	- Has kinds, objects, operations, and maybe constants. - Perhaps subject to some axioms. - We always allow formal linear combinations. Homomorphic expansions for a filtered algebraic structure \mathcal{K} : $\begin{gathered} \underset{\mathrm{ops}}{\mathcal{K}}=\mathcal{K}_{0} \quad \supset \quad \mathcal{K}_{1} \quad \supset \quad \begin{array}{l} \mathcal{K}_{2} \\ \Downarrow \end{array} \quad \supset \quad \mathcal{K}_{3} \quad \supset \ldots \\ \downarrow_{Z} \end{gathered}$ $\mathrm{ops} \odot \operatorname{gr} \mathcal{K}:=\mathcal{K}_{0} / \mathcal{K}_{1} \oplus \mathcal{K}_{1} / \mathcal{K}_{2} \oplus \mathcal{K}_{2} / \mathcal{K}_{3} \oplus \mathcal{K}_{3} / \mathcal{K}_{4} \oplus \ldots$ An expansion is a filtration respecting $Z: \mathcal{K} \rightarrow$ gr \mathcal{K} that "covers" the identity on gr \mathcal{K}. A homomorphic expansion is an expansion that respects all relevant "extra" operations. Filtered algebraic structures are cheap and plenty. In any \mathcal{K}, allow formal linear combinations, let $\mathcal{K}_{1}=\mathcal{I}$ be the ideal generated by differences (the "augmentation ideal"), and let $\mathcal{K}_{m}:=\left\langle\left(\mathcal{K}_{1}\right)^{m}\right\rangle$ (using all available "products"). Examples. 1. The projectivization of a group is a graded associative algebra. 2. Quandle: a set Q with an op \wedge s.t. $\begin{aligned} & 1 \wedge x=1, \quad x \wedge 1=x, \quad \text { (appetizers) } \\ & (x \wedge y) \wedge z=(x \wedge z) \wedge(y \wedge z) \end{aligned}$ $\operatorname{proj} Q$ is a graded Leibniz algebra: Roughly, set $\bar{v}:=(v-1)$ (these generate $I!$), feed $1+\bar{x}, 1+\bar{y}, 1+\bar{z}$ in (main), collect the surviving terms of lowest degree: $(\bar{x} \wedge \bar{y}) \wedge \bar{z}=(\bar{x} \wedge \bar{z}) \wedge \bar{y}+\bar{x} \wedge(\bar{y} \wedge \bar{z})$ Our case(s). \mathcal{K} is knot theory or topology; $\operatorname{proj} \mathcal{K}=\bigoplus \mathcal{I}^{m} / \mathcal{I}^{m+1}$ is finite combinatorics: bounded-complexity diagrams modulo simple relations.
Circuit Algebras	
A Ribbon 2-Knot is a surface S embedded in \mathbb{R}^{4} that bounds an immersed handlebody B, with only "ribbon singularities";	
Also see http://www.math.toronto.edu/~drorbn/papers/WKO/	

Day $2-\mathrm{u}, \mathrm{v}, \mathrm{w}$: combinatorics, low and high algebra Dror Bar-Natan, Goettingen, April 2010
http://www.math.toronto.edu/~drorbn/Talks/Goettingen-1004/
The Scheme. Topology \rightarrow Combinatorics \rightarrow Lie Theory via $\mathcal{K} \xrightarrow[\text { equations, unknowns }]{Z: \text { high algebra }} \mathcal{A}=\operatorname{proj} \mathcal{K}=\mathcal{I}^{m} / \mathcal{I}^{m+1} \xrightarrow[\text { pictures } \rightarrow \text { formulas }]{\mathcal{I}_{\mathfrak{g}}: \text { low algebra }}$ " $\mathcal{U}(\mathfrak{g})$ " $1+1=2$, on an abacus, implies Duflo's $\mathcal{U}(\mathfrak{g})^{\mathfrak{g}} \cong \mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$ (with T. Le and D. Thurston).

$\left.\bigcap-\# \frac{\bigcap}{\vartheta}=\frac{\Pi}{\Downarrow}\right)$

The Finite Type Story. With $\mathbb{X}:=$ ХーX $\bigoplus\left(\mathcal{V}_{m} / \mathcal{V}_{m-1}\right)^{*}$ set $\mathcal{V}_{m}:=\left\{V: w K \rightarrow \mathbb{Q}: V\left(\not \mathbb{R}^{>m}\right)=0\right\}$.

I take pride in this box

The Bracket-Rise Theorem. \mathcal{A}^{w} is isomorphic to

Corollaries. (1) Related to Lie algebras! (2) Only wheels and isolated arrows persist.
Low Algebra. With $\left(x_{i}\right)$ and $\left(\varphi^{j}\right)$ dual bases of \mathfrak{g} and \mathfrak{g}^{*} and with $\left[x_{i}, x_{j}\right]=\sum b_{i j}^{k} x_{k}$, we have $\mathcal{A}^{w} \rightarrow \mathcal{U}$ via

w-Jacobi diagrams and $\mathcal{A} . \mathcal{A}^{w}(Y \uparrow) \cong \mathcal{A}^{w}(\uparrow \uparrow \uparrow)$ is

same relations, plus
VI:

$\operatorname{deg}=\frac{1}{2} \#\{$ vertices $\}=6$
Knot-Theoretic statement (simplified). There exists a homomorphic expansion Z for trivalent w-tangles. In particular, Z should respect $R 4$.
 Diagrammatic $\begin{array}{lr}\text { statement } & \text { (sim- } \\ \text { plified). } & \text { Let }\end{array}$ $R=\exp \hat{H} \hat{} \in$ exist $V \in \begin{array}{r}\text { There } \\ \mathcal{A}^{w}(\uparrow \uparrow)\end{array}$ so that Algebraic statement (simplified). With $r \in \mathfrak{g}^{*} \otimes \mathfrak{g}$ the identity element and with $R=e^{r} \in \hat{\mathcal{U}}(I \mathfrak{g}) \otimes \hat{\mathcal{U}}(\mathfrak{g})$ there exist $V \in$ $\hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2}$ so that $V(\Delta \otimes 1)(R)=R^{13} R^{23} V$ in $\hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2} \otimes \hat{\mathcal{U}}(\mathfrak{g})$

Unitary statement (simplified). There exists a unitary tangential differential operator V defined on $\operatorname{Fun}\left(\mathfrak{g}_{x} \times \mathfrak{g}_{y}\right)$ so that $V \widehat{e^{x+y}}=\widehat{e^{x}} \widehat{e^{y}} V$ (allowing $\hat{\mathcal{U}}(\mathfrak{g})$-valued functions)
Unitary \Longleftrightarrow Algebraic. Interpret $\hat{\mathcal{U}}(I \mathfrak{g})$ as tangential differential operators on $\operatorname{Fun}(\mathfrak{g}): \varphi \in \mathfrak{g}^{*}$ becomes a multiplication operator, and $x \in \mathfrak{g}$ becomes a tangential derivation, in the direction of the action of $\operatorname{ad} x:(x \varphi)(y):=\varphi([x, y])$.
Group-Algebra statement (simplified). For every $\phi, \psi \in$ $\operatorname{Fun}(\mathfrak{g})^{G}$ (with small support), the following holds in $\hat{\mathcal{U}}(\mathfrak{g})$:

$$
\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) e^{x+y}=\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) e^{x} e^{y}
$$

Unitary \Longrightarrow Group-Algebra.

$$
\iint e^{x+y} \phi(x) \psi(y)
$$

$$
\left\lvert\, \begin{aligned}
& \left\langle 1, e^{x+y} \phi(x) \psi(y)\right\rangle=\left\langle V 1, V e^{x+y} \phi(x) \psi(y)\right\rangle \\
& \left\langle 1, e^{x} e^{y} V \phi(x) \psi(y)\right\rangle=\left\langle 1, e^{x} e^{y} \phi(x) \psi(y)\right\rangle=\iint e^{x} e^{y} \phi(x) \psi(y) .
\end{aligned}\right.
$$

Convolutions statement (Kashiwara-Vergne, simplified). Convolutions of invariant functions on a Lie group agree with convolutions of invariant functions on its Lie algebra. More accurately, let G be a finite dimensional Lie group and let \mathfrak{g} be its Lie algebra, and let $\Phi: \operatorname{Fun}(G) \rightarrow \operatorname{Fun}(\mathfrak{g})$ be given by $\Phi(f)(x):=f(\exp x)$. Then if $f, g \in \operatorname{Fun}(G)$ are Ad-invariant and supported near the identity, then $\Phi(f) \star \Phi(g)=\Phi(f \star g)$. Convolutions and Group Algebras (ignoring all Jacobians). If G is finite, A is an algebra, $\tau: G \rightarrow A$ is multiplicative then $(\operatorname{Fun}(G), \star) \rightarrow(A, \cdot)$ via $L: f \mapsto \sum f(a) \tau(a)$. For Lie (G, \mathfrak{g}),

with $L_{0} \psi=\int \psi(x) e^{x} d x \in \hat{\mathcal{S}}(\mathfrak{g})$ and $L_{1} \Phi^{-1} \psi=\int \psi(x) e^{x} \in$ $\hat{\mathcal{U}}(\mathfrak{g})$. Given $\psi_{i} \in \operatorname{Fun}(\mathfrak{g})$ compare $\Phi^{-1}\left(\psi_{1}\right) \star \Phi^{-1}\left(\psi_{2}\right)$ and $\Phi^{-1}\left(\psi_{1} \star \psi_{2}\right)$ in $\hat{\mathcal{U}}(\mathfrak{g}):$
(shhh, $L_{0 / 1}$ are "Laplace transforms") \star in $G: \iint \psi_{1}(x) \psi_{2}(y) e^{x} e^{y}$
\star in $\mathfrak{g}: \iint \psi_{1}(x) \psi_{2}(y) e^{x+y}$

