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Dror Bar−Natan: Talks: HUJI−060101:

Invariance under knot
mutations.
Assume "flip over"
mutation and
connectivity as shown.

The Inside Story.

mutants

High altitude low oxygen proof of

Inside meets Outside.
If two horizontal differentialsTheorem.
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(there are two other cases)

After delooping, all that remains is in
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p and q are homotopic relative to the
vertical differential D, and the homotopy
h commutes with p and q, then the two
double complexes involved are isomorphic.

Old techniques:

Delooping:
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Gad Naot

The work of Naot.

4Tu

The work of Green.

Jeremy Green

standard data:
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(and the invariant of the 48 crossing T(8,7) is computable in minutes...)

Some functors.

H

(Lee’s spectral sequence and Rasmussen’s invariant also recoverable)

A Shrek surface with 7 boundaries
(one distinguished), 3 handles and

2 tubes

... so the invariant is valued in complexes over a category with just
one object and morphisms in Z[H]; all is graded and degH=−2.

<surfaces>/4Tu is freely generated by Shrek surfaces
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(the curtain), and let H denote

Let      denote a tube to
the distinguished component

a handle on the curtain. Then

−H

Replaces G
and NC.

The universal invariant of the left−handed trefoil is


