Some Details for the Caen Workshop， 1

Knot－Theoretic statement．There exists a homomorphic expansion
Wheels and Trees．With \mathcal{P} for \mathcal{P} rimitives，
$0 \longrightarrow\langle$ wheels $\rangle \longrightarrow \mathcal{P A}^{w}\left(\uparrow_{n} \underset{T}{\stackrel{u}{\pi}}\right.$（trees $\rangle \longrightarrow 0$,
Z for trivalent w－tangles．In particular，Z should respect $R 4$ and intertwine annulus and disk unzips：
（1）

\checkmark

（2）

（3）

with
So $\operatorname{proj} \mathcal{K}^{w}\left(\uparrow_{n}\right) \cong \mathcal{U}(\langle$ trees $\rangle \ltimes\langle$ wheels $\rangle)$ ，or

$$
\mathcal{A}^{w}\left(\uparrow_{n}\right) \cong \mathcal{U}\left(\left(\mathfrak{a}_{n} \oplus \mathfrak{t d e r}_{n}\right) \ltimes \mathfrak{t r}_{n}\right)
$$

Some A－T Notions． \mathfrak{a}_{n} is the vector space with basis x_{1}, \ldots, x_{n} ， $\mathfrak{l i} e_{n}=\mathfrak{l i e}\left(\mathfrak{a}_{n}\right)$ is the free Lie algebra， $\operatorname{Ass}_{n}=\mathcal{U}\left(\mathfrak{l i e}_{n}\right)$ is the free associative algera＂of words＂， $\operatorname{tr}: \mathrm{Ass}_{n}^{+} \rightarrow \mathfrak{t r}_{n}=$ Diagrammatic statement．Let $R=\exp \hat{\wedge} \hat{\not} \in \mathcal{A}^{w}(\uparrow \uparrow)$ ．There exist $\omega \in \mathcal{A}^{w}(\uparrow)$ and $V \in \mathcal{A}^{w}(\uparrow \uparrow)$ so that

1）

Algebraic statement．With $I \mathfrak{g}:=\mathfrak{g}^{*} \rtimes \mathfrak{g}$ ，with $c: \hat{\mathcal{U}}(I \mathfrak{g}) \rightarrow$ $\hat{\mathcal{H}}(I \mathfrak{g}) / \hat{\mathcal{U}}(\mathfrak{g})=\hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ the obvious projection，with S the antipode of $\hat{\mathcal{U}}(I \mathfrak{g})$ ，with W the automorphism of $\hat{\mathcal{U}}(I \mathfrak{g})$ induced by flipping the sign of \mathfrak{g}^{*} ，with $r \in \mathfrak{g}^{*} \otimes \mathfrak{g}$ the identity element and with ${ }^{a}$ $R=e^{r} \in \hat{\mathcal{U}}(I \mathfrak{g}) \otimes \hat{\mathcal{U}}(\mathfrak{g})$ there exist $\omega \in \hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ and $V \in \hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2}$ so that
（1）$V(\Delta \otimes 1)(R)=R^{13} R^{23} V$ in $\hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2} \otimes \hat{\mathcal{U}}(\mathfrak{g})$
（2）$V \cdot S W V=1$
（3）$(c \otimes c)(V \Delta(\omega))=\omega \otimes \omega$

words＂， $\mathfrak{d e r}_{n}=\mathfrak{d e r}\left(\mathfrak{l i} e_{n}\right)$ are all the derivations，and

$$
\mathfrak{t d e r}_{n}=\left\{D \in \mathfrak{d e r}_{n}: \forall i \exists a_{i} \text { s.t. } D\left(x_{i}\right)=\left[x_{i}, a_{i}\right]\right\}
$$

are＂tangential derivations＂，so $D \leftrightarrow\left(a_{1}, \ldots, a_{n}\right)$ is a vector space isomorphism $\mathfrak{a}_{n} \oplus \mathfrak{t d e r}_{n} \cong \bigoplus_{n} \mathfrak{l i e}_{n}$ ．Finally，div ： $\mathfrak{t d e r} \mathfrak{r g}_{n} \rightarrow \mathfrak{t r}_{n}$ is $\left(a_{1}, \ldots, a_{n}\right) \mapsto \sum_{k} \operatorname{tr}\left(x_{k}\left(\partial_{k} a_{k}\right)\right)$ ，where for $a \in \operatorname{Ass}_{n}^{+}, \partial_{k} a \in \operatorname{Ass}_{n}$ is determined by $a=\sum_{k}\left(\partial_{k} a\right) x_{k}$ ，and $j:$ TAut $_{n}=\exp \left(\mathfrak{t d e r}{ }_{n}\right) \rightarrow \mathfrak{t r}_{n}$ is $j\left(e^{D}\right)=\frac{e^{D}-1}{D} \cdot \operatorname{div} D$ ．
Theorem．Everything matches．〈trees〉 is $\mathfrak{a}_{n} \oplus \mathfrak{t d e r}{ }_{n}$ as Lie algebras， $\left\langle\right.$ wheels〉 is $\mathfrak{t r}_{n}$ as $\left\langle\right.$ trees $/ \mathfrak{t d e r}_{n}$－modules， $\operatorname{div} D=\iota^{-1}(u-l)(D)$ and $e^{u D} e^{-l D}=e^{j D}$ ．
Differential Operators．Interpret $\hat{\mathcal{U}}(I \mathfrak{g})$ as tangential differential operators on $\operatorname{Fun}(\mathfrak{g})$ ：
－$\varphi \in \mathfrak{g}^{*}$ becomes a multiplication operator．
－$x \in \mathfrak{g}$ becomes a tangential derivation，in the direction of the action of $\operatorname{ad} x:(x \varphi)(y):=\varphi([x, y])$ ．
－$c: \hat{\mathcal{U}}(I \mathfrak{g}) \rightarrow \hat{\mathcal{U}}(I \mathfrak{g}) / \hat{\mathcal{U}}(\mathfrak{g})=\hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ is＂the constant term＂
Trees become vector fields and $u D \mapsto l D$ is $D \mapsto D^{*}$ ．So $\operatorname{div} D$ is $D-D^{*}$ and $j D=\log \left(e^{D}\left(e^{D}\right)^{*}\right)=\int_{0}^{1} d t e^{t D} \operatorname{div} D$ ．
Alekseev－Torossian statement．There are elements $F \in \mathrm{TAut}_{2}$ and $a \in \mathfrak{t r}_{1}$ such that
$F(x+y)=\log e^{x} e^{y} \quad$ and $\quad j F=a(x)+a(y)-a\left(\log e^{x} e^{y}\right)$.
Theorem．The Alekseev－Torossian statement is equivalent to the knot－theoretic statement．
Proof．Write $V=e^{c} e^{u D}$ with $c \in \mathfrak{t r}_{2}, D \in \mathfrak{t d e r}_{2}$ ，and $\omega=e^{b}$ with
Unitary statement．There exists $\omega \in \operatorname{Fun}(\mathfrak{g})^{G}$ and an（infinite $b \in \mathfrak{t r}_{1}$ ．Then（1）$\Leftrightarrow e^{u D}(x+y) e^{-u D}=\log e^{x} e^{y}$ ，
order）tangential differential operator V defined on $\operatorname{Fun}\left(\mathfrak{g}_{x} \times \mathfrak{g}_{y}\right)(2) \Leftrightarrow I=e^{c} e^{u D}\left(e^{u D}\right)^{*} e^{c}=e^{2 c} e^{j D}$ ，and

so that

（1）$V \widehat{e^{x+y}}=\widehat{e^{x}} \widehat{e^{y}} V$（allowing $\hat{\mathcal{U}}(\mathfrak{g})$－valued functions）
（2）$V V^{*}=I$
（3）$V \omega_{x+y}=\omega_{x} \omega_{y}$
Group－Algebra statement．There exists $\omega^{2} \in \operatorname{Fun}(\mathfrak{g})^{G}$ so that for every $\phi, \psi \in \operatorname{Fun}(\mathfrak{g})^{G}$（with small support），the following holds in $\hat{\mu}(\mathfrak{g})$ ：
$\left(\operatorname{shhh}, \omega^{2}=j^{1 / 2}\right)$

$$
\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) \omega_{x+y}^{2} e^{x+y}=\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) \omega_{x}^{2} \omega_{y}^{2} e^{x} e^{y}
$$

Convolutions statement（Kashiwara－Vergne）．Convolutions of in variant functions on a Lie group agree with convolutions of invari－ ant functions on its Lie algebra．More accurately，let G be a finite dimensional Lie group and let \mathfrak{g} be its Lie algebra，let $j: \mathfrak{g} \rightarrow \mathbb{R}$ be the Jacobian of the exponential map $\exp : \mathfrak{g} \rightarrow G$ ，and let $\Phi: \operatorname{Fun}(G) \rightarrow \operatorname{Fun}(\mathfrak{g})$ be given by $\Phi(f)(x):=j^{1 / 2}(x) f(\exp x)$ ． Then if $f, g \in \operatorname{Fun}(G)$ are Ad－invariant and supported near the identity，then

$$
\Phi(f) \star \Phi(g)=\Phi(f \star g)
$$

Dror Bar－Natan，June 2012，Web／Caen－1206 with Web $:=$ http：／／www．math．toronto．edu／～drorbn／Talks Sources：Web／Bonn－0908 and Web／Montpellier－1006
（3）$\Leftrightarrow e^{c} e^{u D} e^{b(x+y)}=e^{b(x)+b(y)} \Leftrightarrow e^{c} e^{b\left(\log e^{x} e^{y}\right)}=e^{b(x)+b(y)} \Leftrightarrow c=$
$b(x)+b(y)-b\left(\log e^{x} e^{y}\right)$.
Unitary \Longrightarrow Group－Algebra． $\iint \omega_{x+y}^{2} e^{x+y} \phi(x) \psi(y)$

$$
\begin{aligned}
& =\left\langle\omega_{x+y}, \omega_{x+y} e^{x+y} \phi(x) \psi(y)\right\rangle=\left\langle V \omega_{x+y}, V e^{x+y} \phi(x) \psi(y) \omega_{x+y}\right\rangle \\
& =\left\langle\omega_{x} \omega_{y}, e^{x} e^{y} V \phi(x) \psi(y) \omega_{x+y}\right\rangle=\left\langle\omega_{x} \omega_{y}, e^{x} e^{y} \phi(x) \psi(y) \omega_{x} \omega_{y}\right\rangle \\
& =\iint \omega_{x}^{2} \omega_{y}^{2} e^{x} e^{y} \phi(x) \psi(y) .
\end{aligned}
$$

Convolutions and Group Algebras（ignoring all Jacobians）．If G is finite，A is an algebra，$\tau: G \rightarrow A$ is multiplicative then $(\operatorname{Fun}(G), \star) \cong(A, \cdot)$ via $L: f \mapsto \sum f(a) \tau(a)$ ．For Lie (G, \mathfrak{g}) ，

with $L_{0} \psi=\int \psi(x) e^{x} d x \in \hat{\mathcal{S}}(\mathfrak{g})$ and $L_{1} \Phi^{-1} \psi=\int \psi(x) e^{x} \in$ $\hat{\mathcal{U}}(\mathfrak{g})$ ．Given $\psi_{i} \in \operatorname{Fun}(\mathfrak{g})$ compare $\Phi^{-1}\left(\psi_{1}\right) \star \Phi^{-1}\left(\psi_{2}\right)$ and $\Phi^{-1}\left(\psi_{1} \star \psi_{2}\right)$ in $\hat{\mathcal{U}}(\mathfrak{g})$ ： （shhh，$L_{0 / 1}$ are＂Laplace transforms＂） \star in $G: \iint \psi_{1}(x) \psi_{2}(y) e^{x} e^{y} \quad \star$ in $\mathfrak{g}: \iint \psi_{1}(x) \psi_{2}(y) e^{x+y}$

