Abstract. I will define "meta-groups" and explain how one specificAlexander Issues. meta-group, which in itself is a "meta-bicrossed-product", gives rise \bullet Quick to compute, but computation departs from topology to an "ultimate Alexander invariant" of tangles, that contains the

- Extends to tangles, but at an exponential cost. Alexander polynomial (multivariable, if you wish), has extremely \bullet Hard to categorify. good composition properties, is evaluated in a topologically meaningful way, and is least-wasteful in a computational sense. If you believe in categorification, that's a wonderful playground.

Idea. Given a group G and two "YB" ment. Math. Helv. 67 (1992) 306-315), Kirk, Livingston and Wang (arXiv:math/9806035) and Cimasoni and Turaev (arXiv:math.GT/0406269).
See also Dror Bar-Natan and Sam Selmani, Meta-Monoids, Meta-Bicrossed Products, and the Alexander Polynomial, arXiv:1302.5689

This Fails! R2 implies that $g_{o}^{ \pm} g_{o}^{\mp}=e=g_{u}^{ \pm} g_{u}^{\mp}$ and then R 3
 implies that g_{o}^{+}and g_{u}^{+}commute, so the result is a simple counting invariant.
A Group Computer. Given G, can store group elements and perform operations on them:

Also has S_{x} for inversion, e_{x} for unit insertion, d_{x} for register deletion, $\Delta_{x y}^{z}$ for element cloning, ρ_{y}^{x} for renamings, and $\left(D_{1}, D_{2}\right) \mapsto$ $D_{1} \cup D_{2}$ for merging, and many obvious composition axioms relating those.
$P=\left\{x: g_{1}, y: g_{2}\right\} \Rightarrow P=\left\{d_{y} P\right\} \cup\left\{d_{x} P\right\}$
A Meta-Group. Is a similar "computer", only its internal structure is unknown to us. Namely it is a collection of sets $\left\{G_{\gamma}\right\}$ indexed by all finite sets γ, and a collection of operations $m_{z}^{x y}, S_{x}, e_{x}, d_{x}, \Delta_{x y}^{z}$ (sometimes), ρ_{y}^{x}, and \cup, satisfying the exact same linear properties.
Example 0. The non-meta example, $G_{\gamma}:=G^{\gamma}$.
Example 1. $\quad G_{\gamma}:=M_{\gamma \times \gamma}(\mathbb{Z})$, with simultaneous row and column operations, and "block diagonal" merges. Here if $P=\left(\begin{array}{lll}x: & a & b \\ y: & c & d\end{array}\right)$ then $d_{y} P=(x: a)$ and $d_{x} P=(y: d) \mathrm{so}$ $\left\{d_{y} P\right\} \cup\left\{d_{x} P\right\}=\left(\begin{array}{lll}x: & a & 0 \\ y: & 0 & d\end{array}\right) \neq P$. So this G is truly meta.
A Standard Alexander Formula. Label the arcs 1 through $(n+1)=1$, make an $n \times n$ matrix as below, delete one row and one column, and compute the determinant:

$-1+4 X-8 X^{2}+11 X^{3}-8 X^{4}+4 X^{5}-X^{6}$ Claim. From a meta-group G and YB elements $R^{ \pm} \in G_{2}$ we can construct a knot/tangle invariant.
Bicrossed Products. If $G=H T$ is a group presented as a product of two of its subgroups, with $H \cap T=\{e\}$, then also $G=T H$ and G is determined by H, T, and the "swap" map $s w^{t h}:(t, h) \mapsto\left(h^{\prime}, t^{\prime}\right)$ defined by $t h=h^{\prime} t^{\prime}$. The map $s w$ satisfies (1) and (2) below; conversely, if $s w: T \times H \rightarrow H \times T$ satisfies (1) and (2) (+ lesser conditions), then (3) defines a group structure on $H \times T$, the "bicrossed product".

Meta-Groups, Meta-Bicrossed-Products, and the Alexander Polynomial, 2

A Meta-Bicrossed-Product is a collection of sets $\beta(\eta, \tau)$ and ${ }^{I}$ mean business!

conditions). A meta-bicrossed-product defines a meta-group
with $G_{\gamma}:=\beta(\gamma, \gamma)$ and $g m$ as in (3).
Example. Take $\beta(\eta, \tau)=M_{\tau \times \eta}(\mathbb{Z})$ with row operations for the tails, column operations for the heads, and a trivial swap
β Calculus. Let $\beta(\eta, \tau)$ be
$\left\{\begin{array}{c|ccc|l}\omega & h_{1} & h_{2} & \cdots & \\ \hline t_{1} & \alpha_{11} & \alpha_{12} & \cdot & h_{j} \in \eta, t_{i} \in \tau, \text { and } \omega \text { and } \\ t_{2} & \alpha_{21} & \alpha_{22} & \cdot & \text { the } \alpha_{i j} \text { are rational func- } \\ \vdots & \cdot & \cdot & \cdot & \text { tions in a variable } X\end{array}\right\}$,

ω_{1}	η_{1}
τ_{1}	α_{1}

$=$| $\omega_{1} \omega_{2}$ | η_{1} | η_{2} |
| :---: | :---: | :---: |
| τ_{1} | α_{1} | 0 |
| τ_{2} | 0 | α_{2} |

$h m_{z}^{x y}:$| ω | h_{x} | h_{y} | \cdots |
| :---: | :---: | :---: | :---: |
| \vdots | α | β | γ |\mapsto| ω | h_{z} | \cdots |
| :---: | :---: | :---: |
| \vdots | $\alpha+\beta+\langle\alpha\rangle \beta$ | γ |,

| |
| :---: | :---: | :---: |
| $s w_{u x}^{t h}:$ | | ω | h_{x} | \cdots | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| t_{u} | α | β | \mapsto | $\omega \epsilon$ | h_{x} |
| t_{u} | $\alpha(1+\langle\gamma\rangle / \epsilon)$ | $\beta(1+\langle\gamma\rangle / \epsilon)$ | | | |
| \vdots | γ | δ | | \vdots | γ / ϵ |

where $\epsilon:=1+\alpha$ and $\langle c\rangle:=\sum_{i} c_{i}$, and let

$$
R_{a b}^{p}:=\begin{array}{c|cc}
1 & h_{a} & h_{b} \\
\hline t_{a} & 0 & X-1 \\
t_{b} & 0 & 0
\end{array} \quad R_{a b}^{m}:=\begin{array}{c|cc}
1 & h_{a} & h_{b} \\
\hline t_{a} & 0 & X^{-1}-1 \\
t_{b} & 0 & 0
\end{array} .
$$

Theorem. Z^{β} is a tangle invariant (and more). Restricted to knots, the ω part is the Alexander polynomial. On braids, it ${ }^{\mathrm{D}}$ is equivalent to the Burau representation. A variant for links contains the multivariable Alexander polynomial.
Why Happy? • Applications to w-knots.

- Everything that I know about the Alexander polynomial can be expressed cleanly in this language (even if without proof), except HF, but including genus, ribbonness, cabling, v-knots, knotted graphs, etc., and there's potential for vast generalizations.
- The least wasteful "Alexander for tangles" I'm aware of.
- Every step along the computation is the invariant of something.
- Fits on one sheet, including implementation \& propaganda.

$\operatorname{orm}\left[\mathrm{B}\left[\omega_{-}, \Lambda_{-}\right]\right]:=\operatorname{Module}[$ (ts, hs, M\},
 ts $=$ Union [Cases $\left[\mathrm{B}[\omega, \Lambda], \mathrm{t}_{u_{-}} \Rightarrow u\right.$, Infinity]]

hs $=$ Union [Cases $\left[B[\omega, \Lambda], h_{x_{-}} \rightarrow x\right.$, Infinity]];
$M=$ Outer [β Simp[Coefficient [$\Lambda, h_{* 1} t^{* 2}$]] \& hs, ts];

$M=$ Prepend[Transpose [M], Prepend $\left[h_{*} \& / @ h s, \omega\right]$ MatrixForm [M]] ;
Form[else_] := else /. $\beta B \rightarrow \beta$ Form $[\beta]$;
Format $\left[\beta_{-} B\right.$, StandardForm $]:=\beta$ Form $[\beta]$;

James
Waddell
Alexander simply come from?
2. Remove all the denominators.

Further meta-monoids. Π (and variants), \mathcal{A} (and quotients),
$\left\{\beta=B\left[\omega, \operatorname{Sum}\left[\alpha_{10 i+j} t_{i} h_{j},\{i,\{1,2,3\}\},\{j,\{4,5\}\}\right]\right]\right.$,
$\left.\left(\beta / / \mathrm{tm}_{12 \rightarrow 1} / / \mathrm{sw}_{14}\right)=\left(\beta / / \mathrm{sw}_{24} / / \mathrm{sw}_{14} / / \mathrm{tm}_{12 \rightarrow 1}\right)\right\} \square$
\(\left\{\left(\begin{array}{ccc}\omega \& h_{4} \& h_{5}

t_{1} \& \alpha_{14} \& \alpha_{15}

t_{2} \& \alpha_{24} \& \alpha_{25}

t_{3} \& \alpha_{34} \& \alpha_{35}\end{array}\right)\right.\), True $\} \quad \stackrel{(1)}{=} \quad$| Some |
| :---: |
| testing |

$\circ\left[\beta=\beta / / \operatorname{gm}_{1 k \rightarrow 1},\{k, 2,10\}\right] ; \beta \quad 8_{17}$, cont.

Do $\left[\beta=\beta / /\right.$ gm $_{1 k \rightarrow 1}$
$\{\mathbf{k}, 11,16\}] ; \beta$

A Partial To Do List. 1. Where does it more
. How do determinants arise in this context?
. Understand links ("meta-conjugacy classes").
Erther meta-monoids. Π (and variants), \mathcal{A} (and quotients),5. Find the "reality condition".
$v T, \ldots$
6. Do some "Algebraic Knot Theory".

Further meta-bicrossed-products. Π (and variants), $\overrightarrow{\mathcal{A}}$ (and7. Categorify.
quotients), $M_{0}, M, \mathcal{K}^{b h}, \mathcal{K}^{r b h}, \ldots$
Meta-Lie-algebras. \mathcal{A} (and quotients), \mathcal{S}, \ldots
8. Do the same in other natural quotients of the v/w-story.

"God created the knots, all else in topology is the work of mortals." Leopold Kronecker (modified)
www.katlas.org The knot Mthas

