Dror Bar-Natan: Talks: HUJI-060101:
 Further Topics

High altitude low oxygen proof of Invariance under knot mutations.
Assume "flip over" mutation and connectivity as shown.

(there are two other cases)

mutants

The Inside Story. After delooping, all that remains is in

Inside meets Outside.
Theorem. If two horizontal differentials p and q are homotopic relative to the vertical differential D , and the homotopy h commutes with p and q, then the two double complexes involved are isomorphic. Old techniques:

Many computers, long time, no counterexample.

4 Tu
Replaces G and NC.

The work of Nat.

<surfaces>/4Tu is freely generated by Shrek surfaces
A Shrek surface with 7 boundaries (one distinguished), 3 handles and 2 tubes

Let - denote a tube to the distinguished component (the curtain), and let H denote a handle on the curtain. Then

The work of Green.
standard data:

The universal invariant of the left-handed trefoil isJeremy Green

$$
\left.\left.\left|\frac{\mathrm{H}_{-2}}{\stackrel{\sim}{-6}}\right| \underset{-1}{ }\right|_{-2}\right|_{-2}
$$

(and the invariant of the 48 crossing $\mathrm{T}(8,7)$ is computable in minutes...)
Some functor.

$$
\begin{aligned}
& \text { classical reduced Lee } \\
& \mathrm{H} \mapsto \underset{<->}{<+>} \underset{<->}{<+>}<0\rangle \underset{0}{\rightarrow}<0\rangle \underset{<->}{<+>}\rangle_{<->}^{2} \\
&
\end{aligned}
$$

(Lee's spectral sequence and Rasmussen's invariant also recoverable)
... so the invariant is valued in complexes over a category with just one object and morphisms in $\mathrm{Z}[\mathrm{H}]$; all is graded and $\operatorname{deg} \mathrm{H}=-2$.

