Expansions: A Loosely Tied Traverse from Feynman Diagrams to Quantum Algebra

Geometric, Algebraic, and Topological Methods for Quantum Field Theory, Villa de Leyva, Colombia

Dror Bar-Natan, July 2011, http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107/

Abstract. Assuming lots of luck, in six classes we'll talk about

1. Perturbed Gaussian integration in \mathbb{R}^{n} and Feynman diagrams.
2. Chern-Simons theory, knots, holonomies and configuration space integrals.
3. Finite type invariants, chord and Jacobi diagrams and "expansions".
4. Drinfel'd associators and knotted trivalent graphs.
5. w-Knotted objects and co-commutative Lie bi-algebras.
6. My dreams on virtual knots and and quantization of Lie bi-algebras.

Each class will be closely connected to the next, yet the first and last will only be very loosely related.

The $\mathrm{u} \rightarrow \mathrm{v} \rightarrow \mathrm{w}$ \& p Stories			explained sketched could expla		could explain, gaps remain	more gaps then explains	mystery
	Topology	Combinatorics	Low Algebra	High Algebra	Counting Coincidence Conf. Space Integrals	$\left\|\begin{array}{c} \text { Quantum Field } \\ \text { Theory } \end{array}\right\|$	Graph Homology
$\begin{aligned} & \text { B } \\ & \substack{1 \\ 0 \\ 0 \\ i n \\ \hline} \end{aligned}$	The usual Knotted Objects (KOs) in 3D - braids, knots, links, tangles, knotted graphs, etc.	Chord diagrams and Jacobi diagrams, modulo $4 T, S T U$, $I H X$, etc.	Finite dimensional metrized Lie algebras, representations, and associated spaces.	The Drinfel'd theory of associators.	Today's work. Not beautifully written, and some detour-forcing cracks remain.	Perturbative Chern-SimonsWitten theory.	The "original" graph homology.
	Virtual KOs - "algebraic", "not embedded"; KOs drawn on a surface, mod stabilization.	Arrow diagrams and v-Jacobi diagrams, modulo $6 T$ and various "directed" $S T U \mathrm{~s}$ and $I H X \mathrm{~s}$, etc.	Finite dimensional Lie bi-algebras, representations, and associated spaces.	Likely, quantum groups and the Etingof-Kazhdan theory of quantization of Lie bi-algebras.	No clue.	No clue.	No clue.
$\begin{aligned} & \hline V \\ & \text { V } \\ & \text { i } \\ & 0 \\ & 0 \\ & 0 \\ & i n \end{aligned}$	Ribbon 2D KOs in 4D; "flying rings". Like v, but also with "overcrossings commute".	Like v, but also with "tails commute". Only "two in one out" internal vertices.	Finite dimensional co-commutative Lie bi-algebras ($\mathfrak{g} \ltimes \mathfrak{g}^{*}$), representations, and associated spaces.	The Kashiwara-Vergne-AlekseevTorossian theory of convolutions on Lie groups / algebras.	No clue.	Probably related to 4D BF theory.	Studied.
	No clue.	"Acrobat towers" with 2-in many-out vertices.	Poisson structures.	Deformation quantization of poisson manifolds.	Configuration space integrals are key, but they don't reduce to counting.	Work of Cattaneo.	Studied.

From Stonehenge to Witter Skipping all the Details
Oporto Meeting on Geometry, Topology and Physics, July 2004
Dror Bar-Natan, University of Toronto

It is well known that when the Sun rises on midsummer's morning over the "Heel Stone" at Stonehenge, its first rays shine right through the open arms of the horseshoe arrangement. Thus astrological lineups, one of the pillars of modern thought, are much older than the famed Gaussian linking number of two knots.
$\langle D, K\rangle_{\pi}:=\binom{$ The signed Stonehenge }{ pairing of D and $K}:$

Thus we consider the generating function of all stellar coincidences:
$Z(K):=\lim _{N \rightarrow \infty} \sum_{3 \text {-valent } D} \frac{1}{2^{c} c!\binom{N}{e}}\langle D, K\rangle_{\pi} D \cdot\left(\begin{array}{c}\text { framing- } \\ \text { dependent } \\ \text { counter-term }\end{array}\right) \in \mathcal{A}(\circlearrowleft)$

Theorem. Modulo Relations, $Z(K)$ is a knot invariant!
When deforming, catastrophes occur when:
A plane moves over an intersection point Solution: Impose IHX,

An intersection line cuts through the knot Solution: Impose STU,

(similar argument)

The Gauss curve slides over a star -
Solution: Multiply by a framing-dependent counter-term.
(not shown here)

The IHX Relation
\Leftrightarrow the red star is your eye

It all is perturbative Chern-Simons-Witten theory:
$\int_{\mathfrak{g} \text {-connections }}^{\mathcal{D} A \operatorname{hol}_{K}(A) \exp \left[\frac{i k}{4 \pi} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)\right]}$

$$
\rightarrow \sum_{\substack{D: \text { Feynman } \\ \text { diagram }}} W_{\mathfrak{g}}(D) \sum \mathcal{E}(D) \rightarrow \sum_{\substack{D: \text { Feynman } \\ \text { diagram }}} D \sum \mathcal{E}(D)
$$

a the star is your eye

Recall that the latter is itself an astrological construct: one of the standard ways to compute the Gaussian linking number is to place the two knots in space and then count (with signs) the number of shade points cast on one of the knots by the other knot, with the only lighting coming from some fixed distant star.

Dylan Thurston

N	$:=\#$ of stars	$\mathcal{A}(\circlearrowleft)$
c	$:=$ \# of chopsticks	$:=S p a n$
e	$:=\#$ of edges of D	\square

$V:$ Vidor space
$d V$: Lebesgue's measure on V.
Q : A quadratic form on V_{j} $Q(v)=\langle L V, V\rangle$ where $L: V \rightarrow V^{*}$ is linear Commenter $I=\int_{\nabla} d v e^{\frac{d}{Q+P} P}$ $\quad=\sum_{m=0}^{\infty} \frac{1}{m!} \int_{V} P^{m} e^{Q / 2}$

$\left.\sim \sum_{m=0}^{\infty} \frac{1}{m!} P^{m}\left(\partial_{\varphi}\right) l^{-\frac{1}{2} Q^{-1}(v)}\right|_{\psi=0}$
$=\left.\sum_{m, n=0}^{\infty} \frac{(-1)^{n}}{2^{n} m!n!} P^{m}(\partial)\left(Q^{-1}\right)^{n}\right|_{V=0}$

The Fourier Transform:
$(f: V \rightarrow \mathbb{C}) \Longrightarrow(\tilde{F}: V \rightarrow C)$
via $\tilde{f}(\varphi)=\int_{V} F(v) e^{-i\langle\varphi, v\rangle} d v$.
Simple facts:

1. $\tilde{F}(0)=\int_{\nabla} f(v) d v$.
2. $\frac{\partial}{\partial V_{i}} \widetilde{V^{\prime}} \sim \widetilde{V^{\prime}}$.
3. $\left(\overline{\left.e^{Q / 2}\right)} \sim l^{-Q-1 / 2}\right.$ where $Q^{-1}(\varphi):=\left\langle\varphi, L^{-1} \varphi\right\rangle$
(that's the heat of the Fourier Inversion Formally).

Differatiation and Pairings:

In our case,

$* Q$ is d, so Q^{-1} is an integral operator.
$\star P$ is $\frac{2}{3} A \wedge A^{\wedge} A$
 \& when the dust settles, we get $Z(K)$!

$$
\begin{aligned}
& \text { So } \int_{V} H(v) e^{\frac{1}{2} Q+\rho} d v \\
& \left.v H(\partial) e^{\rho(\partial)} e^{-Q^{-1}(\varphi) / 2}\right|_{\varphi=0}
\end{aligned}
$$

"God created the knots, all else in topology is the work of man."

Leopold Kronecker (modified)

This handout is at http://www.math.toronto.edu/~drorbn/Talks/Oporto-0407

From Stonehenge to Witten - Some Further Details
Oporto Meeting on Geometry, Topology and Physics, July 2004
Dror Bar-Natan, University of Toronto

We the generating function of all stellar coincidences:
$Z(K):=\lim _{N \rightarrow \infty} \sum_{3 \text {-valent } D} \frac{1}{2^{c} c!\binom{N}{e}}\langle D, K\rangle_{\text {out }} D \cdot\left(\begin{array}{c}\text { framing- } \\ \text { dependent } \\ \text { counter-term }\end{array}\right) \in \mathcal{A}(\circlearrowleft)$

N	$:=$ \# of stars	$\mathcal{A}(\circlearrowleft)$
c	$:=$ \# of chopsticks	$:=$ Span
e	$:=\#$ of edges of D	

$\langle D, K\rangle_{\text {而 }}:=\binom{$ The signed Stonehenge }{ pairing of D and $K}:$

When deforming, catastrophes occur when:
A plane moves over an An intersection line cuts The Gauss curve slides intersection point through the knot over a star Solution: Impose IHX, Solution: Impose STU,

$$
I=H-X \mathbb{X}=\downarrow-X
$$

Solution: Multiply by a framing-dependent counter-term.

Theorem. Modulo Relations, $Z(K)$ is a knot invariant!

$$
\int_{\mathfrak{g}-\text { connections }}^{\mathcal{D} A \text { bol }_{K}(A) \exp }\left[\frac{i k}{4 \pi} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)\right] \rightarrow \sum_{\substack{D: \text { Feynman } \\ \text { diagram }}} W_{\mathfrak{g}}(D) \mathcal{E} \mathcal{E}(D) \longrightarrow \sum_{\substack{D: \text { Feynman } \\ \text { diagram }}} D \mathcal{E} \mathcal{E}(D)
$$

Definition. $\quad V$ is finite type (Vassiliev, Goussarov) if it vanishes on sufficiently large alternations as on the right

Theorem. All knot polynomials (Conway, Jones, etc.) are of finite type.

Conjecture. (Taylor's theorem) Finite type invariants separate knots.
Theorem. $\quad Z(K)$ is a universal finite type invariant! (sketch: to dance in many parties, you need many feet).

Related to Lie algebras

More precisely, let $\mathfrak{g}=\left\langle X_{a}\right\rangle$ be a Lie algebra with an orthonormal basis, and let $R=\left\langle v_{\alpha}\right\rangle$ be a representation. Set

$$
f_{a b c}:=\langle[a, b], c\rangle \quad X_{a} v_{\beta}=\sum_{\beta} r_{a \gamma}^{\beta} v_{\gamma}
$$

and then

$$
W_{\mathfrak{g}, R}: \underbrace{\gamma}_{\alpha} \underbrace{\beta}_{a} \sum_{a b c \alpha \beta \gamma} f_{a b c} r_{a \gamma}^{\beta} r_{b \alpha}^{\gamma} r_{c \beta}^{\alpha}
$$

Planar algebra and the Yang-Baxter equation
$W_{\mathfrak{g}, R} \circ Z \quad$ is often interesting:

Parenthesized tangles, the pentagon and hexagon

Reshetikhin

Kauffman's bracket and the Jones polynomial

$$
\left\langle O^{k}\right\rangle=\left(a+9^{-1}\right)^{k}
$$

$$
\hat{J}(L)=(-1)^{n-} q^{n+2 n-}\langle L\rangle
$$

$$
\left(n_{+}, n_{-}\right) \text {count }\left(x, \lambda^{x}\right)
$$

Claim $\hat{J}\left(x^{\prime}\right)=\hat{J}()()$

Indeed,

"God created the knots, all else in topology is the work of man."
This handout is at http://www.math.toronto.edu/~drorbn/Talks/Oporto-0407
More at http://www.math.toronto.edu/~drorbn/Talks/Oporto-0407/

Knotted Trivalent Graphs, Tetrahedra and Associators

HUJI Topology and Geometry Seminar, November 16, 2000

Dror Bar-Natan

Goal: Z: $\{$ knots $\}->$ \{chord diagrams $\} / 4 \mathrm{~T}$ so that

Extend to Knotted Trivalent Graphs (KTG's):

Need a new relation:

Easy, powerful moves:

Using moves, KTG is generated by ribbon twists and the tetrahedron \qquad :

Claim. With $\Phi:=Z(\Delta)$, the above relation becomes equivalent to the Drinfel'd's pentagon of the theory of quasi Hopf algebras.

Proof.

$\longrightarrow \rightarrow \operatorname{lin}_{\hat{i}}^{\hat{i}}:=\Phi \in \mathcal{A}\left(\uparrow_{3}\right)$

Further directions:

1. Relations with perturbative Chern-Simons theory.
2. Relations with the theory of 6 j symbols
3. Relations with the Turaev-Viro invariants.
4. Can this be used to prove the Witten asymptotics conjecture?
5. Does this extend/improve Drinfel'd's theory of associators?

This handout is at http://www.ma.huji.ac.il/~drorbn/Talks/HUJI-001116

Homomorphic expansions for a filtered algebraic structure \mathcal{K} : ${ }_{\mathrm{ops}} \triangleright \mathcal{K}=\mathcal{K}_{0} \supset \mathcal{K}_{1} \supset \mathcal{K}_{2} \supset \mathcal{K}_{3} \supset \ldots$ $\Downarrow \quad \downarrow_{Z}$
$\operatorname{ops}^{\odot} \operatorname{gr} \mathcal{K}:=\mathcal{K}_{0} / \mathcal{K}_{1} \oplus \mathcal{K}_{1} / \mathcal{K}_{2} \oplus \mathcal{K}_{2} / \mathcal{K}_{3} \oplus \mathcal{K}_{3} / \mathcal{K}_{4} \oplus \ldots$ An expansion is a filtration respecting $Z: \mathcal{K} \rightarrow \operatorname{gr} \mathcal{K}$ that "covers" the identity on $\operatorname{gr} \mathcal{K}$. A homomorphic expansion is an expansion that respects all relevant "extra" operations.
Filtered algebraic structures are cheap and plenty. In any \mathcal{K}, allow formal linear combinations, let \mathcal{K}_{1} be the ideal generated by differences (the "augmentation ideal"), and let $\mathcal{K}_{m}:=\left\langle\left(\mathcal{K}_{1}\right)^{m}\right\rangle$ (using all available "products").

- Has kinds, objects, operations, and maybe constants.
- Perhaps subject to some axioms.
- We always allow formal linear combinations.

Example: Pure Braids. $P B_{n}$ is generated by $x_{i j}$, "strand i
goes around strand j once", modulo "Reidemeister moves". $A_{n}:=\operatorname{gr} P B_{n}$ is generated by $t_{i j}:=x_{i j}-1$, modulo the $4 T$ relations $\left[t_{i j}, t_{i k}+t_{j k}\right]=0$ (and some lesser ones too). Much happens in A_{n}, including the Drinfel'd theory of associators. Our case(s).

$$
\mathcal{K} \underset{\begin{array}{c}
\text { solving finitely many } \\
\text { equations in finitely } \\
\text { many unknowns }
\end{array}}{\mathcal{Z}} \underset{\text { gr high algebra }}{\mathcal{K}}: \overline{\overline{\mathcal{K}}} \xrightarrow[\begin{array}{l}
\text { low algebra: pic- } \\
\text { tures repres resent } \\
\text { formulas }
\end{array}]{\stackrel{\text { given a "Lie" }}{\text { algebra } \mathfrak{g}}} \text { " } \mathcal{U}(\mathfrak{g}) \text { " }
$$

\mathcal{K} is knot theory or topology; gr \mathcal{K} is finite combinatorics: bounded-complexity diagrams modulo simple relations.
[1] http://qlink.queensu.ca/~41b $11 /$ interesting.html
29/5/10, 8:42am
Also see http://www.math.toronto.edu/~drorbn/papers/WKO/
A Ribbon 2-Knot is a surface S embedded in \mathbb{R}^{4} that bounds an immersed handlebody B, with only "ribbon singularities"; a ribbon singularity is a disk D of trasverse double points, whose preimages in B are a disk D_{1} in the interior of B and a disk D_{2} with $D_{2} \cap \partial B=\partial D_{2}$, modulo isotopies of S alone.

The w-relations include R234, VR1234, M, Overcrossings Commute (OC) but not UC, $W^{2}=1$, and funny interactions between the wen and the cap and over- and under-crossings:

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-0908/

Convolutions on Lie Groups and Lie Algebras and Ribbon 2-Knots, Page 2

Knot-Theoretic statement. There exists a homomorphic ex- From wTT to $\mathcal{A}^{w} . \mathrm{gr}_{m}$ wTT $:=\{m-\mathrm{cubes}\} /\{(m+1)-\mathrm{cubes}\}$: pansion Z for trivalent w-tangles. In particular, Z should respect $R 4$ and intertwine annulus and disk unzips:
(2)

(3)

Diagrammatic statement. Let $R=\exp \hat{\uparrow} \hat{\wedge} \in \mathcal{A}^{w}(\uparrow \uparrow)$. There exist $\omega \in \mathcal{A}^{w}(\uparrow)$ and $V \in \mathcal{A}^{w}(\uparrow \uparrow)$ so that
(1)

Algebraic statement. With $I \mathfrak{g}:=\mathfrak{g}^{*} \rtimes \mathfrak{g}$, with $c: \hat{\mathcal{U}}(I \mathfrak{g}) \rightarrow$ $\hat{\mathscr{H}}(I \mathfrak{g}) / \hat{\mathcal{U}}(\mathfrak{g})=\hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ the obvious projection, with S the antipode of $\hat{\mathcal{U}}(I \mathfrak{g})$, with W the automorphism of $\hat{\mathcal{U}}(I \mathfrak{g})$ induced by flipping the sign of \mathfrak{g}^{*}, with $r \in \mathfrak{g}^{*} \otimes \mathfrak{g}$ the identity element and with $R=e^{r} \in \hat{\mathcal{U}}(I \mathfrak{g}) \otimes \hat{\mathcal{U}}(\mathfrak{g})$ there exist $\omega \in \hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ and $V \in \hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2}$ so that
(1) $V(\Delta \otimes 1)(R)=R^{13} R^{23} V$ in $\hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2} \otimes \hat{\mathcal{U}}(\mathfrak{g})$
(2) $V \cdot S W V=1$
(3) $(c \otimes c)(V \Delta(\omega))=\omega \otimes \omega$

Unitary statement. There exists $\omega \in \operatorname{Fun}(\mathfrak{g})^{G}$ and an (infinite order) tangential differential operator V defined on $\operatorname{Fun}\left(\mathfrak{g}_{x} \times\right.$ \mathfrak{g}_{y}) so that
(1) $V \widehat{e^{x+y}}=\widehat{e^{x}} \widehat{e^{y}} V$ (allowing $\hat{\mathcal{U}}(\mathfrak{g})$-valued functions)
(2) $V V^{*}=I \quad$ (3) $V \omega_{x+y}=\omega_{x} \omega_{y}$

Group-Algebra statement. There exists $\omega^{2} \in \operatorname{Fun}(\mathfrak{g})^{G}$ so that for every $\phi, \psi \in \operatorname{Fun}(\mathfrak{g})^{G}$ (with small support), the following holds in $\hat{\mathcal{U}}(\mathfrak{g})$:
$\left(\operatorname{shhh}, \omega^{2}=j^{1 / 2}\right)$

$$
\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) \omega_{x+y}^{2} e^{x+y}=\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) \omega_{x}^{2} \omega_{y}^{2} e^{x} e^{y}
$$

Convolutions statement (Kashiwara-Vergne). Convolutions of invariant functions on a Lie group agree with convolutions of invariant functions on its Lie algebra. More accurately, let G be a finite dimensional Lie group and let \mathfrak{g} be its Lie algebra, let $j: \mathfrak{g} \rightarrow \mathbb{R}$ be the Jacobian of the exponential map $\exp : \mathfrak{g} \rightarrow G$, and let $\Phi: \operatorname{Fun}(G) \rightarrow \operatorname{Fun}(\mathfrak{g})$ be given
by $\Phi(f)(x):=j^{1 / 2}(x) f(\exp x)$. Then if $f, g \in \operatorname{Fun}(G)$ are Ad-invariant and supported near the identity, then

$$
\Phi(f) \star \Phi(g)=\Phi(f \star g) .
$$

w-Jacobi diagrams and $\mathcal{A} . \mathcal{A}^{w}(Y \uparrow) \cong \mathcal{A}^{w}(\uparrow \uparrow \uparrow)$ is

Diagrammatic to Algebraic. With $\left(x_{i}\right)$ and $\left(\varphi^{j}\right)$ dual bases of \mathfrak{g} and \mathfrak{g}^{*} and with $\left[x_{i}, x_{j}\right]=\sum b_{i j}^{k} x_{k}$, we have $\mathcal{A}^{w} \rightarrow \mathcal{U}$ via

Unitary \Longleftrightarrow Algebraic. The key is to interpret $\hat{\mathcal{U}}(I \mathfrak{g})$ as tangential differential operators on $\operatorname{Fun}(\mathfrak{g})$:

- $\varphi \in \mathfrak{g}^{*}$ becomes a multiplication operator.
- $x \in \mathfrak{g}$ becomes a tangential derivation, in the direction of the action of ad $x:(x \varphi)(y):=\varphi([x, y])$.
- $c: \hat{\mathcal{U}}(I \mathfrak{g}) \rightarrow \hat{\mathcal{U}}(I \mathfrak{g}) / \hat{\mathcal{U}}(\mathfrak{g})=\hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ is "the constant term". Unitary \Longrightarrow Group-Algebra. $\iint \omega_{x+y}^{2} e^{x+y} \phi(x) \psi(y)$
$=\left\langle\omega_{x+y}, \omega_{x+y} e^{x+y} \phi(x) \psi(y)\right\rangle=\left\langle V \omega_{x+y}, V e^{x+y} \phi(x) \psi(y) \omega_{x+y}\right\rangle$ $=\left\langle\omega_{x} \omega_{y}, e^{x} e^{y} V \phi(x) \psi(y) \omega_{x+y}\right\rangle=\left\langle\omega_{x} \omega_{y}, e^{x} e^{y} \phi(x) \psi(y) \omega_{x} \omega_{y}\right\rangle$
$=\iint \omega_{x}^{2} \omega_{y}^{2} e^{x} e^{y} \phi(x) \psi(y)$.
Convolutions and Group Algebras (ignoring all Jacobians). If G is finite, A is an algebra, $\tau: G \rightarrow A$ is multiplicative then $(\operatorname{Fun}(G), \star) \cong(A, \cdot)$ via $L: f \mapsto \sum f(a) \tau(a)$. For Lie (G, \mathfrak{g}),

with $L_{0} \psi=\int \psi(x) e^{x} d x \in \hat{\mathcal{S}}(\mathfrak{g})$ and $L_{1} \Phi^{-1} \psi=\int \psi(x) e^{x} \in$ $\hat{\mathcal{U}}(\mathfrak{g})$. Given $\psi_{i} \in \operatorname{Fun}(\mathfrak{g})$ compare $\Phi^{-1}\left(\psi_{1}\right) \star \Phi^{-1}\left(\psi_{2}\right)$ and $\Phi^{-1}\left(\psi_{1} \star \psi_{2}\right)$ in $\hat{\mathcal{U}}(\mathfrak{g}): \quad$ (shhh, $L_{0 / 1}$ are "Laplace transforms") \star in $G: \iint \psi_{1}(x) \psi_{2}(y) e^{x} e^{y}$ \star in $\mathfrak{g}: \iint \psi_{1}(x) \psi_{2}(y) e^{x+y}$
We skipped... • The Alexander • v-Knots, quantum groups and polynomial and Milnor numbers. Etingof-Kazhdan.
- u-Knots, Alekseev-Torossian, - BF theory and the successful and Drinfel'd associators. religion of path integrals.
- The simplest problem hyperbolic geometry solves.
w-Knots from Z to A Dror Bar-Natan, Luminy, April 2010 http://www.math.toronto.edu/~drorbn/Talks/Luminy-1004/
Abstract I will define w-knots, a class of knots wider than ordinary knots but weaker than virtual knots, and show that it is quite easy to construct a universal finite invariant Z of w-knots. In order to study Z we will introduce the "Euler Operator" and the "Infinitesimal Alexander Module", at the end finding a simple determinant formula for Z. With no doubt that formula computes the Alexander polynomial A, except I don't have a proof yet.

\rightarrow

A Ribbon 2-Knot is a surface S embedded in \mathbb{R}^{4} that bounds an immersed handlebody B, with only "ribbon singularities"; a ribbon singularity is a disk D of trasverse double points, whose preimages in B are a disk D_{1} in the interior of B and a disk D_{2} with $D_{2} \cap \partial B=\partial D_{2}$, modulo isotopies of S alone.

$$
w K=C A\langle>\rangle\rangle / \mathrm{R} 23, \mathrm{OC}
$$

Y

$$
=P A\langle X
$$

R3

VR3

D

The Finite Type Story. With $\mathscr{\alpha}:=\times-\times$
$\oplus \mathcal{V}_{m} / \mathcal{V}_{m-1}$ set $\mathcal{V}_{m}:=\left\{V: w K \rightarrow \mathbb{Q}: V\left(\propto_{<}>m\right)=0\right\}$.
$\mathcal{R}=\left\langle\frac{\mathrm{TC}}{4 T}\right\rangle \rightarrow \mathcal{D}=\langle\underset{\underbrace{\text { arrow diagrams }}_{\text {arrows }}}{\sim}\rangle \rightarrow \bigoplus\left\langle\chi^{m}\right\rangle /\left\langle 凶^{m+1}\right\rangle \rightarrow 0$

I take pride in this box
$\overrightarrow{S T U}_{3}=\mathrm{TC}: 0=$
Corollaries. (1) Related to Lie algebras! (2) Only wheels and
 Proof. m $\overrightarrow{S T U}, \overrightarrow{A S}$,

Habiro - can you do better? The Alexander Theorem.

Conjecture. For u-knots, A is the Alexander polynomial. Theorem. With $w: x^{k} \mapsto w_{k}=$ (the k-wheel),

$$
Z=N \exp _{\mathcal{A}^{w}}\left(-w\left(\log _{\mathbb{Q} \llbracket x \rrbracket} A\left(e^{x}\right)\right)\right) \quad \begin{array}{r}
\bmod w_{k} w_{l}=w_{k+l}, \\
Z=N \cdot A^{-1}\left(e^{x}\right)
\end{array}
$$

Proof Sketch. Let E be the Euler operator, "multiply anything by its degree", $f \mapsto x f^{\prime}$ in $\mathbb{Q} \llbracket x \rrbracket$, so $E e^{x}=x e^{x}$ and
We need to show that $Z^{-1} E Z=N^{\prime}-\operatorname{tr}\left((I-B)^{-1} T S e^{-x S}\right) w_{1}$, with $B=T\left(e^{-x S}-I\right)$. Note that $a e^{b}-e^{b} a=\left(1-e^{\text {ad } b}\right)(a) e^{b}$ implies

we have $E Z-N^{\prime \prime}=\operatorname{tr}(S \Lambda), \Lambda=-B Y-T e^{-x S} w_{1}$, and $Y=$
$B Y+T e^{-x S} w_{1}$. The theorem follows.
So ${ }^{-1}$.

So What? - Habiro-Shima did this already, but not quite. (HS: Finite
Type Invariants of Ribbon 2-Knots, II, Top. and its Appl. 111 (2001).)

- New (?) formula for Alexander, new (?) "Infinitesimal Alexander Module". Related to Lescop's arXiv:1001.4474?
- An "ultimate Alexander invariant": local, composes well, behaves under cabling. Ought to also generalize the multi-variable Alexander polynomial and the theory of Milnor linking numbers.
- Tip of the Alekseev-Torossian-Kashiwara-Vergne iceberg (AT: The Kashiwara-Vergne conjecture and Drinfeld's associators, arXiv:0802.4300).
- Tip of the v-knots iceberg. May lead to other polynomial-time polynomial invariants. "A polynomial's worth a thousand exponentials". Also see http://www.math.toronto.edu/~drorbn/papers/WKO/

18 Conjectures
Dror Bar-Natan, Chicago, September 2010
http://www.math.toronto.edu/ \sim drorbn/Talks/Chicago-1009/

Abstract. I will state $18=3 \times 3 \times 2$ "fundamental" conjectures on finite type invariants of various classes of virtual knots. This done, I will state a few further conjectures about these conjectures and ask a few questions about how these 18 conjectures may or may not interact.

Following "Some Dimensions of Spaces of Finite Type Invariants of Virtual Knots", by B-N, Halacheva, Leung, and Roukema, http://www.math.

A J-K Flip Flop

Infineon HYS64T64020HDL-3.7-A 512MB RAM

Definitions

$\mathcal{I}=I\langle Q=\backslash\langle-\rangle$

$$
\mathcal{V}_{n}=\left(v \mathcal{K} / \mathcal{I}^{n+1}\right)^{*}
$$ is one thing we measure...

$\mathcal{W}_{n}=\left(\mathcal{D}_{n} / \mathcal{R}_{n}^{D}\right)^{*}=\left(\mathcal{A}_{n}\right)^{*}$ is the other thing we measure...
The Polyak Technique

$$
v \mathcal{K}=\mathrm{CA}_{\mathbb{Q}}\langle\mathcal{Q}\rangle / \mathcal{R}^{\circ}=\{8 T, \text { etc. }\}
$$

fails in

8T:

This is a computable space!
 $\mathcal{R}_{n}^{D} \longleftrightarrow\left\{\begin{array}{c}\text { degree } n \\ \text { "bottoms" of } \\ \text { relations in } \mathcal{R}^{\circ}\end{array}\right\} \longrightarrow \mathcal{D}_{n} \xrightarrow{\tau} \mathcal{I}^{n} / \mathcal{I}^{n+1}$ Warning! ()$\left.\left.\left.^{\mathrm{R} 2 \mathrm{~b}}()^{1} \stackrel{\mathrm{R} 2 \mathrm{c}}{=}\right)^{7}\right) \neq()^{1} \stackrel{\mathrm{R} 2 \mathrm{~b}}{=}\right)(\stackrel{\mathrm{R} 2 \mathrm{c} \uparrow}{=})$

Theorem. For u-knots, $\operatorname{dim} \mathcal{V}_{n} / \mathcal{V}_{n-1}=\operatorname{dim} \mathcal{W}_{n}$ for all n.
Proof. This is the Kontsevich integral, or the "Fundamental Theorem of Finite Type Invariants". The known proofs use QFT-inspired differential geometry or associators and some homological computations.
Two tables. The following tables show $\operatorname{dim} \mathcal{V}_{n} / \mathcal{V}_{n-1}$ and $\operatorname{dim} \mathcal{W}_{n}$ for $n=$ $1, \ldots, 5$ for 18 classes of v-knots:

relations \backslash skeleton		round (\bigcirc)	long (\longrightarrow)	flat $\left({ }^{\pi}=\lambda^{7}\right)$
standard	mod R1	$0,0,1,4,17 \bullet$	$0,2,7,42,246 \bullet \bullet$	$0,0,1,6,34 \bullet$
R2b R2c R3b	no R1	$1,1,2,7,29$	$2,5,15,67,365$	$1,1,2,8,42$
braid-like	mod R1	$0,0,1,4,17 \bullet$	$0,2,7,42,246$	$0,0,1,6,34 \bullet$
R2b R3b	no R1	$1,2,5,19,77$	$2,7,27,139,813$	$1,2,6,24,120$
R2 only	mod R1	$0,0,4,44,648$	$0,2,28,420,7808$	$0,0,2,18,174$
R2b R2c	no R1	$1,3,16,160,2248$	$2,10,96,1332,23880$	$1,2,9,63,570$

18 Conjectures. These 18 coincidences persist.

Comments. $0,0,1,4,17$ and $0,2,7,42,246$. These are the "standard" virtual knots.
$2,7,27,139,813$. These best match Lie bi-algebra. Leung computed the bi-algebra dimensions to be \geq $2,7,27,128$.
-•• We only half-understand these equalities.

$1,2,6,24,120$. Yes, we noticed. Karene Chu is proving all about this, including the classification of flat knots.
$1,1,2,8,42,258,1824,14664, \ldots$, which is probably http://www. research.att.com/~njas/sequences/A013999.
What about w? See other side. What about flat and round? What about v-braids? I don't know. Likely fails!

Bang. Recall the surjection $\bar{\tau}: \mathcal{A}_{n}=\mathcal{D}_{n} / \mathcal{R}_{n}^{D} \rightarrow \mathcal{I}^{n} / \mathcal{I}^{n+1}$. A filtered $\operatorname{map} Z: v \mathcal{K} \rightarrow \mathcal{A}=\bigoplus \mathcal{A}_{n}$ such that $(\operatorname{gr} Z) \circ \bar{\tau}=I$ is called a universal finite type invariant, or an "expansion". Theorem. Such Z exist iff $\bar{\tau}: \mathcal{D}_{n} / \mathcal{R}_{n}^{D} \rightarrow \mathcal{I}^{n} / \mathcal{I}^{n+1}$ is an isomorphism for every class and every n, and iff the 18 conjectures hold true.
The Big Bang. Can you find a "homomorphic expansion" Z - an expansion that is also a morphism of circuit algebras? Perhaps one that would also intertwine other operations, such as strand doubling? Or one that would extend to v-knotted trivalent graphs?

- Using generators/relations, finding Z is an exercise in solving equations in graded spaces.
- In the u case, these are the Drinfel'd pentagon and hexagon equations.
- In the w case, these are the Kashiwara-Vergne-AlekseevTorossian equations. Composed with $\mathcal{T}_{\mathfrak{g}}: \mathcal{A} \rightarrow \mathcal{U}$, you get that the convolution algebra of invariant functions on a Lie group is isomorphic to the convolution algebra of invariant functions on its Lie algebra.
- In the v case there are strong indications that you'd get the equations defining a quantized universal enveloping algebra and the Etingof-Kazhdan theory of quantization of Lie bialgebras. That's why I'm here!

[^0]www.katlas.org The kniot Mtlat

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Chicago-1009/

After $A \longmapsto A / \sqrt{k}$, and setting $K=\frac{1}{\sqrt{k}}$:
$Z(\gamma)=\int D A t r_{R} \operatorname{holr}(A) e^{\frac{i}{4 \pi} \underbrace{\operatorname{tr}^{3}\left(A^{\wedge} d A+\frac{2 k}{3} A \cap A A\right)}_{M_{B^{3}}}}$ $A \in \Omega^{\prime}\left(\mathbb{K}^{3}, g\right)$
Whee $\operatorname{tr}_{R} \operatorname{col}_{\gamma}(A)=\operatorname{tr}_{R}\left(1+\hbar \int d s A(\dot{\gamma}(s))\right.$
$\begin{gathered}\text { Trouble "d is } \\ \text { not invethle! }\end{gathered}+\hbar^{2} \int_{S_{1}<S_{2}} A\left(\dot{\gamma}\left(s_{1}\right)\right) A\left(\dot{\gamma}\left(s_{2}\right)\right)+\ldots$.
Gauge Invariance: $C S(A)$ is invariant under
$A \mapsto A+\delta A, \quad \delta A=-(d C+\hbar[A, C]), c \in \Omega^{0}((R, g)$
Back to the drawing beard....
Suppose $\mathcal{L}(x)$ on \mathbb{R}^{n} is invariant under a k-dimensional Group G w/ Lie algebra $g=\left\langle g_{a}\right\rangle$, and suppose $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is such the $f F=0$ is a suction of the G-action:
$G \rightarrow \mathbb{R}^{n}{ }_{\rightarrow} \mathbb{H}_{3}^{k}$

Then

$\int_{\mathbb{R}^{1}} d x e^{i \alpha} \sim \int_{\mathbb{R}^{1}} d x e^{i \alpha} f(F(x)) \cdot \operatorname{det}\left(\frac{\partial F^{a}}{\partial g_{b}}\right)(x)$

$\operatorname{det}\left(J_{0}+\hbar J_{1}(x)\right)=\operatorname{det}\left(J_{0}\right) \sum_{m} \hbar^{m} \operatorname{Tr}\left(\Lambda^{m} J_{0}^{-1}\right) \cdot\left(\Lambda^{m} J_{1}(x)\right)$
$\begin{aligned} & \text { Berezina } \\ & \text { Fermionic } \\ & \text { Anti-commating }\end{aligned}$
So

$$
\begin{aligned}
& \alpha_{\text {tot }_{0}}=\underbrace{\alpha(x)}_{\text {the original }}+\underbrace{F(x) \cdot \phi}_{\substack{\text { paige- } \\
\text { Fixing }}}+\underbrace{\overline{c_{a}}\left(\frac{\partial F^{a}}{\partial g_{b}} c^{b}\right.}_{\text {"ghosts" }}
\end{aligned}
$$

"God created the knots, all else in topology is the work of mortals." Leopold Kronecker (modified)

In chern-simons, w/ $F(A):=d^{*} A=\partial_{i} A^{i}$, get $\alpha_{\text {tot }}=\frac{k}{4 \pi} \int_{\mathbb{R}^{3}} t r\left(A^{1} \left\lvert\, A+\frac{2}{3} A^{\wedge} A^{\wedge} A+\varnothing \partial_{i} A^{i}\right.\right.$
So wi have

$$
+\bar{C} \partial_{i}\left(\partial^{i}+a d A^{i}\right) C
$$

* A bosonic quadratic term involving $\binom{A}{Q}$.
* A fermionic quadratic term involving \bar{C}, C.
* A cubic interaction of $3 A^{\prime}$ s.
* A cubic Ā̃c vortex.
* Funny A and γ "holonomy" vertices along γ.

After mach crunching:
$Z(\gamma)=\sum_{m=0}^{\infty} \hbar^{m}$
Feynman
dings D

where E(D) is constructed as follows:

$$
\begin{aligned}
& \left.\int_{c}^{b}\right|_{x a} ^{j} \longrightarrow \frac{i}{2 \pi} \int_{\mathbb{R} 3}^{4 \pi|x-y|} t a b c \epsilon^{i j k} \quad \int_{s^{\prime}} d s R_{a \beta}^{\alpha} \dot{\gamma}^{i}(s)
\end{aligned}
$$

By a bit of a miracle, this boils down to. a configuration space intogrel, which in itself, can be reduced to a pre-image count.
... But I run out of steam for tonight...

Banks like knots.

Definition. A knot invariant is any function whose domain is \{knots\}. Really, we mean a Computable Function whose target space is understandable; e.g.

Example. The conway polynomial is given by

$$
c\left(x^{\prime}\right)-c\left(x^{\prime}\right)=z c(x 0)
$$

and

$$
R(\underbrace{O O O}_{k})= \begin{cases}1 & k=1 \\ 0 & k>1\end{cases}
$$

Exircise. Pick your favourite bask and compute the Conway polynomial of its logo.
Definition. Any
 using $V(X)=V\left(\lambda_{N}\right)-V\left(\lambda^{\lambda}\right)$. (Think "deferetiation") Definition. V is of type m if always

$$
V\left(\frac{x>x \ldots x}{m+1}\right)=0 \quad \text { (think "polynomial") }
$$

Conjecture. Finite type invariants separate knots. Theorem. If $C(k)=\sum_{m=0}^{\infty} V_{m}(k) z^{m}$ then V_{m} is of type m.
proof. $C\left(X^{\lambda}\right)=C(N)-C\left(\aleph^{9}\right)=z C(\eta \Gamma) \square$
Let V be of type m; then $V^{(m)}$ is constant:

$$
V(\underbrace{X \ldots X_{2}}_{m}, Y)=V(\underbrace{X_{2}, X^{\prime}})
$$

So $W_{V}:=V^{(m)}=\left.V\right|_{\substack{m-s i n g u l a r \\ 1<n g t s}}$ is really a function on m-chord diagrams: $W_{V}:\{\rightarrow\} \rightarrow A$ Claim. Wv satisfies the $4 T$ relation:

Proof. $V\left(\frac{\frac{1}{2}-}{x \cdot x}\right)=V\left(\frac{1}{\left.-\frac{1}{x}-\right)_{m-2}}\right)$

Exercise for Lecture 2. Use $\int_{R} e^{-x^{2} / 2}=\sqrt{2 \pi}$, Fubini's theorem, and polar coordinates to compute $\int_{\mathbb{R}^{n}} e^{-11 x\left(11^{2} / 2\right.} d^{n} x$ in two different ways and hence to deduce the volume of S^{n-1}, the $(n-1)$-dimensional sphere.
Exercise. I. Determine the "Weight system" $W_{V_{m}}$ of the m-th coefficient of the conway polynomial and verify that is satisfies $4 T$.
2. Learn somewhere about the Jones polynomie, and do the same for its coefficients.
Theorem. (The Fundamental Theorem)
Every "Weight system", ie. Every linear
functional W on $A:=\left\{\begin{array}{c}\text { char } \\ \text { dangrans }\end{array}\right\} / 4 T$ is the with derivative of a type m invariant: $\forall W \exists v$ sit. $W=W_{v}$

m	0	1	2	3	4	5	6	7	8	9	10	11

proof

proposition. The fundamental than holds ff there exists an expansion:

m-singular, then
$Z(k)=D_{k}+$
hight
proof.

Also see my old paper, "On the Vassilicar knot invariants" (google will find...)
$=\ll$ Knot Theory
Loading KnotTheory version of August 22, 2010, 13:36:57.55. Read more at http://katlas.org/wiki/KnotTheory.

The big picture, " K " Case.

very low algebra.

More precisely, let $\mathfrak{g}=\left\langle X_{a}\right\rangle$ be a Lie algebra with an orthonormal basis, and let $R=\left\langle v_{\alpha}\right\rangle$ be a representation. Set

$$
f_{a b c}:=\langle[a, b], c\rangle \quad X_{a} v_{\beta}=\sum_{\nearrow \gamma} r_{a \gamma}^{\beta} v_{\gamma}
$$

and then

$$
W_{\mathrm{g}, R}: \underbrace{\gamma}_{\alpha} a_{c}^{\beta} \longrightarrow \sum_{a b c \alpha \beta \gamma} f_{a b c} r_{a \gamma}^{\beta} r_{b \alpha}^{\gamma} r_{c \beta}^{\alpha}
$$

Excrsice. Find a fast method to find $W_{g, R}(D)$ when $g=g l_{n}, R=R^{n}$.
Is it related to the Conway polynomial? Universal Representation Theory.
Inspired by $\rho([x, y])=\rho(x) \rho(y)-\rho(y) \rho(x)$, set $U(g)=\langle$ words in $g\rangle /[x, y]=x y-y x$

* Eucry up of g extends to $u(g)$.
* $\exists \Delta: U(g) \rightarrow U(g)^{82}$ by "word splitting", as must be for $R, \otimes R_{2}$. Exercise. With $y=\langle x, y\rangle /[x, y]=x$, determine $U(g)$. Guess a generalization. Low algebra. $A(\eta \eta) \rightarrow u(g)^{\otimes 2}$ via

\& likewise, $A\left(I_{n}\right) \rightarrow U(g)^{\infty n} \Rightarrow$ $A\left(\hat{\imath}_{n}\right)$ is "universe universal rap. theory"?

Lecture 5 Extras

$$
\langle D, K\rangle_{\vec{\pi}}:=\binom{\text { The signed Stonehenge }}{\text { pairing of } D \text { and } K}:
$$

Thus we consider the generating function of all stellar coincidences:

$$
Z(K):=\lim _{N \rightarrow \infty} \sum_{3 \text {-valent }} \frac{1}{D^{c} c!\binom{N}{e}}\langle D, K\rangle_{\text {er }} D \cdot\left(\begin{array}{c}
\text { framing- } \\
\text { dependent } \\
\text { counter-term }
\end{array}\right) \in \mathcal{A}(\circlearrowleft)
$$

Theorem. Modulo Relations, $Z(K)$ is a knot invariant!
When deforming, catastrophes occur when:
A plane moves over an intersection point -
Solution: Impose IHX,
\qquad

$$
=
$$

\qquad

An intersection line cuts through the knot -
Solution: Impose STU,

The Gauss curve slides over a star -
Solution: Multiply by

$$
\begin{aligned}
& \text { So } \int_{V} H(v) e^{ \pm 0+\rho} d v \\
& N H(\partial) e^{P(\partial)} e^{-Q^{-1}(\varphi) / 2 / \varphi=0} \\
& \text { is }
\end{aligned}
$$

It all is perturbative Chern-Simons-Witten theory:

$$
\begin{aligned}
& \int_{\mathfrak{g} \text {-connections }}^{\mathcal{D} A \text { col }_{K}(A) \exp \left[\frac{i k}{4 \pi} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)\right]} \\
& \rightarrow \sum_{\begin{array}{c}
D: \text { Feynman } \\
\text { diagram }
\end{array}} W_{\mathfrak{g}}(D) \mathcal{E} \mathcal{E}(D) \rightarrow \sum_{\begin{array}{c}
\text { D: Feynman } \\
\text { diagram }
\end{array}} D \notin \mathcal{E}(D)
\end{aligned}
$$

Definition. Any

Definition. V is of type m if always

$$
V\left(\frac{x^{x} x^{x} \cdots x^{2}}{m+1}\right)=0 \text { (think "polynomial") }
$$

Conjecture. Finite type invariants separate knots. Theorem. If $C(k)=\sum_{m=0}^{\infty} V_{m}(k) z^{m}$ then V_{m}
is of type m .
proof. $\left.c\left(X^{\top}\right)=c(\lambda)-c\left(\lambda^{1}\right)=z C(T) T\right)$
Proposition. The fundamental the holds ff there exists an expansion:

M-singuler, then

$$
Z(k)=D_{k}+\text { hight degrees }
$$

The big picture, " K " Case.

Low age bra. A $(\eta \eta) \rightarrow u(g)^{\otimes 2}$ via

Wilawis, $A\left(\lambda_{n}\right) \rightarrow u(g)^{2 n} \Rightarrow$ $A\left(\hat{i}_{n}\right)$ is "unversed nniuasel of tho g"?

is an expansion that intertwines all nlevent algebraic ops. If k is int tidily prosuth, finding z is High Algebra.
An Associator:
$((A B) C) D \longrightarrow(A B)(C D)$

Quantum Algebra's "root object" $(A B) C \xrightarrow{\Phi \in \mathcal{U}(\mathfrak{g})^{\otimes 3}} A(B C)$

See Also. B-N kDancso, ar Xiv: 1103.1896

[^0]: val "God created the knots, all else in topology is the work of mortals."
 Leopold Kronecker (modified)

