Wenzl projectors and evaluated at a root q of unity, this is the Turaev-Viro TQFT introduced in 1991.

The same background invariants give a new (3+1)-TQFT.
If the state sums come from a modular category, then $\operatorname{dim} Z(M)=1$ for any oriented closed connected 3-manifold M.
Then for any cobordism W
the map Z_{W} is multiplication by an exponent of the signature of W.
Because then Z_{W} is invariant under cobordism (Turaev, 1991).
It follows from the axiom requiring invertibility of S-matrix.
There are many invariants of framed colored trivalent graphs for which the S-matrix is not invertible.

Upgrading the colored Jones

Khovanov homology for $\underline{\text { surfaces in } S^{3} \times S^{1}}$

State sum model for colored Jones

Take for the background invariants the Kauffman bracket extended by cabling and the Jones-Wenzl projectors and evaluated at a root q of unity.

State sum model for colored Jones

Take for the background invariants the Kauffman bracket extended by cabling and the Jones-Wenzl projectors and evaluated at a root q of unity.

The value at q of the colored Jones polynomial of a link L equals the state sum of a generic 2-skeleton S of $X=D^{4} \cup \bigcup_{i} H_{i}$, where H_{i} are 2-handles attached along the components of L.

State sum model for colored Jones

Take for the background invariants the Kauffman bracket extended by cabling and the Jones-Wenzl projectors and evaluated at a root q of unity.

The value at q of the colored Jones polynomial of a link L equals the state sum of a generic 2-skeleton S of $X=D^{4} \cup \bigcup_{i} H_{i}$, where H_{i} are 2-handles attached along the components of L.

The only restriction: $H_{i} \cap S$ is a disk for each i and
in the state sum the colors of these disks coincide with the colors of the corresponding components of L.

Building a special 2-skeleton

Let $L=\bigcup_{i} L_{i} \subset S^{3}$ be an oriented classical link framed by its Seifert surface, H_{i} be a 2-handle attached along L_{i} and $X=D^{4} \cup \bigcup_{i} H_{i}$.

Building a special 2-skeleton

Let $L=\bigcup_{i} L_{i} \subset S^{3}$ be an oriented classical link framed by its Seifert surface, H_{i} be a 2-handle attached along L_{i} and $X=D^{4} \cup \bigcup_{i} H_{i}$.

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L;

Building a special 2-skeleton

Let $L=\bigcup_{i} L_{i} \subset S^{3}$ be an oriented classical link framed by its Seifert surface, H_{i} be a 2-handle attached along L_{i} and $X=D^{4} \cup \bigcup_{i} H_{i}$.

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L;
(2) Extend T to a 2-skeleton R of $S^{3} \backslash L$;

Building a special 2-skeleton

Let $L=\bigcup_{i} L_{i} \subset S^{3}$ be an oriented classical link framed by its Seifert
surface, H_{i} be a 2-handle attached along L_{i} and $X=D^{4} \cup \bigcup_{i} H_{i}$.
Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L;
(2) Extend T to a 2-skeleton R of $S^{3} \backslash L$;
R is also a 2-skeleton of the 4-manifold $\left(S^{3} \backslash L\right) \times I$.

Building a special 2-skeleton

Let $L=\bigcup_{i} L_{i} \subset S^{3}$ be an oriented classical link framed by its Seifert
surface, H_{i} be a 2-handle attached along L_{i} and $X=D^{4} \cup \bigcup_{i} H_{i}$.
Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L;
(2) Extend T to a 2-skeleton R of $S^{3} \backslash L$;

$$
R \text { is also a 2-skeleton of the 4-manifold }\left(S^{3} \backslash L\right) \times I
$$

(3) Adjoin to R disks m_{i} along meridians of L_{i}.

Building a special 2-skeleton

Let $L=\bigcup_{i} L_{i} \subset S^{3}$ be an oriented classical link framed by its Seifert surface, H_{i} be a 2-handle attached along L_{i} and $X=D^{4} \cup \bigcup_{i} H_{i}$.

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L;
(2) Extend T to a 2-skeleton R of $S^{3} \backslash L$;
R is also a 2-skeleton of the 4-manifold $\left(S^{3} \backslash L\right) \times I$.
(3) Adjoin to R disks m_{i} along meridians of L_{i}.

The result is a 2-skeleton of $S^{3} \times I$.

Building a special 2-skeleton

Let $L=\bigcup_{i} L_{i} \subset S^{3}$ be an oriented classical link framed by its Seifert surface, H_{i} be a 2-handle attached along L_{i} and $X=D^{4} \cup \bigcup_{i} H_{i}$.

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L;
(2) Extend T to a 2-skeleton R of $S^{3} \backslash L$;
R is also a 2-skeleton of the 4-manifold $\left(S^{3} \backslash L\right) \times I$.
(3) Adjoin to R disks m_{i} along meridians of L_{i}.

The result is a 2-skeleton of $S^{3} \times I$ and of D^{4}.

Building a special 2-skeleton

Let $L=\bigcup_{i} L_{i} \subset S^{3}$ be an oriented classical link framed by its Seifert surface, H_{i} be a 2-handle attached along L_{i} and $X=D^{4} \cup \bigcup_{i} H_{i}$.
Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L;
(2) Extend T to a 2-skeleton R of $S^{3} \backslash L$;
R is also a 2-skeleton of the 4-manifold $\left(S^{3} \backslash L\right) \times I$.
(3) Adjoin to R disks m_{i} along meridians of L_{i}.

The result is a 2-skeleton of $S^{3} \times I$ and of D^{4}.
(4) Adjoin to R a disk l_{i} along longitude of each L_{i}. Let $U=R \cup \bigcup_{i} l_{i}$.

Building a special 2-skeleton

Let $L=\bigcup_{i} L_{i} \subset S^{3}$ be an oriented classical link framed by its Seifert surface, H_{i} be a 2-handle attached along L_{i} and $X=D^{4} \cup \bigcup_{i} H_{i}$.

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L;
(2) Extend T to a 2-skeleton R of $S^{3} \backslash L$;

$$
R \text { is also a 2-skeleton of the 4-manifold }\left(S^{3} \backslash L\right) \times I .
$$

(3) Adjoin to R disks m_{i} along meridians of L_{i}.

The result is a 2-skeleton of $S^{3} \times I$ and of D^{4}.
(4) Adjoin to R a disk l_{i} along longitude of each L_{i}. Let $U=R \cup \bigcup_{i} l_{i}$.

This completes building of $S=U \cup \bigcup_{i} m_{i}$, a 2-skeleton for X.

Building a special 2-skeleton

Let $L=\bigcup_{i} L_{i} \subset S^{3}$ be an oriented classical link framed by its Seifert surface, H_{i} be a 2-handle attached along L_{i} and $X=D^{4} \cup \bigcup_{i} H_{i}$.

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L;
(2) Extend T to a 2-skeleton R of $S^{3} \backslash L$;

$$
R \text { is also a 2-skeleton of the 4-manifold }\left(S^{3} \backslash L\right) \times I .
$$

(3) Adjoin to R disks m_{i} along meridians of L_{i}.

The result is a 2-skeleton of $S^{3} \times I$ and of D^{4}.
(4) Adjoin to R a disk l_{i} along longitude of each L_{i}. Let $U=R \cup \bigcup_{i} l_{i}$.

This completes building of $S=U \cup \bigcup_{i} m_{i}$, a 2-skeleton for X.
Choose a Seifert surface $F \subset S^{3}$ for L such that
F is transversal to R and ∂m_{i} and disjoint from ∂l_{i}.

Partial state sums

The infinite cyclic covering of $S^{3} \backslash L$ does not extend to disks m_{i}. There is no non-trivial coverings of S, since $\pi_{1}(S)=0$.

Partial state sums

The infinite cyclic covering of $S^{3} \backslash L$ does not extend to disks m_{i}. There is no non-trivial coverings of S, since $\pi_{1}(S)=0$.

Therefore one cannot apply the Turaev construction to S.

Partial state sums

The infinite cyclic covering of $S^{3} \backslash L$ does not extend to disks m_{i}. There is no non-trivial coverings of S, since $\pi_{1}(S)=0$.

Therefore one cannot apply the Turaev construction to S.
Instead, we will apply it to $S \backslash \cup_{i} \operatorname{Int} m_{i}=U$.

Partial state sums

Split the state sum that provides the value at q of the colored Jones $J_{L_{\lambda}}(q)$ into partial state sums with fixed colors μ_{i} on the disks m_{i}.

Partial state sums

Split the state sum that provides the value at q of the colored Jones $J_{L_{\lambda}}(q)$ into partial state sums with fixed colors μ_{i} on the disks m_{i}. In a partial sum, take the common factor $\prod_{i} w_{2}\left(\mu_{i}\right)=\prod_{i} \operatorname{dim}_{q} V_{\mu_{i}}$ outside the brackets. Inside the brackets we see new state sums, sums over colorings of the 2-strata of S that are contained in U.

Partial state sums

Split the state sum that provides the value at q of the colored Jones $J_{L_{\lambda}}(q)$ into partial state sums with fixed colors μ_{i} on the disks m_{i}.

In a partial sum, take the common factor $\prod_{i} w_{2}\left(\mu_{i}\right)=\prod_{i} \operatorname{dim}_{q} V_{\mu_{i}}$
outside the brackets. Inside the brackets we see new state sums, sums over colorings of the 2-strata of S that are contained in U.

Apply the Turaev construction to each of them and to the infinite cyclic covering $\widetilde{U} \rightarrow U$ defined by $F \cap U=F \cap R$.

Partial state sums

Split the state sum that provides the value at q of the colored Jones $J_{L_{\lambda}}(q)$ into partial state sums with fixed colors μ_{i} on the disks m_{i}. In a partial sum, take the common factor $\prod_{i} w_{2}\left(\mu_{i}\right)=\prod_{i} \operatorname{dim}_{q} V_{\mu_{i}}$ outside the brackets. Inside the brackets we see new state sums, sums over colorings of the 2-strata of S that are contained in U.

Apply the Turaev construction to each of them and to the infinite cyclic covering $\widetilde{U} \rightarrow U$ defined by $F \cap U=F \cap R$.
This gives $T_{\lambda, \mu}: Q_{\lambda, \mu}(L) \rightarrow Q_{\lambda, \mu}(L)$ with $\operatorname{tr} T_{\lambda, \mu}$ equal to the part of the state sum for $J_{L_{\lambda}}(q)$ that is collected in the brackets.

Partial state sums

Split the state sum that provides the value at q of the colored Jones $J_{L_{\lambda}}(q)$ into partial state sums with fixed colors μ_{i} on the disks m_{i}. In a partial sum, take the common factor $\prod_{i} w_{2}\left(\mu_{i}\right)=\prod_{i} \operatorname{dim}_{q} V_{\mu_{i}}$ outside the brackets. Inside the brackets we see new state sums, sums over colorings of the 2-strata of S that are contained in U.

Apply the Turaev construction to each of them and to the infinite cyclic covering $\widetilde{U} \rightarrow U$ defined by $F \cap U=F \cap R$.
This gives $T_{\lambda, \mu}: Q_{\lambda, \mu}(L) \rightarrow Q_{\lambda, \mu}(L)$ with $\operatorname{tr} T_{\lambda, \mu}$ equal to the part of the state sum for $J_{L_{\lambda}}(q)$ that is collected in the brackets.
Disks m_{i} are not in U, but ∂m_{i} contribute to the stratification of U by subdividing 2 -strata of R and affecting gleams of the resulting pieces.

Partial state sums

Split the state sum that provides the value at q of the colored Jones $J_{L_{\lambda}}(q)$ into partial state sums with fixed colors μ_{i} on the disks m_{i}. In a partial sum, take the common factor $\prod_{i} w_{2}\left(\mu_{i}\right)=\prod_{i} \operatorname{dim}_{q} V_{\mu_{i}}$ outside the brackets. Inside the brackets we see new state sums, sums over colorings of the 2-strata of S that are contained in U.

Apply the Turaev construction to each of them and to the infinite cyclic covering $\widetilde{U} \rightarrow U$ defined by $F \cap U=F \cap R$.
This gives $T_{\lambda, \mu}: Q_{\lambda, \mu}(L) \rightarrow Q_{\lambda, \mu}(L)$ with $\operatorname{tr} T_{\lambda, \mu}$ equal to the part of the state sum for $J_{L_{\lambda}}(q)$ that is collected in the brackets.
Disks m_{i} are not in U, but ∂m_{i} contribute to the stratification of U by subdividing 2-strata of R and affecting gleams of the resulting pieces.
The arcs on ∂m_{i} contribute via w_{1},
the vertices (i.e., intersections of ∂m_{i} with 1 -strata of R) via w_{0}.

Partial state sums

Split the state sum that provides the value at q of the colored Jones $J_{L_{\lambda}}(q)$ into partial state sums with fixed colors μ_{i} on the disks m_{i}. In a partial sum, take the common factor $\prod_{i} w_{2}\left(\mu_{i}\right)=\prod_{i} \operatorname{dim}_{q} V_{\mu_{i}}$ outside the brackets. Inside the brackets we see new state sums, sums over colorings of the 2-strata of S that are contained in U.

Apply the Turaev construction to each of them and to the infinite cyclic covering $\widetilde{U} \rightarrow U$ defined by $F \cap U=F \cap R$.
This gives $T_{\lambda, \mu}: Q_{\lambda, \mu}(L) \rightarrow Q_{\lambda, \mu}(L)$ with $\operatorname{tr} T_{\lambda, \mu}$ equal to the part of the state sum for $J_{L_{\lambda}}(q)$ that is collected in the brackets.
Disks m_{i} are not in U, but ∂m_{i} contribute to the stratification of U by subdividing 2 -strata of R and affecting gleams of the resulting pieces.
The arcs on ∂m_{i} contribute via w_{1},
the vertices (i.e., intersections of ∂m_{i} with 1 -strata of R) via w_{0}. The whole state sum is $J_{L_{\lambda}}(q)=\sum_{\mu} \operatorname{dim}_{q} V_{\mu_{1}} \ldots \operatorname{dim}_{q} V_{\mu_{n}} \operatorname{tr} T_{\lambda, \mu}$.

Problems

Problems

Calculate the TQFT modules of knots and links in a traditional form: higher colored Jones polynomials aka higher Alexander polynomials.

Problems

Calculate the TQFT modules of knots and links in a traditional form: higher colored Jones polynomials aka higher Alexander polynomials.

Old TQFT modules (invariants of the 3-manifold obtained by the 0 -surgery along the knot) have not been studied in this way.

Problems

Calculate the TQFT modules of knots and links in a traditional form: higher colored Jones polynomials aka higher Alexander polynomials.

Old TQFT modules (invariants of the 3-manifold obtained by the 0 -surgery along the knot) have not been studied in this way.

A sharp question:
can the new TQFT modules be reduced to the colored Jones?

Problems

Calculate the TQFT modules of knots and links in a traditional form: higher colored Jones polynomials aka higher Alexander polynomials.

Old TQFT modules (invariants of the 3-manifold obtained by the 0 -surgery along the knot) have not been studied in this way.

A sharp question:
can the new TQFT modules be reduced to the colored Jones?
If not, how are they related to the Khovanov homology?

- Reidemeister moves
- Kauffman bracket of a
framed link
- Khovanov homology
of a framed link
- Cobordisms of framed
links
- Skein sequences
- Cobordisms with
double points
Khovanov homology for surfaces in $S^{3} \times S^{1}$

Khovanov homology of framed links

Diagrams of framed links

A framed link is a link with a field of normal lines.
A link made of ribbons.

Diagrams of framed links

A framed link is a link with a field of normal lines.
A link made of ribbons.
Presented by a link diagram with half-twists.

Diagrams of framed links

A framed link is a link with a field of normal lines.
A link made of ribbons.
Presented by a link diagram with half-twists.

Diagrams of framed links

A framed link is a link with a field of normal lines.
A link made of ribbons.
Presented by a link diagram with half-twists.

The left circle has framing $+\frac{1}{2}$, the right circle -1 .

Diagrams of framed links

A framed link is a link with a field of normal lines.
A link made of ribbons.
Presented by a link diagram with half-twists.

The left circle has framing $+\frac{1}{2}$, the right circle -1 .
Total framing number $\operatorname{fr}(D)=\frac{1}{2}\left(\#\binom{\mathbf{I}}{\mathbf{I}}-\#\binom{\mathbf{I}}{\mathbf{I}}\right)$.

Reidemeister moves

Reidemeister moves:
the second and third moves are the same as without framing.

Reidemeister moves

Reidemeister moves:
the second and third moves are the same as without framing.
The first Reidemeister move:

Reidemeister moves

Reidemeister moves:
the second and third moves are the same as without framing.

Half-twist annihilation: $\left.\right|_{\mid} ^{1} \leftrightarrow 2$

Reidemeister moves

Reidemeister moves:
the second and third moves are the same as without framing.
The first Reidemeister move:

Half-twist annihilation: $\left.\right|_{\mid} ^{1} \leftrightarrow<$

Kauffman bracket of a framed link

Let D be a diagram of a classical framed link.

Kauffman bracket of a framed link

Let D be a diagram of a classical framed link.

Kauffman bracket of a framed link

Kauffman state of D is a distribution of markers at crossings.

Kauffman bracket of a framed link

Kauffman state of D is a distribution of markers at crossings.

Kauffman bracket of a framed link

Kauffman state of D is a distribution of markers at crossings.
Signs of markers: positive

Kauffman bracket of a framed link

Kauffman state of D is a distribution of markers at crossings.
Signs of markers: positive , negative
Numerical characteristics of a Kauffman state s :
$a(s)=\#($ 人/ $), b(s)=\#($ 人 $), \sigma(s)=a(s)-b(s)$.

Kauffman bracket of a framed link

Kauffman state of D is a distribution of markers at crossings.
Signs of markers: positive , negative /
Numerical characteristics of a Kauffman state s :
$a(s)=\#($ /人/ $), b(s)=\#(1), \sigma(s)=a(s)-b(s)$.
$|s|$ - the number of components of $D_{s}=$ smoothing of D along s :

Kauffman bracket of a framed link

Kauffman state of D is a distribution of markers at crossings.
Signs of markers: positive , negative /
Numerical characteristics of a Kauffman state s :
$a(s)=\#($ 人/ $), b(s)=\#($ 人 $), \sigma(s)=a(s)-b(s)$.
$|s|$ - the number of components of $D_{s}=$ smoothing of D along s :

Kauffman bracket of a framed link

Kauffman state of D is a distribution of markers at crossings.
Signs of markers: positive , negative /
Numerical characteristics of a Kauffman state s :
$a(s)=\#($ 人/ $), b(s)=\#($ 人 $), \sigma(s)=a(s)-b(s)$.
$|s|$ - the number of components of $D_{s}=$ smoothing of D along s :

Kauffman bracket of a framed link

Kauffman state of D is a distribution of markers at crossings.
Signs of markers: positive , negative /
Numerical characteristics of a Kauffman state s :
$a(s)=\#($ 人/ $), b(s)=\#($ 人 $), \sigma(s)=a(s)-b(s)$.
$|s|$ - the number of components of $D_{s}=$ smoothing of D along s :
$s=$

Kauffman bracket of a framed link

Kauffman state of D is a distribution of markers at crossings.
Signs of markers: positive , negative
Numerical characteristics of a Kauffman state s :
$a(s)=\#($ 人/ $), b(s)=\#($ 人 $), \sigma(s)=a(s)-b(s)$.
$|s|$ - the number of components of $D_{s}=$ smoothing of D along s :

The Kauffman bracket

$$
\langle D\rangle=\sum_{s}(-A)^{3 f r(D)} A^{\sigma(s)}\left(-A^{2}-A^{-2}\right)^{|s|}
$$

invariant under isotopy of framed links.

Khovanov homology of a framed link

Enhanced state of D is a Kauffman state s of D plus assignment to every component of D_{s} either 1 or x.

Khovanov homology of a framed link

Enhanced state of D is a Kauffman state s of D plus assignment to every component of D_{s} either 1 or x.

For an enhanced state S, denote by $\tau(S)$ $\#\left(\right.$ components of D_{S} with 1$)-\#\left(\right.$ components of D_{S} with $\left.x\right)$.

Khovanov homology of a framed link

Enhanced state of D is a Kauffman state s of D plus assignment to every component of D_{s} either 1 or x.

For an enhanced state S, denote by $\tau(S)$ \#(components of D_{S} with 1$)-\#\left(\right.$ components of D_{S} with $\left.x\right)$.
Let $i(S)=\tau(S)-f r(D)$ and $j(S)=\sigma(S)-2 \tau(S)+3 f r(D)$.

Khovanov homology of a framed link

Enhanced state of D is a Kauffman state s of D plus assignment to every component of D_{s} either 1 or x.

For an enhanced state S, denote by $\tau(S)$ \#(components of D_{S} with 1$)-\#\left(\right.$ components of D_{S} with $\left.x\right)$.

Let $i(S)=\tau(S)-f r(D)$ and $j(S)=\sigma(S)-2 \tau(S)+3 f r(D)$.
Let $C_{i, j}(D)$ be the \mathbb{F}_{2}-vector space
generated by enhanced states S with $i(S)=i$ and $j(S)=j$.

Khovanov homology of a framed link

Enhanced state of D is a Kauffman state s of D plus assignment to every component of D_{s} either 1 or x.

For an enhanced state S, denote by $\tau(S)$ \#(components of D_{S} with 1) - \#(components of D_{S} with $\left.x\right)$.
Let $i(S)=\tau(S)-f r(D)$ and $j(S)=\sigma(S)-2 \tau(S)+3 f r(D)$.
Let $C_{i, j}(D)$ be the \mathbb{F}_{2}-vector space
generated by enhanced states S with $i(S)=i$ and $j(S)=j$.
There is a differential $C_{i, j}(D) \rightarrow C_{i-1, j}(D)$
defined in the same way as in the Khovanov complex.

Khovanov homology of a framed link

Enhanced state of D is a Kauffman state s of D plus assignment to every component of D_{s} either 1 or x.

For an enhanced state S, denote by $\tau(S)$ \#(components of D_{S} with 1$)-\#\left(\right.$ components of D_{S} with $\left.x\right)$.

Let $i(S)=\tau(S)-f r(D)$ and $j(S)=\sigma(S)-2 \tau(S)+3 f r(D)$.
Let $C_{i, j}(D)$ be the \mathbb{F}_{2}-vector space
generated by enhanced states S with $i(S)=i$ and $j(S)=j$.
There is a differential $C_{i, j}(D) \rightarrow C_{i-1, j}(D)$
defined in the same way as in the Khovanov complex.
Denote the homology of $C_{i, j}(D)$ by $K h_{i, j}^{f r}(D)$.

Khovanov homology of a framed link

Enhanced state of D is a Kauffman state s of D plus assignment to every component of D_{s} either 1 or x.

For an enhanced state S, denote by $\tau(S)$ \#(components of D_{S} with 1) - \#(components of D_{S} with $\left.x\right)$.
Let $i(S)=\tau(S)-f r(D)$ and $j(S)=\sigma(S)-2 \tau(S)+3 f r(D)$.
Let $C_{i, j}(D)$ be the \mathbb{F}_{2}-vector space
generated by enhanced states S with $i(S)=i$ and $j(S)=j$.
There is a differential $C_{i, j}(D) \rightarrow C_{i-1, j}(D)$
defined in the same way as in the Khovanov complex.
Denote the homology of $C_{i, j}(D)$ by $K h_{i, j}^{f r}(D)$.
Framed Reidemeister moves induce isomorphisms of $K h_{i, j}^{f r}(D)$.

Cobordisms of framed links

Let D_{0} and D_{1} be framed links diagrams of L_{0} and L_{1} and $F \subset \mathbb{R}^{3} \times[0,1]$ be a compact surface with $F \cap \mathbb{R}^{3} \times\{k\}=L_{k} \times\{k\}$ for $k=0,1$.

Cobordisms of framed links

Let D_{0} and D_{1} be framed links diagrams of L_{0} and L_{1} and $F \subset \mathbb{R}^{3} \times[0,1]$ be a compact surface with $F \cap \mathbb{R}^{3} \times\{k\}=L_{k} \times\{k\}$ for $k=0,1$.
Let $e \in \mathbb{Z}[1 / 2]$ be the obstruction to extension
of the framings of L_{0}, L_{1} to a normal line field on F.

Cobordisms of framed links

Let D_{0} and D_{1} be framed links diagrams of L_{0} and L_{1} and $F \subset \mathbb{R}^{3} \times[0,1]$ be a compact surface

$$
\text { with } F \cap \mathbb{R}^{3} \times\{k\}=L_{k} \times\{k\} \text { for } k=0,1 .
$$

Let $e \in \mathbb{Z}[1 / 2]$ be the obstruction to extension

$$
\text { of the framings of } L_{0}, L_{1} \text { to a normal line field on } F \text {. }
$$

Then the cobordism F induces a homomorphism

$$
K h_{i, j}^{f r}\left(D_{0}\right) \rightarrow K h_{i+\chi(F)-e, j-2 \chi(F)+3 e}^{f r}\left(D_{1}\right) .
$$

Cobordisms of framed links

Let D_{0} and D_{1} be framed links diagrams of L_{0} and L_{1} and $F \subset \mathbb{R}^{3} \times[0,1]$ be a compact surface

$$
\text { with } F \cap \mathbb{R}^{3} \times\{k\}=L_{k} \times\{k\} \text { for } k=0,1 .
$$

Let $e \in \mathbb{Z}[1 / 2]$ be the obstruction to extension

$$
\text { of the framings of } L_{0}, L_{1} \text { to a normal line field on } F \text {. }
$$

Then the cobordism F induces a homomorphism

$$
K h_{i, j}^{f r}\left(D_{0}\right) \rightarrow K h_{i+\chi(F)-e, j-2 \chi(F)+3 e}^{f r}\left(D_{1}\right) .
$$

Duality. Let D^{*} be the mirror image of D. Then the complexes $C_{i, j}\left(D^{*}\right)$ and $C_{-i,-j}(D)$ are dual, i.e., there exists an isomorphism $C_{i, j}\left(D^{*}\right) \rightarrow \operatorname{Hom}_{\mathbb{F}_{2}}\left(C_{-i,-j}(D)\right)$.

Skein sequences

Kauffman skein relation $\rangle\rangle=A\langle \rangle\langle \rangle+A^{-1}\langle\searrow\rangle$
categorifies a short exact sequence of complexes:

$$
0 \longrightarrow C_{*, *}(\bigwedge) \xrightarrow{\alpha} C_{*, *-1}(\text { X }) \xrightarrow{\beta} C_{*, *-2}(\rangle() \longrightarrow 0
$$

Skein sequences

Kauffman skein relation $\langle X\rangle=A\langle \rangle\langle \rangle+A^{-1}\langle\asymp\rangle$
categorifies a short exact sequence of complexes:

$$
0 \longrightarrow C_{*, *}(\asymp) \xrightarrow{\alpha} C_{*, *-1}(\text { Х }) \xrightarrow{\beta} C_{*, *-2}()() \longrightarrow 0
$$

It induces a bunch of long homology sequences:

$$
\begin{aligned}
& \xrightarrow{\partial} K h_{i, j}^{f r}(\searrow) \xrightarrow{\alpha_{*}} K h_{i, j-1}^{f r}(X) \xrightarrow{\beta_{*}} K h_{i, j-2}^{f r}()() \xrightarrow{\partial} K h_{i-1, j}^{f r}(\searrow) \xrightarrow{\alpha_{*}} K h_{i-1, j-1}^{f r}(X) \xrightarrow{\beta_{*}} K h_{i-1, j-2}^{f r}(\rangle\langle) \xrightarrow{\partial} \\
& \xrightarrow{\partial}
\end{aligned}
$$

Skein sequences

Kauffman skein relation $\langle X\rangle=A\langle \rangle\langle \rangle+A^{-1}\langle\bigwedge\rangle$
categorifies a short exact sequence of complexes:
$0 \longrightarrow C_{*, *}(\asymp) \xrightarrow{\alpha} C_{*, *-1}(X) \xrightarrow{\beta} C_{*, *-2}()() \longrightarrow$
It induces a bunch of long homology sequences:

$$
\begin{aligned}
& \xrightarrow{\partial} K h_{i, j}^{f r}(\searrow) \xrightarrow{\alpha_{*}} K h_{i, j-1}^{f r}(X) \xrightarrow{\beta_{*}} K h_{i, j-2}^{f r}(\rangle\langle) \xrightarrow{\partial} \underset{i-1, j}{\text { (}}(\searrow) \xrightarrow{\alpha_{*}} K h_{i-1, j-1}^{f r}(X) \xrightarrow{\beta_{*}} K h_{i-1, j-2}^{f r}(\rangle\langle) \xrightarrow{\partial} \\
& \xrightarrow{\partial r}
\end{aligned}
$$

The cylinder of the composition of

$$
C_{*, *}\left(\text { X) } \xrightarrow{\beta} C_{*, *-1}(\rangle()\right) \xrightarrow{\alpha} C_{*, *-2}(\searrow)
$$

gives rise to a long homology sequence, which
categorifies the Jones skein relation and contains the homomorphism

$$
K h_{i, j}^{f r}(X) \rightarrow K h_{i, j-2}^{f r}(X)
$$

Cobordisms with double points

Let D_{0} and D_{1} be framed links diagrams of L_{0} and L_{1} and $F \rightarrow \mathbb{R}^{3} \times[0,1]$ be an immersed compact surface with $F \cap \mathbb{R}^{3} \times\{k\}=L_{k} \times\{k\}$ for $k=0,1$ and d transversal self-intersection points.

Cobordisms with double points

Let D_{0} and D_{1} be framed links diagrams of L_{0} and L_{1} and $F \leftrightarrow \mathbb{R}^{3} \times[0,1]$ be an immersed compact surface with $F \cap \mathbb{R}^{3} \times\{k\}=L_{k} \times\{k\}$ for $k=0,1$ and d transversal self-intersection points.

Let $e \in \mathbb{Z}[1 / 2]$ be the obstruction to extension of the framings of L_{0}, L_{1} to a normal line field on F.

Cobordisms with double points

Let D_{0} and D_{1} be framed links diagrams of L_{0} and L_{1} and $F \leftrightarrow \mathbb{R}^{3} \times[0,1]$ be an immersed compact surface with $F \cap \mathbb{R}^{3} \times\{k\}=L_{k} \times\{k\}$ for $k=0,1$ and d transversal self-intersection points.

Let $e \in \mathbb{Z}[1 / 2]$ be the obstruction to extension of the framings of L_{0}, L_{1} to a normal line field on F.

Then the cobordism F induces a homomorphism

$$
K h_{i, j}^{f r}\left(D_{0}\right) \rightarrow K h_{i+\chi(F)-e, j-2 \chi(F)+3 e-2 d}^{f r}\left(D_{1}\right) .
$$

$S^{3} \times S^{1}$

- Invariance
- Table of Contents. 2

Khovanov homology for surfaces in $S^{3} \times S^{1}$

Surfaces in $S^{3} \times S^{1}$

Let $\Lambda \nrightarrow S^{3} \times S^{1}$ be a generically immersed 2-manifold.

Surfaces in $S^{3} \times S^{1}$

Let $\Lambda \rightarrow S^{3} \times S^{1}$ be a generically immersed 2-manifold.
This can be obtained from a link $\bar{\Lambda} \rightarrow S^{4}$ by a surgery along an unknotted component of $\bar{\Lambda}$ homeomorphic to S^{2}.

Surfaces in $S^{3} \times S^{1}$

Let $\Lambda \rightarrow S^{3} \times S^{1}$ be a generically immersed 2-manifold.
Let the intersection $L=S^{3} \times\{1\} \cap \Lambda$ be transversal, and $\widetilde{\Lambda} \subset S^{3} \times \mathbb{R}$ be the preimage of Λ under $S^{3} \times \mathbb{R} \rightarrow S^{3} \times S^{1}:(x, y) \mapsto\left(x, e^{2 \pi i y}\right)$.

Surfaces in $S^{3} \times S^{1}$

Let $\Lambda \rightarrow S^{3} \times S^{1}$ be a generically immersed 2-manifold.
Let the intersection $L=S^{3} \times\{1\} \cap \Lambda$ be transversal, and $\widetilde{\Lambda} \subset S^{3} \times \mathbb{R}$ be the preimage of Λ under $S^{3} \times \mathbb{R} \rightarrow S^{3} \times S^{1}:(x, y) \mapsto\left(x, e^{2 \pi i y}\right)$. Let $L_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times\{n\}\right) \subset S^{3} \times \mathbb{R}$, and $W_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times[n, n+1]\right)$.

Surfaces in $S^{3} \times S^{1}$

Let $\Lambda \rightarrow S^{3} \times S^{1}$ be a generically immersed 2-manifold.
Let the intersection $L=S^{3} \times\{1\} \cap \Lambda$ be transversal, and $\widetilde{\Lambda} \subset S^{3} \times \mathbb{R}$ be the preimage of Λ under $S^{3} \times \mathbb{R} \rightarrow S^{3} \times S^{1}:(x, y) \mapsto\left(x, e^{2 \pi i y}\right)$. Let $L_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times\{n\}\right) \subset S^{3} \times \mathbb{R}$, and $W_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times[n, n+1]\right)$.
Now apply the Turaev construction to Khovanov homology: denote by $Z_{i, j}(\Lambda)$ the image of $K h_{i, j}\left(L_{0}\right)$ under the homomorphism induced by cobordism $\cup_{n=0}^{k} W_{n}$ for sufficiently large k.

Surfaces in $S^{3} \times S^{1}$

Let $\Lambda \rightarrow S^{3} \times S^{1}$ be a generically immersed 2-manifold.
Let the intersection $L=S^{3} \times\{1\} \cap \Lambda$ be transversal, and $\widetilde{\Lambda} \subset S^{3} \times \mathbb{R}$ be the preimage of Λ under $S^{3} \times \mathbb{R} \rightarrow S^{3} \times S^{1}:(x, y) \mapsto\left(x, e^{2 \pi i y}\right)$. Let $L_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times\{n\}\right) \subset S^{3} \times \mathbb{R}$, and $W_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times[n, n+1]\right)$.

Now apply the Turaev construction to Khovanov homology: denote by $Z_{i, j}(\Lambda)$ the image of $K h_{i, j}\left(L_{0}\right)$ under the homomorphism induced by cobordism $\cup_{n=0}^{k} W_{n}$ for sufficiently large k.

Observe that $Z_{i, j}(\Lambda)=0$, unless $\chi(\Lambda)=e(\Lambda)=2 d(\Lambda)$.

Surfaces in $S^{3} \times S^{1}$

Let $\Lambda \rightarrow S^{3} \times S^{1}$ be a generically immersed 2-manifold.
Let the intersection $L=S^{3} \times\{1\} \cap \Lambda$ be transversal, and $\widetilde{\Lambda} \subset S^{3} \times \mathbb{R}$ be the preimage of Λ under $S^{3} \times \mathbb{R} \rightarrow S^{3} \times S^{1}:(x, y) \mapsto\left(x, e^{2 \pi i y}\right)$. Let $L_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times\{n\}\right) \subset S^{3} \times \mathbb{R}$, and $W_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times[n, n+1]\right)$.

Now apply the Turaev construction to Khovanov homology: denote by $Z_{i, j}(\Lambda)$ the image of $K h_{i, j}\left(L_{0}\right)$ under the homomorphism induced by cobordism $\cup_{n=0}^{k} W_{n}$ for sufficiently large k.

Observe that $Z_{i, j}(\Lambda)=0$, unless $\chi(\Lambda)=e(\Lambda)=2 d(\Lambda)$.
If the restriction to Λ of the projection $S^{3} \times S^{1} \rightarrow S^{1}$ is a locally trivial fibration, then $Z_{i, j}(\Lambda)=K h_{i, j}(L)$.

Surfaces in $S^{3} \times S^{1}$

Let $\Lambda \rightarrow S^{3} \times S^{1}$ be a generically immersed 2-manifold.
Let the intersection $L=S^{3} \times\{1\} \cap \Lambda$ be transversal, and $\widetilde{\Lambda} \subset S^{3} \times \mathbb{R}$ be the preimage of Λ under $S^{3} \times \mathbb{R} \rightarrow S^{3} \times S^{1}:(x, y) \mapsto\left(x, e^{2 \pi i y}\right)$. Let $L_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times\{n\}\right) \subset S^{3} \times \mathbb{R}$, and $W_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times[n, n+1]\right)$.

Now apply the Turaev construction to Khovanov homology: denote by $Z_{i, j}(\Lambda)$ the image of $K h_{i, j}\left(L_{0}\right)$ under the homomorphism induced by cobordism $\cup_{n=0}^{k} W_{n}$ for sufficiently large k.
Observe that $Z_{i, j}(\Lambda)=0$, unless $\chi(\Lambda)=e(\Lambda)=2 d(\Lambda)$.
If the restriction to Λ of the projection $S^{3} \times S^{1} \rightarrow S^{1}$ is a locally trivial fibration, then $Z_{i, j}(\Lambda)=K h_{i, j}(L)$ with an additional structure: the action of \mathbb{Z} (the monodromy).

Surfaces in $S^{3} \times S^{1}$

Let $\Lambda \rightarrow S^{3} \times S^{1}$ be a generically immersed 2-manifold.
Let the intersection $L=S^{3} \times\{1\} \cap \Lambda$ be transversal, and $\widetilde{\Lambda} \subset S^{3} \times \mathbb{R}$ be the preimage of Λ under $S^{3} \times \mathbb{R} \rightarrow S^{3} \times S^{1}:(x, y) \mapsto\left(x, e^{2 \pi i y}\right)$. Let $L_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times\{n\}\right) \subset S^{3} \times \mathbb{R}$, and $W_{n}=\widetilde{\Lambda} \cap\left(S^{3} \times[n, n+1]\right)$.

Now apply the Turaev construction to Khovanov homology: denote by $Z_{i, j}(\Lambda)$ the image of $K h_{i, j}\left(L_{0}\right)$ under the homomorphism induced by cobordism $\cup_{n=0}^{k} W_{n}$ for sufficiently large k.
Observe that $Z_{i, j}(\Lambda)=0$, unless $\chi(\Lambda)=e(\Lambda)=2 d(\Lambda)$.
If the restriction to Λ of the projection $S^{3} \times S^{1} \rightarrow S^{1}$ is a locally trivial fibration, then $Z_{i, j}(\Lambda)=K h_{i, j}(L)$ with an additional structure: the action of \mathbb{Z} (the monodromy).

Luoying Weng calculated $Z_{i, j}(\Lambda)$ for many such surfaces.

Invariance

Theorem. $Z_{i, j}(\Lambda)$ is invariant under isotopy of Λ in $S^{3} \times S^{1}$.

Invariance

Theorem. $Z_{i, j}(\Lambda)$ is invariant under isotopy of Λ in $S^{3} \times S^{1}$.
Why does it require a separate proof?

Invariance

Theorem. $Z_{i, j}(\Lambda)$ is invariant under isotopy of Λ in $S^{3} \times S^{1}$.
Why does it require a separate proof?
Because cobordisms needed for Khovanov homology
are surfaces in $S^{3} \times I$,
while in the proof we meet
a cobordism between a link in $S^{3} \times\{\mathrm{pt}\}$ and a skew copy of it.

Invariance

Theorem. $Z_{i, j}(\Lambda)$ is invariant under isotopy of Λ in $S^{3} \times S^{1}$. Proof. Let $\Lambda_{t}, t \in I$ be an isotopy of Λ.

Invariance

Theorem. $Z_{i, j}(\Lambda)$ is invariant under isotopy of Λ in $S^{3} \times S^{1}$.
Proof. Let $\Lambda_{t}, t \in I$ be an isotopy of Λ.
Extend it to an isotopy $h_{t}: S^{3} \times S^{1} \rightarrow S^{3} \times S^{1}$ with $h_{0}=i d$,

$$
h_{t}(\Lambda)=\Lambda_{t} .
$$

Invariance

Theorem. $Z_{i, j}(\Lambda)$ is invariant under isotopy of Λ in $S^{3} \times S^{1}$.
Proof. Let $\Lambda_{t}, t \in I$ be an isotopy of Λ.
Extend it to an isotopy $h_{t}: S^{3} \times S^{1} \rightarrow S^{3} \times S^{1}$ with $h_{0}=i d$,

$$
h_{t}(\Lambda)=\Lambda_{t} .
$$

Let $\widetilde{\Lambda}_{t} \subset S^{3} \times \mathbb{R}$ be the preimage of Λ_{t} under

$$
S^{3} \times \mathbb{R} \rightarrow S^{3} \times S^{1}:(x, y) \mapsto\left(x, e^{2 \pi i y}\right)
$$

Invariance

Theorem. $Z_{i, j}(\Lambda)$ is invariant under isotopy of Λ in $S^{3} \times S^{1}$.
Proof. Let $\Lambda_{t}, t \in I$ be an isotopy of Λ.
Extend it to an isotopy $h_{t}: S^{3} \times S^{1} \rightarrow S^{3} \times S^{1}$ with $h_{0}=i d$,

$$
h_{t}(\Lambda)=\Lambda_{t} .
$$

Let $\widetilde{\Lambda}_{t} \subset S^{3} \times \mathbb{R}$ be the preimage of Λ_{t} under

$$
S^{3} \times \mathbb{R} \rightarrow S^{3} \times S^{1}:(x, y) \mapsto\left(x, e^{2 \pi i y}\right)
$$

Let $L_{t, n}=\widetilde{\Lambda}_{t} \cap\left(S^{3} \times\{n\}\right) \subset S^{3} \times \mathbb{R}$,

$$
\text { and } W_{t, n}=\widetilde{\Lambda}_{t} \cap\left(S^{3} \times[n, n+1]\right)
$$

Invariance

Theorem. $Z_{i, j}(\Lambda)$ is invariant under isotopy of Λ in $S^{3} \times S^{1}$.
Proof. Let $\Lambda_{t}, t \in I$ be an isotopy of Λ.
Extend it to an isotopy $h_{t}: S^{3} \times S^{1} \rightarrow S^{3} \times S^{1}$ with $h_{0}=i d$,

$$
h_{t}(\Lambda)=\Lambda_{t} .
$$

Let $\widetilde{\Lambda}_{t} \subset S^{3} \times \mathbb{R}$ be the preimage of Λ_{t} under

$$
S^{3} \times \mathbb{R} \rightarrow S^{3} \times S^{1}:(x, y) \mapsto\left(x, e^{2 \pi i y}\right)
$$

Let $L_{t, n}=\widetilde{\Lambda}_{t} \cap\left(S^{3} \times\{n\}\right) \subset S^{3} \times \mathbb{R}$,

$$
\text { and } W_{t, n}=\widetilde{\Lambda}_{t} \cap\left(S^{3} \times[n, n+1]\right)
$$

Pull this new stuff back by $\widetilde{h}_{t}: S^{3} \times \mathbb{R} \rightarrow S^{3} \times \mathbb{R}$:

$$
\widetilde{h}_{t}^{-1}\left(L_{t, n}\right)=L_{n} \subset \widetilde{h}_{t}^{-1}\left(S^{3} \times\{n\}\right),
$$

$\widetilde{h}_{t}^{-1}\left(W_{t, n}\right)=\widetilde{\Lambda} \cap \widetilde{h}_{t}^{-1}\left(S^{3} \times[n, n+1]\right)$

Table of Contents. 1

Introduction

Results. 1
Results. 2
Infinite cyclic covering
Turaev's construction
A refinement
Theory of Skeletons
Skeletons
Recovery from a 2-skeleton
How 2-skeletons move in 3D
How 2-skeletons move in 4D
Generic 2-polyhedra with boundary
Relative 2-skeletons

Face state sums

Colors and colorings
Face state sums
Invariants of knotted graphs
Construction of TQFT
Old and new TQFT'es
Upgrading the colored Jones
State sum model for colored Jones
Building a special 2-skeleton
Partial state sums
Problems

Table of Contents. 2

Khovanov homology of framed links

Diagrams of framed links
Reidemeister moves
Kauffman bracket of a framed link
Khovanov homology of a framed link
Cobordisms of framed links
Skein sequences
Cobordisms with double points
Khovanov homology for surfaces in $S^{3} \times S^{1}$
Surfaces in $S^{3} \times S^{1}$
Invariance
Table of Contents. 2

