BF Theory，and an Ultimate Alexander Invariant

Dror Bar－Natan in Hamburg，August 2012
$\omega \epsilon \beta:=$ http：／／www．math．toronto．edu／drorbn／Talks／Hamburg－1208

Scheme．• Balloons and hoops in \mathbb{R}^{4} ，algebraic structure and relations with 3D．
－An ansatz for a＂homomorphic＂invariant：computable， related to finite－type and to BF．
－Reduction to an＂ultimate Alexander invariant＂．

$$
\omega_{\text {weß/decorationideas }}
$$

$$
\begin{aligned}
& \mathbf{T}_{0}=\operatorname{Rm}[3, a] \operatorname{Rp}[b, 2] \operatorname{Rp}[1,4] ; \\
& \zeta=T_{0} / / \operatorname{dm}[2,1,1] / / \operatorname{dm}[4, b
\end{aligned}
$$

$\zeta=T_{0} / / \mathrm{dm}[2,1,1] / / \mathrm{dm}[4, b, b] /$
$\operatorname{dm}[1, a, a] / / \operatorname{dm}[3, a, a]$ ；
$\zeta[\{5\}] /\left\{w_{-}{ }^{\text {Lw }}: \rightarrow(\operatorname{Deg}[w]+1)!w\right.$,
$\mathrm{w}_{-} \mathrm{Cw}: \rightarrow \operatorname{Deg}^{[\mathrm{w}]}$ ！w］
μ［CWS［－［a］，$-2[a b],-3[a a b]-3[a b b]$ ， $-4[\mathrm{aaab}]+42[\mathrm{aabb}]-60[\mathrm{abab}]-4[\mathrm{abbb}]$, $-5[$ aaaab $]+110[$ aaabb $]-180[$ aabab $]+$ $\mathrm{h}[\mathrm{b}] \mathrm{LS}[2\langle\mathrm{a}\rangle, 0,-24\langle\mathrm{aab}\rangle$ ，
$-60($ aaab $)+60\langle$ aabb $\rangle,-120\langle$ aaaab $\rangle+$ -60 （aãab）$+60\langle$ aabb〉，-120 〈ãaaab〉＋
$900\langle$ aaabb〉 $+360\langle$ aabab $\rangle-120\langle$ aabbb〉］
$h[a]$ LS［－2（a）+2 （b）， $9\langle a b\rangle, 26\langle a a b\rangle-$
$h[a] \operatorname{LS}[-2\langle a\rangle+2\langle b), 9\langle a b\rangle, 26\langle a \mathrm{ab}\rangle-$
$26(a b b\rangle, 60(a a a b\rangle-255\langle a \mathrm{abb}\rangle+60(a b b b)$ 119 （aaaab〉－1504 〈azabb）＋ 118 〈aabab〉＋

－δ injects u－Knots into $\mathcal{K}^{b h}$（likely u－tangles too）．
－δ maps v / w－tangles map to $\mathcal{K}^{b h}$ ；the kernel con－ tains Reidemeister moves and the＂overcrossings commute＂relation，and conjecturally，that＇s all． Allowing punctures and cuts，δ is onto．

 Operations | Punctures \＆Cuts | $\begin{array}{l}\text { Connected } \\ \text { Sums．}\end{array}$ |
| :--- | :--- | Meta－Group－Action． If X is a space，$\pi_{1}(X)$ is a group，$\pi_{2}(X)$ is an Abelian group，and π_{1} acts on π_{2} ．

＂MGA＂

K：

$K / / h m_{z}^{x y}$ ：
（＂／／＂is newspeak
for＂apply an operator＂and for ＂composition left to right＂）
Properties．

$K / / t m_{w}^{u v}$ ：

$K / / h t a^{x u}$ ：

Associativities：$m_{a}^{a b} / / m_{a}^{a c}=m_{b}^{b c} / / m_{a}^{a b}$ ，for $m=t m, h m$ ．
－Action axiom $t: t m_{w}^{u v} / / h t a^{x w}=h t a^{x u} / / h t a^{x v} / / t m_{w}^{u v}$ ，
－Action axiom $h: h m_{z}^{x y} / / h t a^{z u}=h t a^{x u} / / h t a^{y u} / / h m_{z}^{x y}$ ．
－SD Product：$d m_{c}^{a b}:=h t a^{b a} / / t m_{c}^{a b} / / h m_{c}^{a b}$ is associative．

Tangle concatenations $\rightarrow \pi_{1} \ltimes \pi_{2}$ ．

Thus we seek homomorphic invariants of $\mathcal{K}^{b h}$ ！
Invariant \＃0．With Π_{1} denoting＂hon－ est π_{1}＂，map $\gamma \in \mathcal{K}^{b h}(m, n)$ to the triple $\left(\Pi_{1}\left(\gamma^{c}\right),\left(u_{i}\right),\left(x_{j}\right)\right)$ ，where the meridian of the balls u_{i} normally generate Π_{1} ，and the ＂longtitudes＂x_{j} are some elements of Π_{1} ． ＊acts like $*$ ，tm acts by＂merging＂two meridians／generators，$h m$ acts by multi－ plying two longtitudes，and $h t a^{x u}$ acts by ＂conjugating a meridian by a longtitude＂：

Not computable！ （but nearly） $(\Pi,(u, \ldots),(x, \ldots)) \mapsto\left(\Pi *\langle\bar{u}\rangle /\left(u=x \bar{u} x^{-1}\right),(\bar{u}, \ldots),(x, \ldots)\right)$ Failure $\# 0$ ．Can we write the x＇s as free words in the u＇s？ If $x=u v$ ，compute $x / / h t a^{x u}$ ：

$$
x=u v \rightarrow \bar{u} v=u^{x} v=u^{\bar{u} v} v=u^{u^{x}} v v=u^{u^{u^{x} v} v} v=\cdots
$$

The Meta－Group－Action M ．Let T be a set of＂tail labels＂ （＂balloon colours＂），and H a set of＂head labels＂（＂hoop colours＂）．Let $F L=F L(T)$ and $F A=F A(T)$ be the（com－ pleted graded）free Lie and free associative algebras on gen－ erators T and let $C W=C W(T)$ be the（completed graded） vector space of cyclic words on T ，so there＇s $\mathrm{tr}: F A \rightarrow C W$ ． Let $M(T, H):=\left\{\left(\bar{\lambda}=\left(x: \lambda_{x}\right)_{x \in H} ; \omega\right): \lambda_{x} \in F L, \omega \in C W\right\}$

$$
=\left\{\left(x: Y^{u}, y:\left.\right|^{v}-\frac{22}{7} Y^{u} \gtrless^{v} ; \bigodot_{v}^{u}{\underset{v}{v}}_{v}^{v}\right) \ldots\right\}
$$

Operations．Set $\left(\bar{\lambda}_{1} ; \omega_{1}\right) *\left(\bar{\lambda}_{2} ; \omega_{2}\right):=\left(\bar{\lambda}_{1} \cup \bar{\lambda}_{2} ; \omega_{1}+\omega_{2}\right)$ and with $\mu=(\bar{\lambda} ; \omega)$ define

$$
\begin{gathered}
t m_{w}^{u v}: \mu \mapsto \mu / /(u, v \mapsto w) \\
h m_{z}^{x y}: \mu \mapsto\left(\left(\ldots, \widehat{x: \lambda_{x}}, \widehat{y: \lambda_{y}}, \ldots, z: \operatorname{bch}\left(\lambda_{x}, \lambda_{y}\right)\right) ; \omega\right)
\end{gathered}
$$

$$
h t a^{x u}: \mu \mapsto \underbrace{\overbrace{/ / / /}^{\text {"table apply" }}\left(u \mapsto e^{\operatorname{ad} \lambda_{x}}(\bar{u})\right) / /(\bar{u} \mapsto u)}_{\mu / / C C_{u}^{\lambda_{x}^{x}}}+\underbrace{\left(0 ; J_{u}\left(\lambda_{x}\right)\right)}_{\text {the " } J \text {-spice" }}
$$

A $C C_{u}^{\lambda}$ example．

Balloons and Hoops and their Universal Finite-Type Invariant, 2

The Meta-Cocycle J. Set $J_{u}(\lambda):=J(1)$ where

$$
\begin{gathered}
J(0)=0, \quad \lambda_{s}=\lambda / / C C_{u}^{s \lambda} \\
\frac{d J(s)}{d s}=\left(J(s) / / \operatorname{der}\left(u \mapsto\left[\lambda_{s}, u\right]\right)\right)+\operatorname{div}_{u} \lambda_{s}
\end{gathered}
$$

and where $\operatorname{div}_{u} \lambda:=\operatorname{tr}\left(u \sigma_{u}(\lambda)\right), \sigma_{u}(v):=\delta_{u v}, \sigma_{u}\left(\left[\lambda_{1}, \lambda_{2}\right]\right):=$ $\iota\left(\lambda_{1}\right) \sigma_{u}\left(\lambda_{2}\right)-\iota\left(\lambda_{2}\right) \sigma_{u}\left(\lambda_{1}\right)$ and ι is the inclusion $F L \hookrightarrow F A$:

Claim. $C C_{u}^{\mathrm{bch}\left(\lambda_{1}, \lambda_{2}\right)}=C C_{u}^{\lambda_{1}} / / C C_{u}^{\lambda_{2} / / C C_{u}^{\lambda_{1}}}$ and

$$
J_{u}\left(\operatorname{bch}\left(\lambda_{1}, \lambda_{2}\right)\right)=J_{u}\left(\lambda_{1}\right) / / C C_{u}^{\lambda_{2} / / C C_{u}^{\lambda_{1}}}+J_{u}\left(\lambda_{2} / / C C_{u}^{\lambda_{1}}\right),
$$

and hence $t m, h m$, and hta form a meta-group-action.
Why ODEs? Q. Find f s.t. $f(x+y)=f(x) f(y)$. A. $\frac{d f(s)}{d s}=\frac{d}{d \epsilon} f(s+\epsilon)=\frac{d}{d \epsilon} f(s) f(\epsilon)=f(s) C$. Now solve this ODE using Picard's theorem or power series.

The β quotient, 2. Let $R=\mathbb{Q} \llbracket\left\{c_{u}\right\}_{u \in T} \rrbracket$ and $L_{\beta}:=R \otimes T$ with central R and with $[u, v]=c_{u} v-c_{v} u$ for $u, v \in T$. Then $F L \rightarrow L_{\beta}$ and $C W \rightarrow R$. Under this,

$$
\begin{aligned}
& \mu \rightarrow(\bar{\lambda} ; \omega) \quad \text { with } \bar{\lambda}=\sum_{x \in H, u \in T} \lambda_{u x} u x, \quad \lambda_{u x}, \omega \in R, \\
& \operatorname{bch}(u, v) \rightarrow \frac{c_{u}+c_{v}}{e^{c_{u}+c_{v}}-1}\left(\frac{e^{c_{u}}-1}{c_{u}} u+e^{c_{u}} \frac{e^{c_{v}}-1}{c_{v}} v\right),
\end{aligned}
$$

if $\lambda=\sum \lambda_{v} v$ then with $c_{\lambda}:=\sum \lambda_{v} c_{v}$,
$u / / C C_{u}^{\lambda}=\left(1+c_{u} \lambda_{u} \frac{e^{c_{\lambda}}-1}{c_{\lambda}}\right)^{-1}\left(e^{c_{\lambda}} u-c_{u} \frac{e^{c_{\lambda}}-1}{c_{\lambda}} \sum_{v \neq u} \lambda_{v} v\right)$ $\operatorname{div}_{u} \lambda=c_{u} \lambda_{u}$, and the ODE for J integrates to

$$
J_{u}(\lambda)=\log \left(1+\frac{e^{c_{\lambda}}-1}{c_{\lambda}} c_{u} \lambda_{u}\right)
$$

so ζ is formula-computable to all orders! Can we simplify?
Repackaging. Given $\left(\left(x: \lambda_{u x}\right) ; \omega\right)$, set $c_{x}:=\sum_{v} c_{v} \lambda_{v x}$, replace $\lambda_{u x} \rightarrow \alpha_{u x}:=c_{u} \lambda_{u x} \frac{e^{c_{x x}-1}}{c_{x}}$ and $\omega \rightarrow \log \omega$, use $t_{u}=e^{c_{u}}$ and write $\alpha_{u x}$ as a matrix. Get " β calculus".
The Invariant ζ. Set $\zeta\left(\rho^{ \pm}\right)=\left(\pm u_{x} ; 0\right)$. This at least defines an invariant of $\mathrm{u} / \mathrm{v} / \mathrm{w}$-tangles, and if the topologists will deliver a "Reidemeister" theorem, it is well defined on $\mathcal{K}^{\text {bh }}$.
$\zeta: \quad{ }_{u} \bigcap_{x} \longmapsto\left(x:+\left.\right|^{u} ; 0\right) \quad \stackrel{u}{u} \longmapsto\left(x:-\left.\right|^{u} ; 0\right)$
Theorem. ζ is (the log of) a universal finite type invariant (a homomorphic expansion) of w-tangles.
Tensorial Interpretation. Let \mathfrak{g} be a finite dimensional Lie algebra (any!). Then there's $\tau: F L(T) \rightarrow \operatorname{Fun}\left(\oplus_{T} \mathfrak{g} \rightarrow \mathfrak{g}\right)$ and $\tau: C W(T) \rightarrow \operatorname{Fun}\left(\oplus_{T} \mathfrak{g}\right)$. Together, $\tau: M(T, H) \rightarrow$ $\operatorname{Fun}\left(\oplus_{T} \mathfrak{g} \rightarrow \oplus_{H} \mathfrak{g}\right)$, and hence

$$
e^{\tau}: M(T, H) \rightarrow \operatorname{Fun}\left(\oplus_{T} \mathfrak{g} \rightarrow \mathcal{U}^{\otimes H}(\mathfrak{g})\right)
$$

ζ and BF Theory. Let A denote a \mathfrak{g}-connection on S^{4} with curvature F_{A}, and B a \mathfrak{g}^{*}-valued 2form on S^{4}. For a hoop γ_{x}, let $\operatorname{hol}_{\gamma_{x}}(A) \in \mathcal{U}(\mathfrak{g})$ be the holonomy of A along γ_{x}. For a ball γ_{u}, let $\mathcal{O}_{\gamma_{u}}(B) \in \mathfrak{g}^{*}$ be the integral of B (transported via A to $\infty)$ on γ_{u}.
 Loose Conjecture. For $\gamma \in \mathcal{K}(T, H)$,

$$
\int \mathcal{D} A \mathcal{D} B e^{\int B \wedge F_{A}} \prod_{u} e^{\left.\mathcal{O}_{\gamma_{u}}(B)\right)} \bigotimes_{x} \operatorname{hol}_{\gamma_{x}}(A)=e^{\tau}(\zeta(\gamma))
$$

That is, ζ is a complete evaluation of the BF TQFT. Issues. How exactly is B transported via A to ∞ ? How does the ribbon condition arise? Or if it doesn't, could it be that ζ can be generalized??
The β quotient, 1. • Arises when \mathfrak{g} is the 2 D non-Abelian Lie algebra.

- Arises when reducing by relations satisfied by the weight system of the Alexander polynomial.

Calculus. Let $\beta(H, T)$ be

$$
\begin{array}{l|l|l}
\omega & \cdots \\
\hline u & \alpha \\
\hline
\end{array} \quad \begin{array}{l|l|l}
\omega & \cdots \\
\hline w & \alpha+\beta
\end{array} \quad \begin{array}{ll|l}
\omega_{1} & H_{1} \\
\hline T_{1} & \alpha_{1} & \omega_{2} \\
\hline T_{2} & H_{2} \\
\hline & \omega_{1} \omega_{2} & H_{1} \\
H_{2}
\end{array}
$$

$$
t m_{w}^{u v}:
$$

$$
\begin{array}{c|ccc|c}
\omega & \cdots \\
\hline u & \alpha & \omega & \ldots \\
\hline v & \beta & & \alpha+\beta \\
\vdots & \gamma & & & \gamma
\end{array}
$$

$$
=\begin{array}{c|cc}
\omega_{1} \omega_{2} & H_{1} & H_{2} \\
\hline T_{1} & \alpha_{1} & 0 \\
T_{2} & 0 & \alpha_{2}
\end{array}
$$

$$
h m_{z}^{x y}: \begin{array}{c|ccc}
\omega & x & y & \cdots \\
\hline \vdots & \alpha & \beta & \gamma
\end{array} \mapsto \begin{array}{c|cc}
\omega & z & \cdots \\
\hline \vdots & \alpha+\beta+\langle\alpha\rangle \beta & \gamma
\end{array},
$$

$$
h t a^{x u}: \begin{array}{c|cc}
\omega & x & \cdots \\
\cline { 2 - 6 } & u & \alpha \\
& \beta & \mapsto
\end{array} \begin{array}{cccc}
\omega \epsilon & x & \cdots \\
\hline & \gamma & \delta & \vdots \\
& \vdots & \gamma / \epsilon & \delta-\gamma \beta\rangle / \epsilon) \\
& \beta(1+\langle\gamma\rangle / \epsilon)
\end{array},
$$

where $\epsilon:=1+\alpha,\langle\alpha\rangle:=\sum_{v} \alpha_{v}$, and $\langle\gamma\rangle:=\sum_{v \neq u} \gamma_{v}$, and let

$$
R_{u x}^{+}:=\begin{array}{c|c}
1 & x \\
\hline u & t_{u}-1
\end{array} \quad R_{u x}^{-}:=\begin{array}{l|l}
1 & x \\
\hline u & t_{u}^{-1}-1
\end{array} .
$$

On long knots, ω is the Alexander polynomial!
Why bother? (1) An ultimate Alexander invariant: Manifestly polynomial (time and size) extension of the (multivariable) Alexander polynomial to tangles. Every step of the computation is the computation of the invariant of some topological thing (no fishy Gaussian elimination!). If there should be an Alexander invariant to have an algebraic categorification, it is this one! See also $\omega \epsilon \beta /$ regina $\omega \in \beta / \mathrm{gwu}$ Why bother? (2) Related to A-T, K-V, and E-K, should have vast generalization beyond w-knots and the Alexander polynomial. See also $\omega \in \beta /$ wko, $\omega \epsilon \beta /$ caen, $\omega \epsilon \beta /$ swiss

Balloons and Hoops and their Universal Finite-Type Invariant, 3

Abstract. Balloons are two-dimensional spheres. Hoops are one dimensional loops. Knotted Balloons and Hoops (KBH) in 4-space behave much like the first and second fundamental groups of a topological space - hoops can be composed like in π_{1}, balloons like in π_{2}, and hoops "act" on balloons as π_{1} acts on π_{2}. We will observe that ordinary knots and tangles in 3 -space map into KBH in 4 -space and become amalgams of both balloons and hoops. We give an ansatz for a tree and wheel (that is, free-Lie and cyclic word) -valued invariant Z of KBHs in terms of the said compositions and action and we explain its relationship with finite type invariants. We speculate that Z is a complete evaluation of the BF topological quantum field theory in 4D, though we are not sure what that means. We show that a certain "reduction and repackaging" of Z is an "ultimate Alexander invariant" that contains the Alexander polynomial (multivariable, if you wish), has extremely good composition properties, is evaluated in a topologically meaningful way, and is least-wasteful in a computational sense. If you believe in categorification, here's a wonderful playground.

