

From Stonehenge to Drinfel'd Skipping all the Details
Lehigh University Geometry/Topology Conference, June 11-13, 2000
Dror Bar-Natan, Hebrew University and MSRI

Michelangelo

Disclaimer

1. We'll concentrate on the beauty and ignore the cracks.
2. The speaker is an idiot.
picture taken by a flatbed scanner,
November 1999.

Carl Friedrich Gauss

$\langle D, K\rangle_{\boxed{\pi}}:=\binom{$ The signed Stonehenge }{ pairing of D and $K}:$

The generating function of all stellar coincidences:
$Z(K):=\lim _{N \rightarrow \infty} \sum_{3 \text {-valent } D} \frac{1}{2^{c} c!\binom{N}{e}}\langle D, K\rangle_{\text {侕 }} D \cdot\left(\begin{array}{c}\text { framing- } \\ \text { dependent } \\ \text { counter-term }\end{array}\right) \in \mathcal{A}(\circlearrowleft)$ with
$N:=$ \# of stars
$c:=$ \# of chopsticks $\mathcal{A}(\circlearrowleft):=$ Span
$e:=$ \# of edges of D

When deforming, catastrophes occur when:
A plane moves over an intersection point -
Solution: Impose IHX,

(see other side)

An intersection line cuts through the knot Solution: Impose STU,

(similar argument)

The Gauss curve slides over a star -
Solution: Multiply by a framing-dependent counter-term.
(not shown here)

Theorem. Modulo Relations, $Z(K)$ is a knot invariant!

Definition. $\quad V$ is finite type (Vassiliev) if it vanishes on sufficiently large alternations as on the left.
Theorem. All knot polynomials (Conway, Jones, etc.) are of finite type.
Conjecture. (Taylor's theorem) Finite type invariants separate knots.
Theorem. $\quad Z(K)$ is a universal finite type invariant! (sketch: to dance in many parties, you need many feet).

The Miller Institute knot

Related to
Lie algebras

And to Feynmann diagrams for the Chern-Simons-Witten theory:

$$
\int_{\mathfrak{g} \text {-connections }}^{\mathcal{D} A \text { hol }_{K}(A) \exp }\left[\frac{i k}{4 \pi} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)\right]
$$

Computing $Z(K)$:
© "Crossing change" is not well defined!
(-) Switch to Embedded Trivalent (ribbon) Graphs:

Need a new relation:

Easy, powerful moves:

Using moves, ETG is generated by ribbon twists and the tetrahedron

(+more)
Claim. With $\Phi:=Z(\Delta)$, the above relation becomes equivalent to Drinfel'd's pentagon equation of the theory of quasi-Hopf algebras:
$(11 \Delta)(\Phi) \cdot(\Delta 11)(\Phi)=(1 \Phi) \cdot(1 \Delta 1)(\Phi) \cdot(\Phi 1)$
This handout is at
http://www.ma.huji.ac.i1/~drorbn/Talks/Lehigh-0006

