
Lie-algebras associated to multiple q-zeta values

Ulf Kühn - Universität Hamburg

Expansions, Lie Algebras, and Invariants
Workshop at CRM, Montreal, July 9, 2019

in parts joint work with:
Henrik Bachmann, Nagoya University, arXiv:1708.07464 [math.NT]

Leila Schneps, CNRS Jussieu, in progress

1 / 39

http://www.math.toronto.edu/~drorbn/Talks/CRM-1907/
https://arxiv.org/abs/1708.07464


Multiple zeta values (MZV)

Definition
For natural numbers s1 ě 2, s2, ..., sl ě 1 the sum

ζps1, ..., slq “
ÿ

n1ą...ąnlą0

1

ns11 . . . nsll

is called a multiple zeta value (MZV) of weight s1 ` ...` sl and depth l.

The rules for the product of infinite sums imply that the product of MZV can be expressed as a
linear combination of MZV with the same weight (stuffle product).

MZV can be expressed as iterated integrals. This gives another way (shuffle product) to
express the product of two MZV as a linear combination of MZV.

These two products give a large number ofQ-linear relations (extended double shuffle
relations) between MZV. Conjecturally these are all relations between MZV, e.g.

ζp2, 3q ` 3ζp3, 2q ` 6ζp4, 1q
shuffle
“ ζp2q ¨ ζp3q

stuffle
“ ζp2, 3q ` ζp3, 2q ` ζp5q .
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Dimension conjectures for MZ
Consider the formal powerseries

E2pxq “
x2

1´x2 “ x2 ` x4 ` x6 ` ... "even zetas",

O3pxq “
x3

1´x2 “ x3 ` x5 ` x7 ` ... "odd zetas",

Spxq “
x12

p1´x4qp1´x6q
“ x12 ` x16 ` x18 ` ... "period polynomials".

Broadhurst-Kreimer Conjecture

TheQ-algebra MZ of multiple zeta values is a free polynomial algebra, which is graded for the
weight and filtered for the depth ("depth drop for even zetas"). The numbers gk,l of generators in
weight k ě 3 and depth l are determined by

BKpx, yq “
ÿ

k,lě0

dimQ

´

grW,Dk,l MZ
¯

xkyl “
´

1` E2pxq y
¯

ź

kě3,lě1

1
`

1´ xkyl
˘gk,l

where

BKpx, yq “
´

1` E2pxqy
¯ 1

1´ O3pxqy ` Spxqy2 ´ Spxqy4
.
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Dimension conjectures for MZ

Zagier’s Conjecture
The following identities hold:

Zagpxq “
ÿ

kě0

dimQ

´

grWk MZ
¯

xk “
1

1´ x2 ´ x3
.

Zagier’s conjecture is implied by Broadhurst-Kreimer’s conjecture. In order to neglect the depth
we just have to set y “ 1 and get

Zagpxq “ BKpx, 1q “
1` E2pxq

1´ O3pxq
“

1` x2

1´x2

1´ x3

1´x2

“
1

1´ x2 ´ x3
.

Brown’s Theorem
TheQ-vector space of multiple zeta values is spanned by the "23"-MZV’s, e.g. by those
ζps1, ..., slq with si P t2, 3u.

By Brown’s theorem the dimensions in Zagier’s conjecture are the maximal possible ones.
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MZV’s and Lie-Algebras

Zagier’s Conjecture for MZ oo //
OO double shuffle Lie Algebra ds

��
Broadhurst-Kreimer Conjecture for MZ oo // linearized double-shuffle Lie-Algebra ls

The connection to this workshop: We have grt ãÑ ds ãÑ kv.

Since we don’t know all relations in the algebra multiple zeta values MZ Ă R, we consider
formal multiple zeta values MZf instead. Roughly this algebra is

MZf
“
@

ζf ps1, ..., slq
ˇ

ˇ l ě 0, si ě 1
D

Q

L

t�, extended double shuffle, ζf p1q “ 0 u

Theorem (Racinet, Ecalle)
We have a non-canonical isomorphism

MZf
– Qrζf p2qs b Updsq

_

,

in particular MZf is a free polynomial algebra.
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Conjectures by Ihara and Zagier
Conjecture (Ihara,...)

The Lie algebra ds is a free graded Lie algebra with one generator in each odd degree k ě 3.

Corollary

If ds satisfies Ihara’s conjecture, then MZf satisfies Zagier’s conjecture.

Idea of Proof: Since MZf
– Qrζf p2qs b Updsq_ we have

8
ÿ

k“0

dimMZf
k x

k “ HMZf pxq “ HQrζf p2qspxq ¨HUpdsq_ pxq

“
1

1´ x2
1

1´ x3 ´ x5 ´ x7 ´ ...

“
1

1´ x2 ´ x3
.

l

Main-MZV-Conjecture

The map MZf
ÑMZ given by ζf ps1, ..., slq ÞÑ ζ�ps1, ..., slq is an isomorphism.
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Multiple q-zeta values
Many of the most basic concepts in mathematics have so-called q-analogues, where q is a formal
variable such that the specialisation q = 1 recovers the usual concept, e.g. Gauss q-integers

tnuq “ 1` q ` . . .` qn´1 “
1´ qn

1´ q
.

We will study the following q-analogues of multiple zeta values1 .

Definition [(modified) multiple q-zeta value]

For natural numbers s1, . . . , sl ě 1 and Q1ptq P tQrts and Q2ptq . . . , Qlptq P Qrts we
define

ζqps1, . . . , sl;Q1, . . . , Qlq “
ÿ

n1ą¨¨¨ąnlą0

Q1pq
n1q . . . Qlpq

nlq

p1´ qn1qs1 ¨ ¨ ¨ p1´ qnlqsl
P Qrrqss.

This series can be seen as a q-analogue of multiple zeta values, since we have for s1 ą 1

lim
qÑ1

p1´ qqs1`¨¨¨`slζqps1, . . . , sl;Q1, . . . , Qlq “ Q1p1q . . . Qlp1q ¨ ζps1, . . . , slq .

1Bachmann, Kühn: A dimension conjecture for q-analogues of multiple zeta values, arXiv:1708.07464 [math.NT]
Bachmann: Multiple Eisenstein series and q-analogues of multiple zeta values, arXiv:1704.06930 [math.NT]
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Algebra of multiple q-zeta values

Definition

We set ζqpH;Hq “ 1 and define the algebra of multiple q-zeta values to be theQ-algebra

Zq :“
A

ζqps1, . . . , sl;Q1, . . . , Qlq
ˇ

ˇ l ě 0, s1, . . . , sl ě 1, degpQjq ď sj

E

Q
.

Indeed Zq is aQ-algebra, for example, it is

ζqps1;Q1q¨ζqps2;Q2q “ ζqps1, s2;Q1, Q2q`ζqps2, s1;Q2, Q1q`ζqps1`s2;Q1¨Q2q ,

and clearly degQ1 ¨Q2 ď s1 ` s2 if degQj ď sj for j “ 1, 2.

Caution: s1 ` ¨ ¨ ¨ ` sl does not give a good notion of weight for the ζq . Also l will not be used to
define the depth. Instead, we will consider a class of q-series which also span the space Zq and
use these series to define a weight and a depth filtration on Zq .
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Subalgebras of Zq
For d ě 0 we define the subspace

Zq,d “
A

ζqps1, . . . , sl;Q1, . . . , Qlq P Zq
ˇ

ˇ degpQjq ď sj ´ d
E

Q
.

So in particular we have Zq “ Zq,0 and Zq,d`1 Ă Zq,d.

Z˝q “
A

ζqps1, . . . , sl;Q1, . . . , Qlq P Zq
ˇ

ˇ Q1, . . . , Ql P tQrts
E

Q
.

For the spaces defined by
Z˝q,d “ Z˝q X Zq,d

it holds Z˝q “ Z˝q,0 and Z˝q,d`1 Ă Z˝q,d.

Proposition

All of the above spaces are subalgebras of Zq .

These spaces recover previously known multiple q-zeta values, e.g. Zq,1 is the Bradley-Zhao
model, Z˝q is the Schlesinger-Zudilin model and Zq its extension by
Ebrahimi-Fard-Manchon-Singer, Z˝q,1 is the Okounkov-model, ...

9 / 39



Bi-brackets

For natural numbers s1, ..., sl ě 1 and r1, ..., rl ě 0 the bi-brackets are defined by

$

’

’

%

s1, . . . , sl
r1, . . . , rl

,

/

/

-

q

“ κ ¨
ÿ

n1ą¨¨¨ąnlą0

nr11 Ps1´1pq
n1q . . . nrll Psl´1pq

nlq

p1´ qn1qs1 . . . p1´ qnlqsl
P Qrrqss ,

where κ “
`

r1!ps1 ´ 1q! . . . rl!psl ´ 1q!
˘´1

and the Pk´1ptq are the Eulerian polynomials
defined by

Pk´1ptq

p1´ tqk
“ Li1´kptq “

ÿ

dą0

dk´1td .

P0ptq “ P1ptq “ t , P2ptq “ t2 ` t , P3ptq “ t3 ` 4t2 ` t ,
$

’

’

%

1, 1

0, 1

,

/

/

-

q

“
ÿ

n1ąn2ą0

qn1n2q
n2

p1´ qn1qp1´ qn2q
,

$

’

’

%

4, 2, 1

2, 0, 5

,

/

/

-

q

“
1

3! ¨ 2! ¨ 5!

ÿ

n1ąn2ąn3ą0

n21pq
3n1 ` 4q2n1 ` qn1q ¨ qn2 ¨ n53q

n3

p1´ qn1q4 ¨ p1´ qn1q2 ¨ p1´ qn1q1
.
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Multiple divisor sums and modular forms

If r1 “ ¨ ¨ ¨ “ rl “ 0, we set ps1, . . . slqq “
$

’

’

%

s1, . . . , sl
0, . . . , 0

,

/

/

-

q

and we find

ps1, . . . , slqq “
1

ps1 ´ 1q! . . . psl ´ 1q!

ÿ

ną0

´

ÿ

u1v1`¨¨¨`ulvl“n
u1ą¨¨¨ąulą0
v1,...,vlą0

vs11 . . . vsll

¯

qn .

We call the coefficients σs1´1,...,sl´1pnq multiple divisor sums. In the case l “ 1 we get the
classical divisor sums σk´1pnq “

ř

d|n d
k´1 and

pkqq “
1

pk ´ 1q!

ÿ

ną0

σk´1pnqq
n .

These function appear in the Fourier expansion of classical Eisenstein series which are
(quasi)-modular forms for SL2pZq, for example

G2 “ ´
1

24
` p2qq , G4 “

1

1440
` p4qq , G6 “ ´

1

60480
` p6qq P Zq.

11 / 39



Bi-brackets as q-multiple zeta values

Proposition (Bachmann-K.)
We have

Z˝q “
@

ps1, . . . , slqq
ˇ

ˇ l ě 0, s1, . . . , sl ě 1
D

Q
,

Z˝q,1 “
@

ps1, . . . , slqq
ˇ

ˇ l ě 0 , s1, . . . , sl ě 2
D

Q
.

In addition, Z˝q is closed under the q-derivation q d
d q .

The (bi)-brackets have also direct connection to multiple zeta values, since they behave like
multiple q-zeta values:

Theorem (Bachmann-K. , Zudilin)

Assume that s1 ą r1 ` 1 and sj ě rj ` 1 for j “ 2, .., l. Then

lim
qÑ1

`

1´ q
˘s1`...`sl

$

’

’

%

s1, ..., sl
r1, ..., rj

,

/

/

-

q

“
1

r1! ¨ ... ¨ rl!
ζps1 ´ r1, ..., sl ´ rlq.

Remark: Another very interesting connection to MZV is given by the Fourier expansion of
multiple Eisenstein series.
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Bi-brackets and Zq

Theorem (Bachmann-K.)
The following equality holds

Zq “
A

$

’

’

%

s1, . . . , sl
r1, . . . , rl

,

/

/

-

q

ˇ

ˇ l ě 0, s1, . . . , sl ě 1, r1, . . . , rl ě 0
E

Q
.

Idea of proof:
$

’

’

%

1, 1

0, 1

,

/

/

-

q

“
ÿ

n1ąn2ą0

qn1

p1´ qn1q

n2q
n2

p1´ qn2q

“
ÿ

n1ąn2ą0

qn1

p1´ qn1q

qn2

p1´ qn2q
`

ÿ

n1ąn2ąn3ą0

qn1

p1´ qn1q

qn2

p1´ qn2q

1´ qn3

p1´ qn3q

“ ζqp1, 1; t, tq ` ζqp1, 1, 1; t, t, 1´ tq .

Depth- and weight-filtration

We endow the space of multiple q-zeta values Zq with the depth- resp. weight-filtration induced by
the notion of weight and depth defined on the bi-brackets
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Bi-brackets - conjectures

Conjecture w.r.t. the algebra structures

(S1) The algebra Zq is isomorphic to a free polynomial algebra.

Conjectures w.r.t. the vector space basis

(B1) Every bi-bracket equals a linear combination of brackets, i.e. Z˝q “ Zq .
(B2) Every bi-bracket equals a linear combination of "123"-brackets.

Conjectures w.r.t. the graded dimensions
(D1) We have

ÿ

kě0

dimQ grWk pZqqxk “
1

1´ x´ x2 ´ x3 ` x6 ` x7 ` x8 ` x9
.
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Conjectures w.r.t. the graded dimensions
(D2) We have

ÿ

w,lě0

dim grW,D
k,l pZqqx

kyl “ χ
ĂM
px, yq ¨ χApx, yq,

with

χApx, yq “ 1
L

´

1´ a1pxq y ` a2pxq y
2 ´ a3pxq y

3 ´ a4pxq y
4 ` a5pxq y

5
¯

,

a1pxq “ DpxqO1pxq

a2pxq “ Dpxq
ÿ

kě4

dimpMkpSL2pZqq
2 xk

a3pxq “ DpxqxSpxq “ a5pxq

a4pxq “ Dpxq
ÿ

kě12

dimpSkpSL2pZqq
2 xk

With Dpxq “ 1{p1´ x2q, O1pxq “ x{p1´ x2q , Spxq “ x12{pp1´ x4qp1´ x6qq and

χ
ĂM
px, yq “ 1`

x2

p1´ x2q2
y `

x12

p1´ x2qp1´ x4qp1´ x6q
y2.
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Bi-brackets - evidences for the conjectures

There are obvious implications, e.g. (B2) ùñ (B1) and (D2) ùñ (D1). If we assume that the
lower bounds obtained by the numerical calculations equal the actual dimensions, then the
conjectures hold within the range of our experiments. In particular for Conjecture (D2) we have

a2pxq ”
ÿ

k

aexpk,2 x
k mod x32

a3pxq ”
ÿ

k

aexpk,3 x
k mod x22

a4pxq ”
ÿ

k

aexpk,4 x
k mod x19

a5pxq ”
ÿ

k

aexpk,5 x
k mod x16

Theorem (Bachmann-K.)

The conjectures (B1), (B2) and (D1) hold for all weights k ď 7, i.e. every bi-bracket is a linear
combination of "123"-brackets and there are exactly as many linear independent as expected.
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q-MZV’s and Lie-Algebras

Refined conjecture w.r.t. the algebra structures

(S2) We have a decomposition of Q-algebras

Zq – ĂMQpSL2pZqq bA,

moreover A equals the graded dual of the universal enveloping algebra of a bi-filtered Lie-algebra.

There are Lie algebras zq and lzq, defined within Ecalle’s theory of bimoulds, that very likely
correspond to the associated graded of A.

weight-graded dimension
conjecture for Zq

oo //

OO
partition shuffle Lie Algebra zq

��weight and depth graded
dimension conjecture for Zq

oo // linearized partition shuffle Lie Algebra lzq
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Moulds
Let A be an alphabet and denote by A˚ its words. A Mould M‚ is a map from A˚ to a Ring R.
Observe there is a bijection between moulds and non-commutative power series

tM‚ : A˚ Ñ R u – RxxAyy,

since the coefficients of
ř

aPA˚pM |aq a P RxxAyy determine a mould M uniquely.

Example 1

Let A “ ta1, a2, ...u be an alphabet. Let R “ krru1, u2, u3, ...ss and

M “ pf0, f1, f2, ...q

with f0 P k and flpu1, u2, ..., ulq P krru1, u2, ..., ulss. Then we view M as mould via

M‚ : A˚ Ñ R

ai1ai2 ...ail ÞÑ flpui1 , ui2 , ..., uilq.

By abuse of notation we just write Mpui1 , ui2 , ..., uilq instead of pM |ai1ai2 ...ailq. Thus, the
example explains the meaning of Ecalle’s definition:

A mould is a collection of functions depending on a variable number of variables
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Alternal moulds

Key remark
Most properties assigned to moulds correspond to functional equations.

Given a sequence pf1pu1q, f2pu1, u2q, f3pu1, u2, u3q, ...q we use the notation

f1puj1q ˝̋ frpuj2 , ..., ujr q “ fr`1puj1 , uj2 , ..., ujr q.

to define recursively a set of equations with the initial condition 1� f “ f � 1 “ f and

frpu1, ..., urq� fspur`1, ..., ur`sq “

f1pu1q ˝̋
`

fr´1pu2, ..., urq� fspur`1, ..., ur`sq
˘

` f1pur`1q ˝̋
`

frpu1, ..., urq� fs´1pur`2, ..., ur`sq
˘

.

We say a mould pf1, f2, f3, ...q is alternal, if for all r, s ě 1 we have

frpu1, ..., urq� fspur`1, ..., ur`sq “ 0.

Note for example:

f1pu1q�f2pu2, u3q “ 0 ðñ f3pu1, u2, u3q`f3pu2, u1, u3q`f3pu2, u3, u1q “ 0.
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Bimoulds

A bimould M “ pf0, f1, f2, ...q in the pairs of variables wi “
`

ui

vi

˘

is a mould

M‚ : A˚ Ñ R “ krru1, v1, u2, v2, u3, v3, ...ss,

such that f0 P k and fl P krru1, v1, u2, v2, ..., ul, vlss for all l ě 1.

We will use the notation

pM |ai1ai2 ...ailq “Mpwi1 , wi2 , ..., wilq “M
`

ui1
,...,uil

vi1 ,...,vil

˘

“ flpui1 , vi1 , ..., uil , vilq.

There are symmetries of moulds M‚ : A˚ Ñ R induced by endomorphisms of R. The
involution swap is of particular interest for us

swap
´

M
`

u1,u2,...,ul

v1,v2,...,vl

˘

¯

“M
`

vl,vl´1´vl,...,v1´v2
u1`...`ul,u1`...`ul´1,...,u1

˘

An alternal bimould M
`

u
v

˘

is alternal w.r.t. to both set of variables simultaneously.

Any mould Mpuq as in Example 1 becomes a bimould by setting Mpwq “M
`

u
v

˘

“Mpuq

A mould M is bi-alternal if Mpuq and M 7pvq “ swappMpuqq are alternal.
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Alternil bimoulds
Given a sequence pf0, f1pw1q, f2pw1, w2q, f3pw1, w2, w3q, ...q we use the notation

f1pwj1q ˝̋ frpwj2 , ..., wjr q “ fr`1pwj1 , wj2 , ..., wjr q.

to define recursively a set of equations with the initial condition 1 ˚ f “ f ˚ 1 “ f

frpw1, ..., wrq ˚ fspwr`1, ..., wr`sq “

f1pw1q ˝̋
`

fr´1pw2, ..., wrq ˚ fspwr`1, ..., wr`sq
˘

` f1pwr`1q ˝̋
`

frpw1, ..., wrq ˚ fs´1pwr`2, ..., wr`sq
˘

`
f1
`

u1`ur`1

v1

˘

´ f1
`

u1`ur`1

vr

˘

v1 ´ vr
˝̋
`

fr´1pw2, ..., wrq ˚ fs´1pwr`2, ..., wr`sq
˘

.

Example:

f1pw1q ˚ f1pw2q “ f2pw1, w2q ` f2pw2, w1q `
f1
`

u1`u2

v1

˘

´ f1
`

u1`u2

v2

˘

v1 ´ v2

We say a bimould pf1, f2, f3, ...q is alternil, if for all r, s ě 1 we have

frpw1, ..., wrq ˚ fspwr`1, ..., wr`sq “ 0.
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ARI Lie-bracket
Decompose a bi-word w “

`

u1,...,ul

v1,...,vl

˘

into w “ abc with

a “
`

u1,...,ur

v1,...,vr

˘

, b “
`

ur`1,...,ur`s

vr`1,...,vr`s

˘

, c “
`

ur`s`1,...,ul

vr`s`1,...,vl

˘

.

then their flexions are defined by rc “ c and as “ a if b “ H, bu “ b if c “ H, tb “ b if
a “ H and else by

bu “
`

ur`1,...,ur`s

vr`1´vr`s`1,...,vr`s´vr`s`1

˘

, rc “
`

ur`1`...`ur`s`1,ur`s`2,...,ul

vr`s`1,vr`s`2...,vl

˘

as “
`

u1,...,ur´1,ur`ur`1`...`ur`s

v1,...,vr´1,vr

˘

, tb “
`

ur`1,...,ur`s

vr`1´vr,...,vr`s´vr

˘

Definition
The Ari Lie-bracket of two bimoulds is defined with above notation as

“

A,B
‰

pwq “
ÿ

w“abc
b‰H

AparcqBpbuq ´BparcqApbuq ´
ÿ

w“abc
a,b‰H

ApascqBptbq ´BpascqAptbq.
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ARI Lie-bracket

Example

Let F and G be bi-moulds concentrated in depth 1, i.e., F ai1 ...ail “ 0, if l ‰ 1. Then
H “ tF,GuARI is concentrated in depth 2, with

H
`

u1,u2

v1,v2

˘

“ h
`

u1,u2

v1,v2

˘

` h
`

u1`u2,u1

v2,v1´v2

˘

` h
`

u2,u1`u2

v2´v1,v1

˘

,

where

h
`

u1,u2

v1,v2

˘

“ f1
`

u1

v1

˘

g1
`

u2

v2

˘

´ g1
`

u1

v1

˘

f1
`

u2

v2

˘

.
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ARI Lie-bracket
Theorem (Ecalle)

(i) The set of bimoulds Bari equipped with the Ari Lie-bracket is a Lie Algebra.
(ii) Baripolal,swap “ tpolynomial, alternal, swap invariant bimoulds with m1 evenu is a sub Lie
algebra.

The map δ : BariÑ Bari given in depth l by multiplication with u1v1 ` ...` ulvl is a
derivation, i.e., it satisfies the Leibniz rule

δrA,Bs “ rδA,Bs ` rA, δBs.

Theorem

i) δ
´

Baripolal,swap

¯

Ă Baripolal,swap

(ii) Aripolal,al “ tpolynomial, bi-alternal moulds with m1 evenu via the natural map

ι : Aripolal,al Ñ Baripolal,swap

given by ιpAqpwq “ Apuq ` swappAqpvq is a sub Lie algebra.

————-
Schneps: ARI, GARI, Zig and Zag: An introduction to Ecalle’s theory of multiple zeta values, arXiv:1507.01534 [math.NT]
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Another Lie-bracket

"Theorem" (in progress with L. Schneps)

(i) Baripolil,swap “ tpolynomial, alternil, swap invariant bimoulds and m1 evenu equipped with
the pairing

tA,Bu “ ganitpic
`

rganitpocpAq, ganitpocpBqs
˘

is Lie algebra.
(ii) Aripolal˚il “ tpolynomial, alternal moulds with alternil swap and m1 evenu via the natural map

ι : Aripolal˚il Ñ Baripolil,swap

given by ιpAqpwq “ Apuq ` swappAqpvq ` CA is a sub Lie algebra of Baripolil,swap.

Idea: By Ecalle the map ganitpoc sends alternil to alternal bimoulds and ganitpic is the inverse
map. Thus the pairing is defined on alternil bimoulds. The refinement for polynomial and
swap-invariant bimould holds for depthď 3 and is work in progress for depthě 4.
And (ii), we proved yesterday. "l"

25 / 39



q-MZV and Moulds

For the multiple q-zeta values we expect the following

multiple q-Zeta values:

MZ oo
qÑ1

��

Zq

��
Aripolal˚il

��

– // ds �
�

ι
//

��

zq
� � //

��

Baripolil,swap

��
Aripolal,al

– // ls �
�

ι
// lzq �
� // Baripolal,swap

It may be the case that lzq is the extension of ιplsq and some extra generators corresponding to
period polynomials by the action of the derivation δ on Barial,swap,i.e.

lzq
?
– Lie

´ 8
à

i“0

δi
`

ιp11‘ lsq ‘ bc
˘

¯

.
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Bi-brackets - generating series

Key remark (Dimorphy)
The most inspiring feature of the bi-brackets is that there are two independent descriptions of the
product of two of them. One of them lifts the stuffle-product and the other the shuffle-product

Today we focus on the functional equations satisfied by their generating function.

Definition

For the generating function of the bi-brackets in depth l we write

ˇ

ˇ

ˇ

ˇ

X1, . . . , Xl

Y1, . . . , Yl

ˇ

ˇ

ˇ

ˇ

:“
ÿ

s1,...,slě1
r1,...,rlě0

$

’

’

%

s1 , . . . , sl
r1 , . . . , rl

,

/

/

-

q

Xs1´1
1 . . . Xsl´1

l ¨ Y r11 . . . Y rll

The following results are based on the explicit description

ˇ

ˇ

ˇ

ˇ

X1, . . . , Xl

Y1, . . . , Yl

ˇ

ˇ

ˇ

ˇ

“
ÿ

u1ą¨¨¨ąulą0

l
ź

j“1

eujYj
eXjquj

1´ eXjquj
.
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Bi-brackets - functional equations for generating series

Proposition (stuffle product - special case of the algebra structure)

ˇ

ˇ

ˇ

ˇ

X1

Y1

ˇ

ˇ

ˇ

ˇ

¨

ˇ

ˇ

ˇ

ˇ

X2

Y2

ˇ

ˇ

ˇ

ˇ

st
“

ˇ

ˇ

ˇ

ˇ

X1, X2

Y1, Y2

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

X2, X1

Y2, Y1

ˇ

ˇ

ˇ

ˇ

`
1

X1 ´X2

ˆ
ˇ

ˇ

ˇ

ˇ

X1

Y1 ` Y2

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

X2

Y1 ` Y2

ˇ

ˇ

ˇ

ˇ

˙

`

8
ÿ

k“1

Bk
k!
pX1 ´X2q

k´1

ˆ
ˇ

ˇ

ˇ

ˇ

X1

Y1 ` Y2

ˇ

ˇ

ˇ

ˇ

` p´1qk´1

ˇ

ˇ

ˇ

ˇ

X2

Y1 ` Y2

ˇ

ˇ

ˇ

ˇ

˙

.

Theorem (Bachmann)

For all l ě 1 we have the partition relation

ˇ

ˇ

ˇ

ˇ

X1, . . . , Xl

Y1, . . . , Yl

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

Y1 ` ¨ ¨ ¨ ` Yl, . . . , Y1 ` Y2, Y1
Xl, Xl´1 ´Xl, . . . , X1 ´X2

ˇ

ˇ

ˇ

ˇ

The partition relation (Ecalle notation: swap invariance) gives linear relations between bi-brackets
in a fixed depth, for example
$

’

’

%

s

r

,

/

/

-

q

“

$

’

’

%

r ` 1

s´ 1

,

/

/

-

q

or

$

’

’

%

2, 2

1, 1

,

/

/

-

q

“ ´2

$

’

’

%

2, 2

0, 2

,

/

/

-

q

`

$

’

’

%

2, 2

1, 1

,

/

/

-

q

´ 4

$

’

’

%

3, 1

0, 2

,

/

/

-

q

` 2

$

’

’

%

3, 1

1, 1

,

/

/

-

q

.
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Bi-brackets - stuffle & shuffle product
The partition relation induces an involution P on the bi-brackets and this implies the double
shuffle relations (on the level of representatives)

a ¨ b “ P
`

P paq ¨ P pbq
˘

@ a, b P Zq

These double shuffle relations are indeed lifts of the double shuffle relations for MZV’s.

Example:
$

’

’

%

1, 2

3, 4

,

/

/

-

q

`

$

’

’

%

2, 1

4, 3

,

/

/

-

q

´
35

2

$

’

’

%

2

7

,

/

/

-

q

` 35

$

’

’

%

3

7

,

/

/

-

q

st
“

$

’

’

%

1

3

,

/

/

-

q

¨

$

’

’

%

2

4

,

/

/

-

q

sh
“ ´35

$

’

’

%

1, 2

0, 7

,

/

/

-

q

` 15

$

’

’

%

1, 2

1, 6

,

/

/

-

q

´ 5

$

’

’

%

1, 2

2, 5

,

/

/

-

q

`

$

’

’

%

1, 2

3, 4

,

/

/

-

q

´ 5

$

’

’

%

2, 1

1, 6

,

/

/

-

q

` 5

$

’

’

%

2, 1

2, 5

,

/

/

-

q

´ 3

$

’

’

%

2, 1

3, 4

,

/

/

-

q

`

$

’

’

%

2, 1

4, 3

,

/

/

-

q

´
1

6048

$

’

’

%

2

2

,

/

/

-

q

`
1

720

$

’

’

%

2

4

,

/

/

-

q

`

$

’

’

%

2

8

,

/

/

-

q

Conjecture (Bachmann)
All linear relations between bi-brackets come from the partition and the double shuffle relations.
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From bi-brackets to bimoulds
Recall the generating series for bi-brackets satisfies the partition relation

ˇ

ˇ

ˇ

ˇ

X1, . . . , Xl

Y1, . . . , Yl

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

Y1 ` ¨ ¨ ¨ ` Yl, . . . , Y1 ` Y2, Y1
Xl, Xl´1 ´Xl, . . . , X1 ´X2

ˇ

ˇ

ˇ

ˇ

and the formula for the product

ˇ

ˇ

ˇ

ˇ

X1, . . . , Xj

Y1, . . . , Yj

ˇ

ˇ

ˇ

ˇ

¨

ˇ

ˇ

ˇ

ˇ

Xj`1, . . . , Xl

Yj`1, . . . , Yl

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

X1, . . . , Xl

Y1, . . . , Yl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Shj

` lower weight and depth terms.

where |Shj
denotes the sum over all pj, lq-shuffles. Now, if we decompose the generating series

into a sum of polynomials

ˆ
ˇ

ˇ

ˇ

ˇ

X1

Y1

ˇ

ˇ

ˇ

ˇ

,

ˇ

ˇ

ˇ

ˇ

X1, X2

Y1, Y2

ˇ

ˇ

ˇ

ˇ

, ...,

˙

”
ÿ

α

α pfα1 pX1, Y1q, f
α
2 pX1, X2, Y1, Y2q, ...q ,

where α runs through a vector space basis of Zq modulo products and lower weight resp. lower
depth, then fα “ pfα1 , f

α
2 , ...q is a polynomial bimould2 which is swap-invariant and alternil

resp. swap-invariant and alternal.
2after the coordinate change ui “ Yi and vi “ Xi
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Partition shuffle Lie-Algebra

Definition

We define partition shuffle Lie-Algebra zq as the sub Lie algebra ofBaripolil,swap generated by the
sequences of polynomials coming from the generating series of bi-brackets modulo quasi-modular
forms, products and lower weight terms

For example we have in degrees 1 to 5 the elements

pξ1,0 “ p1, 0, ...q,

pξ3,0 “ pu
2
1 ` v

2
1 , v1 ´ 2v2 ´ u1 ` u2,

1
3 , 0, ...q,

pξ2,1 “ pu1v1,´2v1 ` 2v2 ´ 2u2, 0, ....q,

pξ5,0 “ pu
4
1 ` v

4
1 , ...q,

pξ4,1 “ pu1v1pu
2
1 ` v

2
1q, ...q,

pξ3,2 “ ppu1v1q
2, ...q.

these correspond to the classes of the bi-brackets
$

’

’

%

1

0

,

/

/

-

q

,

$

’

’

%

3

0

,

/

/

-

q

,

$

’

’

%

2

1

,

/

/

-

q

,

$

’

’

%

5

0

,

/

/

-

q

,

$

’

’

%

4

1

,

/

/

-

q

and
$

’

’

%

3

2

,

/

/

-

q

31 / 39



Conjecture

The partition shuffle Lie-algebra zq is generated by the pξr,s and quadratic relations generate the
ideal of relations. The Hilbert-Poincare series equals

HUpzqq_pxq “
8
ÿ

k“0

dim grWk Spzqqxk “
1

1´ DpxqO1pxq ` DpxqRpxq
,

where Dpxq “ 1{p1´ x2q, O1pxq “ x{p1´ x2q and Rpxq “
ř

kě4

dimpSk ‘Mkqx
k .

For example the relation tpξ1,0, pξ2i`1,0u “ 0 for all i ě 1 gives the "Eisenstein-part".

Interpretation

If the missing linka from Zq to zq is filled, then the weight graded dimension conjecture would be

implied, i.e. Zq – ĂMpSL2pZqq b Upzqq_ . At the level of Hilbert-Poincare series, the above
isomorphism is reflected by the identity

1

1´ x´ x2 ´ x3 ` x6 ` x7 ` x8 ` x9
“

1

p1´ x2qp1´ x4qp1´ x6q

1

1´ DpxqO1pxq ` DpxqRpxq
.

ae.g. similarily like Racinet’s construction for MZV by using appropriate "formal multiple q-zeta values" 32 / 39



Linearised partition shuffle Lie-Algebra

Definition

We define the linearised partition shuffle Lie-Algebra lzq as the sub Lie algebra of Baripolal,swap

generated by the polynomials coming from the generating series for bi-brackets modulo
quasi-modular forms, products and lower depth terms.

The elements
ξr,s “ pu1v1q

spur´s´1
1 ` vr´s´1

1 q

correspond to the class of the bi-brackets
$

’

’

%

r

s

,

/

/

-

q

. More generally, there is a map zqk Ñ lzqk,l
given by

p0, ..., 0
loomoon

#“l´1

, flpu1, v1, ..., ul, vlq, ˚, ..., ˚, 0, ...q ÞÑ fl.

Using quadratic relations in lzq we obtain this way "new" generators in depth 4, e.g.,

 

pξ3,0, pξ9,0
(

´ 3
 

pξ5,0, pξ7,0
(

“
`

0, 0, 0, χ4,0
, ˚, ...

˘

.

33 / 39



Conjecture

The algebra Uplzqq has the Hilbert-Poincare series

HUplzqqpx, yq “
1

1´a1pxq y`a2pxq y2´a3pxq y3´a4pxq y4`a5pxq y5
,

with

a1pxq “ DpxqO1pxq "Generators ξr,s "

a2pxq “ Dpxq
ÿ

kě4

dimpMkpSL2pZqq
2 xk "Periodpoly Relations"

a3pxq “ DpxqxSpxq "Homology"

a4pxq “ Dpxq
ÿ

kě12

dimpSkpSL2pZqq
2 xk "new Generators χcusp"

a5pxq “ DpxqxSpxq "ξ1,0-orthogonality"

With Dpxq “ 1{p1´ x2q, O1pxq “ x{p1´ x2q and Spxq “ x12{pp1´ x4qp1´ x6qq.
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Some evidence

Experiments using Pari/GP with parallel algorithms support the conjectures, e.g.

dim grW,D
k,l pspace spanned by depth 1 elements ξr,sq

is as conjectured for
depth l 1 2 3 4 5 6

weight k ď 8 52 35 26 23 18

Also we calculated in depth 4 the dimension of the spaces spanned by the new generators for
weight k ď 26. For this we used a Computer at DESY Hamburg with 128 cores and 1
terabyte RAM. For k “ 26 the calculation took about a week.

Some of the statements in that conjecture are actually proven, e.g.

Theorem

For the vector spaces Rk spanned by the relations in weight k and depth 2 in the Lie algebra
spanned by depth 1 elements ξr,s we have the generating series

a2pxq “
ÿ

kě4

dimRkx
k “ Dpxq

ÿ

ně4

dimpMnpSL2pZqq
2 xn,

´

Dpxq “
1

1´ x2

¯

.
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Idea of Proof: Explicitly these spaces are given by

Rk “
 

P P Qru1, u2, v1, v2s
ˇ

ˇ homogenous, degP “ k ´ 2, such that

P
`

u1,u2

v1,v2

˘

` P
`

u1`u2,u1

v2,v1´v2

˘

` P
`

u2,u1`u2

v2´v1,v1

˘

“ 0,

P
`

u1,u2

v1,v2

˘

` P
`

u2,u1

v2,v1

˘

“ 0, P
`

u1,u2

v1,v2

˘

“ P
`

εu1,µu2

εv1,µv2

˘

, pε, µ P t˘1uq,

P
`

u1,u2

v1,v2

˘

“ P
`

v1,u2

u1,v2

˘

, P
`

u1,u2

v1,v2

˘

“ P
`

u1,v2
v1,u2

˘

(

We will use harmonic analysis for the symplectic Laplacian

∆ “ Bu1Bv1 ` Bu2Bv2 ,

because following an idea of Zagier we can recover tensor products of period polynomials in the
subspace spanned by ∆-harmonic solutions of the above functional equation:
Consider P P Qru1, u2, v1, v2s as a function on p2ˆ 2q-matrices via

P : X “
` u1 u2
´v2 v1

˘

ÞÑ P pXq “ P
`

u1,u2

v1,v2

˘

.
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Relations in depth 2
Let SL2 act by the multiplication of matrices and then Rk is given by the set of P such that

P pXq ` P pXUq ` P pXU2q “ 0

P pXq ` P pXSq “ 0

P pXtq “ P pXq

P pεXεq “ P pXq,

where U “
`

0 1
´1 1

˘

, S “
`

0 1
´1 0

˘

and ε “
`

´1 0
0 1

˘

. We have with ∆ “ Bu1Bv1 ` Bu2Bv2

Rk “ ker ∆‘ pu1v1 ` u2v2qRk´2.

Via the map
P pXq ÞÑ P

``

ac ad
bc bd

˘˘

“ P
`

p
a
b qpc dq

˘

,

we identify

ker ∆ “
@

fpa, bq b gpc, dq ` gpa, bq b fpc, dq
ˇ

ˇ f, g PW`
k or f, g PW´

k

D

Q
.

From dimW´
k “ sk ` 1 and dimW`

k “ sk it follows the claimed identity

dim ker ∆ “
psk ` 2qpsk ` 1q

2
`
psk ` 1qsk

2
“ dimpMnpSL2pZqq

2.

l
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The relations in depth 2 contain two families.

REis “

!

δrrξ1,0, ιpξsqs
)

, RCusp “

!

δr ι
`

periodpoly relations for ls
˘

)

.

Because of the Jacobi identity the ideals of the relations RCusp and REis have a non-trivial
intersection in depth 3. More precisely we have

“

ξ1,0,RCusp

‰

Ă
“

lzq,REis

‰

.

Lemma.

The generating series of the numbers of these "relations in the relations" in depth 3 equals a3pxq.

In depth 5 we find the relations

Rnew “
 

δrrξ1,0, ιp new generators in depth 4 for ls qs
(

,

Lemma.

The generating series of the numbers of these orthogonalities in depth 5 equals a5pxq.
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Summary

TheQ-algebra of multiple q-zeta values Zq is spanned by bi-brackets, i.e., q-series whose
coefficients are rational numbers given by sums over partitions. It contains all quasi-modular
forms.

The elements in Zq have a direct connection to multiple zeta values.

There are conjectural formulas for the dimensions dim grW,D
k,l Zq , and other subspaces.

Conjecturally every element in Zq can be written as a linear combination of 123-brackets. In
particular Z˝q “ Zq .

The algebra Zq is dimorphic, i.e. there are two different ways to express a product of
bi-brackets in terms of the generators. This gives rise to a lot of, conjecturally all, linear
relations between bi-brackets.

The functional equations satisfied by the generating series of bi-brackets modulo products and
lower depth give rise to a subspace in the Lie-algebra of bimoulds.

Conjecturally the generators of Zq give a basis of a Lie-algebra contained in the Lie-algebra of
swap-invariant, alternal, polynomial bimoulds.

Massive computer calculations give striking evidence for those conjectures.

39 / 39


