Expansions: A Loosely Tied Traverse from Feynman Diagrams to Quantum Algebra

Geometric, Algebraic, and Topological Methods for Quantum Field Theory, Villa de Leyva, Colombia

Dror Bar-Natan, July 2011, http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107/

Abstract. Assuming lots of luck, in six classes we'll talk about

- 1. Perturbed Gaussian integration in \mathbb{R}^n and Feynman diagrams.
- 2. Chern-Simons theory, knots, holonomies and configuration space integrals.
- 3. Finite type invariants, chord and Jacobi diagrams and "expansions".
- 4. Drinfel'd associators and knotted trivalent graphs.
- 5. w-Knotted objects and co-commutative Lie bi-algebras.
- 6. My dreams on virtual knots and and quantization of Lie bi-algebras.

Each class will be closely connected to the next, yet the first and last will only be very loosely related.

Tl	he u \rightarrow v \rightarrow w &	p Stories	explained skete	ched could explain	could explain, gaps remain	more gaps then explains	mystery
	Topology	Combinatorics	Low Algebra	High Algebra	Counting Coincidences Conf. Space Integrals	Quantum Field Theory	Graph Homology
u-Knots —	The <u>u</u> sual Knotted Objects (KOs) in 3D — braids, knots, links, tangles, knotted graphs, etc.	Chord diagrams and Jacobi diagrams, modulo 4T, STU, IHX, etc.	Finite dimensional metrized Lie algebras, representations, and associated spaces.	The Drinfel'd theory of associators.	Today's work. Not beautifully written, and some detour-forcing cracks remain.	Perturbative Chern-Simons- Witten theory.	The "original" graph homology.
→ v-Knots —	<u>V</u> irtual KOs — "algebraic", "not embedded"; KOs drawn on a surface, mod stabilization.	Arrow diagrams and v-Jacobi diagrams, modulo 6T and various "directed" STUs and IHXs, etc.	Finite dimensional Lie bi-algebras, representations, and associated spaces.	Likely, quantum groups and the Etingof-Kazhdan theory of quantization of Lie bi-algebras.	No clue.	No clue.	No clue.
→ w-Knots	Ribbon 2D KOs in 4D; "flying rings". Like v, but also with "overcrossings commute".	Like v, but also with "tails commute". Only "two in one out" internal vertices.	Finite dimensional co-commutative Lie bi-algebras $(\mathfrak{g} \ltimes \mathfrak{g}^*)$, representations, and associated spaces.	The Kashiwara- Vergne-Alekseev- Torossian theory of convolutions on Lie groups / algebras.	No clue.	Probably related to 4D BF theory.	Studied.
p-Objects	No clue.	"Acrobat towers" with 2-in many-out vertices.	Poisson structures.	Deformation quantization of poisson manifolds.	Configuration space integrals are key, but they don't reduce to counting.	Work of Cattaneo.	Studied.

Video and more at http://www.math.toronto.edu/~drorbn/Talks//Tennessee-1103/

From Stonehenge to Witten Skipping all the Details

Oporto Meeting on Geometry, Topology and Physics, July 2004

Dror Bar-Natan, University of Toronto

It is well known that when the Sun rises on midsummer's morning over the "Heel Stone" at Stonehenge, its first rays shine right through the open arms of the horseshoe arrangement. Thus astrological lineups, one of the pillars of modern thought, are much older than the famed Gaussian linking number of two knots. Recall that the latter is itself an astrological construct: one of the standard ways to compute the Gaussian linking number is to place the two knots in space and then count (with signs) the number of shade points cast on one of the knots by the other knot, with the only lighting coming from some fixed distant star.

More at http://www.math.toronto.edu/~drorbn/Talks/Oporto-0407/

More at http://www.math.toronto.edu/~drorbn/Talks/Oporto-0407/

More at http://www.math.toronto.edu/~drorbn/Talks/HUJI-001116/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-0908/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-0908/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Luminy-1004/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Chicago-1009/

Lecture 2 Handout

More on Chern-Simons Theory and Feynman Diagrams

Dror Bar-Natan at Villa de Leyva, July 2011, http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107

AFter AI A/VK, and setting h= 1/K:	In Chirn-simons, W/ F(A) == d*A = d; A', get
	$d_{tat} = \frac{k}{4\pi} \int \frac{t}{r} (A^{1})A + \frac{2}{3}A^{1}A^{1}A + \emptyset \partial_{i}A^{i} + \overline{C} \partial_{i}(\partial^{i} + a \partial A^{i})C$ So we have
$Z(\Upsilon) = \int \mathcal{D}_{A} t_{\mathcal{K}} hol_{\Upsilon}(A) \left(\frac{1}{4} \int t_{\mathcal{K}} \int A dA + \frac{2k}{3} A A A A \right)$ $A \in \mathcal{L}'(\mathcal{K}^{3}, \mathfrak{G}) \qquad \qquad$	$(2 + 1) + C \partial_i (\partial^i + a d A^i) C$
where $tr_{R}hol_{i}(A) = tr_{R}(1+h)ISA(\dot{s}(S))$	
Troubled J^{*} is $+ k^{2} \int A(\dot{s}(s_{1})) A(\dot{s}(s_{2})) + \dots$	* A bosonic quadratic term involving (A).
	* A Fermionic quadratic term involving E, C. * A cubic interaction of 3 A's.
Gauge Invariance: CS(A) is invariant under	* A cubic Azer vartex.
$A \mapsto A + \delta A, \delta A = -(JC + \delta[A, C]), C \in \mathcal{N}^{2}(\mathcal{R}, g)$	* Funny A and & "holonomy" vertices along &.
Back to the drawing beard	
Suppose LIOC) on IR is invariant under a	The much of an ing.
k-dimensional Group G- w/ Lie algebra g=< yz, and suppose F: Rn -> 1RK is such that F=0	$Z(Y) = \sum_{m=0}^{\infty} h \left(\sum_{j=0}^{m} \frac{1}{j} \right)^{m}$
is a section of the G-action:	After much crunching: $Z(Y) = \sum_{m=0}^{\infty} h^{m} \sum_{\substack{Fiynman \\ drings D}} \oint E(D) D = \bigoplus_{\substack{i,j,k-1,j,s_3 \\ figs D}} \int e_{ijk} \int e_{ijk}$
is a section of the Graction: G -> K ⁿ F>K ^k G orbits	in is a tabilary to the
	$x y \rightarrow E_{ijk} t \frac{1}{2[x-y]^3}$
Godite	$\xrightarrow{\tau} \xrightarrow{\tau} \xrightarrow{\tau} \xrightarrow{\tau} \xrightarrow{\tau} \xrightarrow{\tau} \xrightarrow{\tau} \xrightarrow{\tau} $
Thin	$\begin{array}{cccc} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $
$\left(dx e^{id} \sim \left(dx e^{i\lambda} \mathcal{N}(F(x)) \cdot dy \left(\frac{\partial F^{\alpha}}{\partial x}\right)(x)\right)\right)$	$s_{c} \rightarrow \kappa$ z_{1}, η_{R3} $(-) s_{1} + c_{r} + c_{r}$
$\int dx \ \ell^{id} \sim \int dz \ \ell^{i2} \mathcal{N}(F(x)) \cdot dt \left(\frac{\partial F^{\alpha}}{\partial g_{L}}\right)(x)$	a serie i (-) sign for end i (-) sign for end red koop in b-direction
((ik + F(x))) , and theory for	in b-direction)
$\sim \int dx \int d\phi \ e^{i(k + F(x),\phi)} dt \left(\frac{2F^{\alpha}}{2g_{b}}\right)(x) \int \frac{p_{b} dw bating}{determinants}$	By a bit of a miracle, this boils down to
	a configuration space integral, which in itsef
$det(J_6+hJ_1(c)) = Jet(J_6) \ge t^m T_{r}(h^m J_6^{-1}) \cdot (h^m J_1(c))$	can be reduced to a pre-image count.
<u>γ</u>	But I run out of steam for tonight
Berzin Fermionic Variables: (d'Ed'C e iEa Jo Cb Anti-commuting	
So Z~ JJX JJØ JJKEJJKE lintot where R° 18K	Banco de Occidente Banif
R° 18"	Banco de Occidente Credencial
$d_{14+7} = d_1(x) + F(x) + C_a(\frac{2F^a}{2})C^b$	R Caixa Geral
$ \mathcal{L}_{tot} = \mathcal{L}(\mathcal{X}) + F(\mathcal{X}) + \frac{F(\mathcal{X})}{\mathcal{G}_{tot}} + \frac{\mathcal{C}_{a}\left(\frac{\partial F^{a}}{\partial g}\right)C^{b}}{\mathcal{G}_{tot}} + \frac{\mathcal{C}_{a}\left(\frac{\partial F^{a}}{\partial g}\right)C^{b}}{\mathcal{G}_{tot}} $	De Depositos
"God created the knots, all else in topology is the work of mortals."	
Leopold Kronecker (modified) www.katlas.org	Banks like knots.
	I DUNKS UKE KNOTS.

2011-07 Page 1 Video at http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107/

Lecture 3 Handout

The Basics of Finite-Type Invariants of Knots

Dror Bar-Natan at Villa de Leyva, July 2011, http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107

2011-07 Page 1 Video at http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107/

2011-07 Page 1 Video at http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107/

Review Material (mostly) Lecture 5 Extras Dror Bar-Natan at Villa de Leyva, July 2011, http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107 $\langle D, K \rangle_{\overline{\shortparallel}} := \begin{pmatrix} \text{The signed Stonehenge} \\ \text{pairing of } D \text{ and } K \end{pmatrix}$ count with signs The big picture, "" (ase. K=D=topology Thus we consider the generating function of all stellar coincidences: framing- $Z(K) := \lim_{N \to \infty} \sum_{\alpha \text{ min} \in \mathbb{Z}} \frac{1}{2^c c! {N \choose 2}} \langle D, K \rangle_{\overline{m}} D \cdot$ L' diagrams J knots dependent $\in \mathcal{A}(\circlearrowleft)$ 1 etc. 9 how algebra high algebra **Theorem.** Modulo Relations, Z(K) is a knot invariant! When deforming, catastrophes occur when: wagebra. A(11)->U(9)⁸²vin A plane moves over an An intersection line cuts The Gauss curve slides intersection point through the knot over a star -Solution: Impose IHX, Solution: Impose STU. Solution: Multiply by $\xrightarrow{d} \longrightarrow \sum_{a \rightarrow b} f_{abc} \begin{pmatrix} X_a X_b X_c \\ \emptyset \\ \times_L \times_J \end{pmatrix}$ So (HIV) eterp Jv ~H(2)er(2)e-(14)/2 (similar argument) (see below) k likewise, $A(\Lambda) \rightarrow U(q)^{\circ}$ =) It all is perturbative Chern-Simons-Witten theory: $\int_{\mathfrak{g}-connections} \mathcal{D}A \, hol_{K}(A) \exp \left| \frac{ik}{4\pi} \int \operatorname{tr} \left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A \right) \right|$ A(1) is "universal universal rep. heory"D What's DZ $\rightarrow \sum_{\substack{D: \text{ Feynman}} \\ \text{ theorem}} W_{\mathfrak{g}}(D) \sum \mathcal{E}(D) \rightarrow \sum_{\substack{D: \text{ Feynman}} \\ \text{ theorem}} D \sum \mathcal{E}(D)$ Definition. Any V: Eknots J - Abelian Group A U(Y) \sqrt{A} ΔJ Can bl extended to «Knots w/ double points? N(G)^{@2} using V(X)=V(X)-V(X) (Think "Liffertiation") Definition. V is of type m if always Homomorphic Expansion" Z: K-)A (think "polynomial") $\vee(\underbrace{XX}) = 0$ is an expansion that intertwines Conjecture. Finde type invariants suparate knots. all relevant algobraic ops. IF Theorem. If $C(k) = \sum_{m=1}^{\infty} V_m(k) Z^m$ then V_m K is Finitely presented, Finding Z is of type m. **Proof.** $C(\mathcal{N}) = C(\mathcal{N}) - C(\mathcal{N}) = Z(\mathcal{N})$ High Algebra. jŚ ((AB)C)D - \rightarrow (AB)(CD) Proposition. The Fundamental thm An Associator: $(\Delta 11)\Phi$ Quantum Algebra's "root object" holds IFF there wists an expansion $(AB)C \xrightarrow{\Phi \in \mathcal{U}(\mathfrak{g})^{\otimes 3}} A(BC)$ (A(BC))DA(B(CD))Z:K-A s.t. iF K is satisfying the "pentagon", $(1\Delta 1)\overline{\Phi}$ $\sqrt[7]{4}$ A((BC)D)M-singular, then $\Phi 1 \cdot (1\Delta 1) \Phi \cdot 1\Phi = (\Delta 11) \Phi \cdot (11\Delta) \Phi$ V.G. Drinfeld Z(K)= DK+high dugrees The hexagon? Never heard of it. See Also. B-N& Doncso, arXiv: 1103.1896

2011-07 Page 1 Video at http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107/