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Day 1 − u, v, w: topology and philosophy
Dror Bar−Natan, Goettingen, April 2010 http://www.math.toronto.edu/~drorbn/Talks/Goettingen−1004/

u, v, and w−Knots: Topology, Combinatorics and Low and High Algebra

Also see http://www.math.toronto.edu/~drorbn/papers/WKO/
www.katlas.org

"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified)
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Examples. 1. The projectivization of a group is a graded
associative algebra. 2. Quandle: a set Q with an op ∧ s.t.

1 ∧ x = 1, x ∧ 1 = x, (appetizers)
(x ∧ y) ∧ z = (x ∧ z) ∧ (y ∧ z). (main)

projQ is a graded Leibniz algebra: Roughly, set v̄ := (v − 1)
(these generate I!), feed 1 + x̄, 1 + ȳ, 1 + z̄ in (main), collect
the surviving terms of lowest degree:

(x̄ ∧ ȳ) ∧ z̄ = (x̄ ∧ z̄) ∧ ȳ + x̄ ∧ (ȳ ∧ z̄).

Our case(s).

K
Z: high algebra

−−−−−−−−−−−−−→
solving finitely many
equations in finitely
many unknowns

A :=
projK

given a “Lie”
algebra g

−−−−−−−−−−→
low algebra: pic-
tures represent
formulas

“U(g)”

K is knot theory or topology; projK =
⊕

Im/Im+1 is finite
combinatorics: bounded-complexity diagrams modulo simple
relations.

Homomorphic expansions for a filtered algebraic structure K:

opsUK = K0 ⊃ K1 ⊃ K2 ⊃ K3 ⊃ . . .
⇓ ↓Z

opsU grK := K0/K1 ⊕ K1/K2 ⊕ K2/K3 ⊕ K3/K4 ⊕ . . .

An expansion is a filtration respecting Z : K → grK that
“covers” the identity on grK. A homomorphic expansion is
an expansion that respects all relevant “extra” operations.

Filtered algebraic structures are cheap and plenty. In any
K, allow formal linear combinations, let K1 = I be the ideal
generated by differences (the “augmentation ideal”), and let
Km := 〈(K1)

m〉 (using all available “products”).

O =

n

objects of
kind 3

o

=

• Has kinds, objects, operations, and maybe constants.
• Perhaps subject to some axioms.
• We always allow formal linear combinations.

K =

K/K1 K/K2 K/K3 K/K4

· · ·

An expansion Z is a choice of a
“progressive scan” algorithm.

← ← ← ←

· · ·
Adjoin

K1/K2 K3/K4 K4/K5 K5/K6 · · ·⊕ ⊕ ⊕ ⊕ ⊕K/K1
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The set of all
b/w 2D projec-
tions of reality

)
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w-Tangles

{w-Tangles} = v-Tangles

/
OC : =

A Ribbon 2-Knot is a surface S embedded in R4 that bounds
an immersed handlebody B, with only “ribbon singularities”;
a ribbon singularity is a disk D of trasverse double points,
whose preimages in B are a disk D1 in the interior of B and
a disk D2 with D2 ∩ ∂B = ∂D2, modulo isotopies of S alone.

=

The w-relations include R234, VR1234, M, Overcrossings
Commute (OC) but not UC:

Plans and Dreams(
arbitrary algebraic
structure

)
projectivization

machine
//

(
a problem in
graded algebra

)

• Feed knot-things, get Lie algebra things.
• Feed u-knots, get Drinfel’d associators.
• Feed w-knots, get Kashiware-Vergne-Alekseev-Torossian.
• Dream: Feed v-knots, get Etingof-Kazhdan.
• Dream: Knowing the question whose answer is 42, or E-K,
will be useful to algebra and topology.

u-Knots (PA :=Planar Algebra){
knots

&links

}
=PA

〈 ∣∣∣∣R123: = , = , =

〉

0 legs

v-Knots (CA :=Circuit Algebra){
v-knots

& links

}
= CA

〈 ∣∣∣∣R23: = , =

〉

0 legs

= PA

〈
∣∣∣∣∣∣∣∣

VR123: = , = , = ;

R23; D: =

〉

0 legs
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Circuit Algebras

A J-K Flip Flop
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Day 2 − u, v, w: combinatorics, low and high algebra
Dror Bar−Natan, Goettingen, April 2010
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Unitary =⇒ Group-Algebra.
∫∫

ex+yφ(x)ψ(y) =
〈1, ex+yφ(x)ψ(y)〉 = 〈V 1, V ex+yφ(x)ψ(y)〉 =
〈1, exeyV φ(x)ψ(y)〉 = 〈1, exeyφ(x)ψ(y)〉 =

∫∫
exeyφ(x)ψ(y).

Convolutions statement (Kashiwara-Vergne, simplified). Con-
volutions of invariant functions on a Lie group agree with con-
volutions of invariant functions on its Lie algebra. More ac-
curately, let G be a finite dimensional Lie group and let g be
its Lie algebra, and let Φ : Fun(G) → Fun(g) be given by
Φ(f)(x) := f(expx). Then if f, g ∈ Fun(G) are Ad-invariant
and supported near the identity, then Φ(f) ⋆Φ(g) = Φ(f ⋆ g).

w-Jacobi diagrams and A. Aw(Y ↑) ∼= Aw(↑↑↑) is

same relations, plus

deg= 1
2
#{vertices}=6

Kashiwara

Vergne

Alekseev

Torossian

The Bracket-Rise Theorem. Aw is isomorphic to

= − = −
−−−→
STU1:

−−−→
STU2:

= −
−−−→
IHX:= −0

−−−→
STU3 =TC:

Corollaries. (1) Related to Lie algebras! (2) Only wheels and
isolated arrows persist.

The Finite Type Story. With X := /−G
set Vm := {V : wK → Q : V (X>m) = 0}.

⊕
(Vm/Vm−1)

∗

0
⊕

〈Xm〉/〈Xm+1〉

m arrows
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arrow diagrams
TC
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Aw := D/R wK
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Low Algebra. With (xi) and (ϕj) dual bases of g and g
∗ and

with [xi, xj ] =
∑
bkijxk, we have Aw → U via

i j

k

lmn

bmklbkji

The Scheme. Topology → Combinatorics → Lie Theory via

K
Z: high algebra

−−−−−−−−−−−−−→
equations, unknowns

A = projK =⊕
Im/Im+1

Tg: low algebra
−−−−−−−−−−−−−→
pictures → formulas

“U(g)”

1+1 = 2, on an abacus, implies
Duflo’s U(g)g ∼= S(g)g (with
T. Le and D. Thurston).

dimg∑

i,j,k,l,m,n=1

bk
ijb

m
klϕ

iϕjxnxmϕl ∈ U(Ig := g
∗ ⋊ g)

Knot-Theoretic statement (simpli-
fied). There exists a homomorphic
expansion Z for trivalent w-tangles.
In particular, Z should respect R4.

;
Diagrammatic
statement (sim-
plified). Let
R = expS ∈
Aw(↑↑). There
exist V ∈ Aw(↑↑)
so that

V=

Algebraic statement (simplified). With r ∈ g
∗⊗g the identity

element and with R = er ∈ Û(Ig) ⊗ Û(g) there exist V ∈
Û(Ig)⊗2 so that V (∆ ⊗ 1)(R) = R13R23V in Û(Ig)⊗2 ⊗ Û(g)

Convolutions and Group Algebras (ignoring all Jacobians). If
G is finite, A is an algebra, τ : G → A is multiplicative then
(Fun(G), ⋆) → (A, ·) via L : f 7→

∑
f(a)τ(a). For Lie (G, g),

(g,+) ∋ x
τ0=exp

S //

exp
U

((P

P

P

P

P

P

P

P

P

P

P

P

P

expG

��

ex ∈ Ŝ(g)

χ

��

(G, ·) ∋ ex τ1 // ex ∈ Û(g)

so

Fun(g)
L0 //

Φ−1

��

Ŝ(g)

χ

��

Fun(G)
L1 // Û(g)

with L0ψ =
∫
ψ(x)exdx ∈ Ŝ(g) and L1Φ

−1ψ =
∫
ψ(x)ex ∈

Û(g). Given ψi ∈ Fun(g) compare Φ−1(ψ1) ⋆ Φ−1(ψ2) and
Φ−1(ψ1 ⋆ ψ2) in Û(g): (shhh, L0/1 are “Laplace transforms”)

⋆ in G :

∫∫
ψ1(x)ψ2(y)e

xey ⋆ in g :

∫∫
ψ1(x)ψ2(y)e

x+y

Unitary statement (simplified). There exists a unitary tan-
gential differential operator V defined on Fun(gx×gy) so that

V êx+y = êxêyV (allowing Û(g)-valued functions)

Unitary ⇐⇒ Algebraic. Interpret Û(Ig) as tangential differ-
ential operators on Fun(g): ϕ ∈ g

∗ becomes a multiplication
operator, and x ∈ g becomes a tangential derivation, in the
direction of the action of adx: (xϕ)(y) := ϕ([x, y]).

Group-Algebra statement (simplified). For every φ, ψ ∈
Fun(g)G (with small support), the following holds in Û(g):∫∫

g×g

φ(x)ψ(y)ex+y =

∫∫

g×g

φ(x)ψ(y)exey.

(shhh, this is Duflo)

R =



Day 3 − A w−Map for General Orientation
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The Alexander Theorem.
Knot-Theoretic

Statement;
→ →

Alekseev,
Torossian,
Meinrenken

True

Diagrammatic

Statement

Algebraic

Statement

Unitary

Statement

Group-Algebra

Statement

Convolutions

Statement

The Orbit

Method

Alekseev-

Torossian

Statement

Free Lie

Statement

Alekseev,
Torossian,
Meinrenken

K-V,
Duflo,
folklore
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· · · span(#3)· · ·

Free Lie statement (Kashiwara-Vergne). There exist conver-
gent Lie series F and G so that with z = log exey

x+ y − log eyex = (1 − e− ad x)F + (ead y − 1)G

tr(adx)∂xF + tr(ad y)∂yG =
1

2
tr

(
adx

ead x − 1
+

ad y

ead y − 1
−

ad z

ead z − 1
− 1

)
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Alekseev-Torossian statement. There is an
element F ∈ TAut2 with

F (x+ y) = log exey

and j(F ) ∈ im δ̃ ⊂ tr2, where for a ∈ tr1,
δ̃(a) := a(x) + a(y) − a(log exey).

The Orbit Method. By Fourier anal-
ysis, the characters of (Fun(g)G, ⋆)
correspond to coadjoint orbits in g

∗.
By averaging representation matrices
and using Schur’s lemma to replace
intertwiners by scalars, to every irre-
ducible representation of G we can as-
sign a character of (Fun(G)G, ⋆).

Conjecture. For u-knots, A is the
Alexander polynomial.
Theorem. With w : xk 7→ wk = (the k-
wheel),

Z = N expAw

(
−w

(
logQJxKA(ex)

))
.

Mod wkwk = wk+l,

Z = N · A−1(ex).

Tij = |low(#j) ∈ span(#i)|,
si = sign(#i), di = dir(#i),
S = diag(sidi),
A = det

(
I + T (I −X−S)

)
.

T=

0

B

B

B

B

@

0 1 1 1 1 0 1 0
0 0 1 0 1 0 0 0
0 1 0 0 1 0 0 0
0 1 0 0 1 0 1 0
0 1 0 1 0 1 1 1
0 1 0 1 0 0 1 0
0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 0

1

C

C

C

C

A

,

X−S=diag( 1
X , X, 1

X , X, X, 1
X , X, 1

X ).

Sanderson’s
garden


