What is it? A cube for each knot/link projection;
Vertices: All fillings of \square with) (or with
\longleftarrow

Fast Khovanov Homology Computations
Mikhail Khovanov

Edges: All fillings of $I \times I=$

Where does it live? In $\operatorname{Kom}(\operatorname{Mat}(<\operatorname{Cob}>/\{S, T, G, N C\})) /$ homotopy Kom: Complexes Mat: Matrices Cob: Cobordisms <...>: Formal lin. comb.
$S:-=0$
$T: \infty=2$
$G: \circlearrowleft \omega=0$
$N C: 2 \Omega=\infty(\infty)$

The case of tangles:

1. A localized relation with Kauffman's bracket.
2. Easily generalizes to surfaces, virtuals, etc.
3. Better understanding of functoriality.
4. Removing G and replacing NC with 4 Tu yields a more general theory!

See also http://www.math.toronto.edu/~drorbn/Talks/GWU-050213/

Complex simplification:

The Reduction Lemma. If ϕ is an isomorphism then the complex

$$
[\bullet] \xrightarrow{\binom{\alpha}{\beta}}\left[\begin{array}{l}
\cdot \\
\bullet
\end{array}\right] \xrightarrow{\left(\begin{array}{ll}
\phi & \delta \\
\gamma & \epsilon
\end{array}\right)}\left[\begin{array}{l}
\cdot \\
\bullet
\end{array}\right] \xrightarrow{\left(\begin{array}{ll}
\mu & \nu
\end{array}\right)}[\bullet]
$$

is isomorphic to the (direct sum) complex

$$
[\bullet] \xrightarrow{\binom{0}{\beta}}\left[\cdot \cdot \cdot \bullet \xrightarrow{\left(\begin{array}{lc}
\phi & 0 \\
0 & \epsilon-\gamma \phi^{-1} \delta
\end{array}\right)}\left[\begin{array}{l}
\bullet \\
\bullet
\end{array}\right] \xrightarrow{\left(\begin{array}{ll}
0 & \nu
\end{array}\right)}[\right.
$$

