The LMO functor: from associators to cobordisms \& tangles

Gwénaël Massuyeau
(IRMA, Strasbourg)

GRT, MZV's and associators
Les Diablerets, August 2015

Overview

(1) Review of the Kontsevich integral
(2) Review of the LMO invariant
(3) Construction of the LMO functor
(4) The LMO homomorphism

The monoidal category \mathcal{T}_{q} of quasi-tangles

The monoidal category \mathcal{T}_{q} of quasi-tangles

Objects: non-associative words in the letters,+-

The monoidal category \mathcal{T}_{q} of quasi-tangles

Objects: non-associative words in the letters,+-
Morphisms: framed, oriented tangles τ in $[0,1]^{3}$

The monoidal category \mathcal{T}_{q} of quasi-tangles

Objects: non-associative words in the letters,+-
Morphisms: framed, oriented tangles τ in $[0,1]^{3}$

Composition: vertical gluing $\tau_{2} \circ \tau_{1}:=\frac{\tau_{1}}{\tau_{2}}$

The monoidal category \mathcal{T}_{q} of quasi-tangles

Objects: non-associative words in the letters,+-
Morphisms: framed, oriented tangles τ in $[0,1]^{3}$

Composition: vertical gluing $\quad \tau_{2} \circ \tau_{1}:=\frac{\tau_{1}}{\tau_{2}}$

Tensor product: horizontal juxtaposition

$$
\tau_{1} \otimes \tau_{2}:=\begin{array}{|l|l|}
\hline \tau_{1} & \tau_{2} \\
\hline
\end{array}
$$

Jacobi diagrams on 1-manifolds

X : an oriented 1-manifold
A Jacobi diagram on X is a finite graph whose vertices are either

- trivalent and oriented,
- or, univalent and embedded into X.

$$
X:=\circlearrowleft \uparrow_{a} \uparrow_{b}
$$

Jacobi diagrams on 1-manifolds

X : an oriented 1-manifold

A Jacobi diagram on X is a finite graph whose vertices are either

- trivalent and oriented,
- or, univalent and embedded into X.

$$
X:=\circlearrowleft \uparrow_{a} \uparrow_{b}
$$

$\mathcal{A}(X):=\frac{\mathbb{Q} \cdot\{\text { Jacobi diagrams on } X\}}{\mathrm{AS}, \mathrm{IHX}, \text { STU }}$

The monoidal category \mathcal{A} of Jacobi diagrams on 1-manifolds

The monoidal category \mathcal{A} of Jacobi diagrams on 1-manifolds
Objects: associative words in the letters,+-

The monoidal category \mathcal{A} of Jacobi diagrams on 1-manifolds
Objects: associative words in the letters,+-
Morphisms: Jacobi diagrams on oriented 1-manifolds

The monoidal category \mathcal{A} of Jacobi diagrams on 1-manifolds
Objects: associative words in the letters,+-
Morphisms: Jacobi diagrams on oriented 1-manifolds

Composition: vertical gluing

$$
D_{2} \circ D_{1}:=\begin{array}{|l|}
\hline D_{1} \\
\hline D_{2} \\
\hline
\end{array}
$$

The monoidal category \mathcal{A} of Jacobi diagrams on 1-manifolds
Objects: associative words in the letters,+-
Morphisms: Jacobi diagrams on oriented 1-manifolds

Composition: vertical gluing

$$
D_{2} \circ D_{1}:=\begin{array}{|l|}
\hline D_{1} \\
\hline D_{2} \\
\hline
\end{array}
$$

Tensor product: horizontal juxtaposition $\quad D_{1} \otimes D_{2}:=$| D_{1} | D_{2} |
| :--- | :--- |

The monoidal category \mathcal{A} of Jacobi diagrams on 1-manifolds
Objects: associative words in the letters,+-
Morphisms: Jacobi diagrams on oriented 1-manifolds

Composition: vertical gluing

$$
D_{2} \circ D_{1}:=\begin{array}{|l|}
\hline D_{1} \\
\hline D_{2} \\
\hline
\end{array}
$$

Tensor product: horizontal juxtaposition $\quad D_{1} \otimes D_{2}:=$| D_{1} | D_{2} |
| :--- | :--- |

Let $\mathcal{A}^{\mathbf{l}} \subset \mathcal{A}$ be the subcategory spanned by Jacobi diagrams without free component.

Jacobi diagrams derived from an associator

Fix an associator $\Phi \in \mathbb{Q}\langle\langle X, Y\rangle\rangle$.

Jacobi diagrams derived from an associator

Fix an associator $\Phi \in \mathbb{Q}\langle\langle X, Y\rangle\rangle$.
Consider its image $\Phi \in \mathcal{A}(\downarrow \downarrow \downarrow)$ by the algebra homomorphism

$$
\left\{\begin{aligned}
\mathbb{Q}\langle\langle X, Y\rangle\rangle & \longrightarrow \mathcal{A}(\downarrow \downarrow \downarrow) \subset \operatorname{Mor}_{\mathcal{A}}(+++,+++) \\
X & \longmapsto \\
Y & \longmapsto
\end{aligned}\right.
$$

Jacobi diagrams derived from an associator

Fix an associator $\Phi \in \mathbb{Q}\langle\langle X, Y\rangle\rangle$.
Consider its image $\Phi \in \mathcal{A}(\downarrow \downarrow \downarrow)$ by the algebra homomorphism

$$
\left\{\begin{aligned}
\mathbb{Q}\langle\langle X, Y\rangle\rangle & \longrightarrow \mathcal{A}(\downarrow \downarrow \downarrow) \subset \operatorname{Mor}_{\mathcal{A}}(+++,+++) \\
X & \longmapsto \\
Y & \longmapsto
\end{aligned}\right.
$$

and define

The Kontsevich integral (in its combinatorial version)

Theorem (Bar-Natan'97, Cartier'93, Le-Murakami'96, Piunikhin'95)
There is a unique tensor-preserving functor $Z: \mathcal{T}_{q} \longrightarrow \mathcal{A}^{\prime}$ which behaves well under orientation-reversal of components and cabling of "vertical" components,

The Kontsevich integral (in its combinatorial version)
Theorem (Bar-Natan'97, Cartier'93, Le-Murakami'96, Piunikhin'95)
There is a unique tensor-preserving functor $Z: \mathcal{T}_{q} \longrightarrow \mathcal{A}^{\mathbf{1}}$ which behaves well under orientation-reversal of components and cabling of "vertical" components, and such that

$$
\begin{aligned}
& z\binom{(++)}{(++)}:=\frac{-\frac{1}{2}-\cdots+}{Z} \\
& Z(\overbrace{((++)+)}^{(+(++))}):=\quad \Phi \quad \in \mathcal{A}(\ \mid\rfloor) \subset \operatorname{Mor}_{\mathcal{A}}(+++,+++) \\
& Z\binom{\cap}{(+-)}:=\Omega \in \mathcal{A}(\cap) \subset \operatorname{Mor}_{\mathcal{A}}(\varnothing,+-) \\
& \left.z(\stackrel{(+-)}{\bigcup}):=\bigcup_{(u)}\right\} \in \mathcal{A}(\cup) \subset \operatorname{Mor}_{\mathcal{A}}(+-, \varnothing)
\end{aligned}
$$

where $a, u \in \mathcal{A}(\downarrow)$ satisfy a $u=\nu=Z($ unknot $)$.

The Kontsevich integral (in its combinatorial version)
Theorem (Bar-Natan'97, Cartier'93, Le-Murakami'96, Piunikhin'95)
There is a unique tensor-preserving functor $Z: \mathcal{T}_{q} \longrightarrow \mathcal{A}^{\mathbf{1}}$ which behaves well under orientation-reversal of components and cabling of "vertical" components, and such that

$$
\begin{aligned}
& Z(\stackrel{(++)}{\searrow}):=\frac{\sqrt{\frac{1}{2}-\cdots+}}{X} \in \mathcal{A}(X) \subset \operatorname{Mor}_{\mathcal{A}}(++,++) \\
& z\binom{(++)}{\underset{(++)}{\star}}:=\frac{-\frac{1}{2}-\cdots+}{Z} \\
& Z(\overbrace{((++)+)}^{(+(++))}):=\quad \Phi \quad \in \mathcal{A}(\downharpoonright \mid \downarrow) \subset \operatorname{Mor}_{\mathcal{A}}(+++,+++) \\
& Z\binom{\cap}{(+-)}:=\Omega \in \mathcal{A}(\cap) \subset \operatorname{Mor}_{\mathcal{A}}(\varnothing,+-) \\
& \left.z(\stackrel{(+-)}{\bigcup}):=\bigcup_{(u)}\right\} \in \mathcal{A}(\cup) \subset \operatorname{Mor}_{\mathcal{A}}(+-, \varnothing)
\end{aligned}
$$

where $a, u \in \mathcal{A}(\downarrow)$ satisfy $a \cdot u=\nu=Z($ unknot). $\quad(E . g . a:=\downarrow, u:=\nu$.)

(1) Review of the Kontsevich integral

(2) Review of the LMO invariant
(3) Construction of the LMO functor

4 The LMO homomorphism

The monoidal category $\mathcal{T}_{q} \mathcal{C} u b$ of quasi-tangles in homology cubes

A homology cube is a compact oriented 3 -manifold C such that $\partial C \cong \partial[0,1]^{3}$ and $H_{*}(C ; \mathbb{Q}) \simeq H_{*}\left([0,1]^{3} ; \mathbb{Q}\right)$.

The monoidal category $\mathcal{T}_{q} \mathcal{C} u b$ of quasi-tangles in homology cubes

A homology cube is a compact oriented 3 -manifold C such that $\partial C \cong \partial[0,1]^{3}$ and $H_{*}(C ; \mathbb{Q}) \simeq H_{*}\left([0,1]^{3} ; \mathbb{Q}\right)$.

Objects: non-associative words in the letters,+-

The monoidal category $\mathcal{T}_{q} \mathcal{C} u b$ of quasi-tangles in homology cubes

A homology cube is a compact oriented 3 -manifold C such that $\partial C \cong \partial[0,1]^{3}$ and $H_{*}(C ; \mathbb{Q}) \simeq H_{*}\left([0,1]^{3} ; \mathbb{Q}\right)$.

Objects: non-associative words in the letters,+-
Morphisms: framed, oriented tangles τ in homology cubes C

The monoidal category $\mathcal{T}_{q} \mathcal{C} u b$ of quasi-tangles in homology cubes

A homology cube is a compact oriented 3 -manifold C such that $\partial C \cong \partial[0,1]^{3}$ and $H_{*}(C ; \mathbb{Q}) \simeq H_{*}\left([0,1]^{3} ; \mathbb{Q}\right)$.

Objects: non-associative words in the letters,+-
Morphisms: framed, oriented tangles τ in homology cubes C
Composition: vertical gluing $\left(C_{2}, \tau_{2}\right) \circ\left(C_{1}, \tau_{1}\right):=\frac{\left(C_{1}, \tau_{1}\right)}{\left(C_{2}, \tau_{2}\right)}$

The monoidal category $\mathcal{T}_{q} \mathcal{C} u b$ of quasi-tangles in homology cubes

A homology cube is a compact oriented 3 -manifold C such that $\partial C \cong \partial[0,1]^{3}$ and $H_{*}(C ; \mathbb{Q}) \simeq H_{*}\left([0,1]^{3} ; \mathbb{Q}\right)$.

Objects: non-associative words in the letters,+-
Morphisms: framed, oriented tangles τ in homology cubes C
Composition: vertical gluing $\left(C_{2}, \tau_{2}\right) \circ\left(C_{1}, \tau_{1}\right):=\frac{\left(C_{1}, \tau_{1}\right)}{\left(C_{2}, \tau_{2}\right)}$
Tensor product: horizontal gluing $\left(C_{1}, \tau_{1}\right) \otimes\left(C_{2}, \tau_{2}\right):=\left(C_{1}, \tau_{1}\right)\left(C_{2}, \tau_{2}\right)$

The monoidal category $\mathcal{T}_{q} \mathcal{C} u b$ of quasi-tangles in homology cubes

A homology cube is a compact oriented 3 -manifold C such that $\partial C \cong \partial[0,1]^{3}$ and $H_{*}(C ; \mathbb{Q}) \simeq H_{*}\left([0,1]^{3} ; \mathbb{Q}\right)$.

Objects: non-associative words in the letters,+-
Morphisms: framed, oriented tangles τ in homology cubes C
Composition: vertical gluing $\left(C_{2}, \tau_{2}\right) \circ\left(C_{1}, \tau_{1}\right):=\frac{\left(C_{1}, \tau_{1}\right)}{\left(C_{2}, \tau_{2}\right)}$
Tensor product: horizontal gluing $\left(C_{1}, \tau_{1}\right) \otimes\left(C_{2}, \tau_{2}\right):=\left(C_{1}, \tau_{1}\right)\left(C_{2}, \tau_{2}\right)$

There is a "short exact sequence"

$$
\mathcal{T}_{q} \longmapsto \mathcal{T}_{q} \mathcal{C} u b \longrightarrow \mathcal{C} u b .
$$

Theorem (Le-Murakami-Ohtsuki'98)
There is a tensor-preserving functor $Z: \mathcal{T}_{q} \mathcal{C} u b \longrightarrow \mathcal{A}$ which extends the Kontsevich integral:

Theorem (Le-Murakami-Ohtsuki'98)
There is a tensor-preserving functor $Z: \mathcal{T}_{q} \mathcal{C} u b \longrightarrow \mathcal{A}$ which extends the Kontsevich integral:

$Z: \mathcal{T}_{q} \mathcal{C} u b \longrightarrow \mathcal{A}$ is universal among "finite-type invariants":

Theorem (Le-Murakami-Ohtsuki'98)

There is a tensor-preserving functor $Z: \mathcal{T}_{q} \mathcal{C} u b \longrightarrow \mathcal{A}$ which extends the Kontsevich integral:

$Z: \mathcal{T}_{q} \mathcal{C} u b \longrightarrow \mathcal{A}$ is universal among "finite-type invariants": using surgery, one can define a filtration

$$
\mathbb{Q} \mathcal{T}_{q} \mathcal{C} u b=F_{0}\left(\mathbb{Q} \mathcal{T}_{q} \mathcal{C} u b\right) \supset F_{1}\left(\mathbb{Q} \mathcal{T}_{q} \mathcal{C} u b\right) \supset F_{2}\left(\mathbb{Q} \mathcal{T}_{q} \mathcal{C} u b\right) \supset \cdots
$$

s.t. Z is filtration-preserving and $\mathrm{Gr} Z$ is an isomorphism (Le'97 for $\mathcal{C} u b$).

Kirby's theorem

Theorem ()
$\left\{\begin{array}{c}\text { framed oriented tangles } L \sqcup \tau \subset[0,1]^{3} \\ \text { where } L \text { is a link with invertible linking matrix } B_{L}\end{array}\right\} \xrightarrow{\text { partial surgery }} \mathcal{T} \mathcal{C} u b$

Theorem ()
$\left\{\begin{array}{c}\text { framed oriented tangles } L \sqcup \tau \subset[0,1]^{3} \\ \text { where } L \text { is a link with invertible linking matrix } B_{L}\end{array}\right\} \xrightarrow{\text { partial surgery }} \mathcal{T C} u b$

$L \sqcup \tau$	B_{L}	surgery along L
$\square \sigma$	(2)	$\left(\right.$ punctured $\left.\mathbb{R} P^{3}, \varnothing\right)$
\square	()	$\left([0,1]^{3}\right.$, trivial string $)$
\square	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\left([0,1]^{3}\right.$, trivial string $)$
(9)		

Theorem (Kirby'78)

$L \sqcup \tau$	B_{L}	surgery along L
δ_{0}	(2)	$\left(\right.$ punctured $\left.\mathbb{R} P^{3}, \varnothing\right)$
\square	()	$\left([0,1]^{3}\right.$, trivial string $)$
\square	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\left([0,1]^{3}\right.$, trivial string $)$
\square		

Construction of the LMO invariant

(C, τ) : quasi-tangle in a homology cube $\stackrel{?}{\rightsquigarrow} \quad Z(C, \tau) \in \mathcal{A}(\tau)$

Construction of the LMO invariant

(C, τ) : quasi-tangle in a homology cube $\stackrel{?}{\sim} \quad Z(C, \tau) \in \mathcal{A}(\tau)$
$L \cup \tau \subset[0,1]^{3}:$ surgery presentation of (C, τ)

Construction of the LMO invariant

(C, τ) : quasi-tangle in a homology cube $\stackrel{?}{\sim} \quad Z(C, \tau) \in \mathcal{A}(\tau)$
$L \cup \tau \subset[0,1]^{3}:$ surgery presentation of (C, τ)
$Z\left(L^{\nu} \cup \tau\right):=$ (attach a copy of ν to every L-comp. of $\left.Z(L \cup \tau)\right) \in \mathcal{A}(L \cup \tau)$

Construction of the LMO invariant

(C, τ) : quasi-tangle in a homology cube $\stackrel{?}{\sim} \quad Z(C, \tau) \in \mathcal{A}(\tau)$
$L \cup \tau \subset[0,1]^{3}$: surgery presentation of (C, τ)
$Z\left(L^{\nu} \cup \tau\right):=$ (attach a copy of ν to every L-comp. of $\left.Z(L \cup \tau)\right) \in \mathcal{A}(L \cup \tau)$
Fact (Le-Murakami ${ }^{2}$-Ohtsuki'95)
$Z\left(L^{\nu} \cup \tau\right)$ behaves well under the move KII.

Construction of the LMO invariant

(C, τ) : quasi-tangle in a homology cube $\stackrel{?}{\leadsto} \quad Z(C, \tau) \in \mathcal{A}(\tau)$
$L \cup \tau \subset[0,1]^{3}$: surgery presentation of (C, τ)
$Z\left(L^{\nu} \cup \tau\right):=$ (attach a copy of ν to every L-comp. of $\left.Z(L \cup \tau)\right) \in \mathcal{A}(L \cup \tau)$
Fact (Le-Murakami ${ }^{2}$-Ohtsuki'95)
$Z\left(L^{\nu} \cup \tau\right)$ behaves well under the move KII.
Fact (Bar Natan-Garoufalidis-Rozansky-Thurston'02)
There is a diagrammatic analogue of the Gaussian integration

$$
\int: \mathcal{A}(L \cup \tau)--\rightarrow \mathcal{A}(\tau) .
$$

Construction of the LMO invariant

(C, τ) : quasi-tangle in a homology cube $\stackrel{?}{\leadsto} \quad Z(C, \tau) \in \mathcal{A}(\tau)$
$L \cup \tau \subset[0,1]^{3}$: surgery presentation of (C, τ)
$Z\left(L^{\nu} \cup \tau\right):=$ (attach a copy of ν to every L-comp. of $\left.Z(L \cup \tau)\right) \in \mathcal{A}(L \cup \tau)$
Fact (Le-Murakami ${ }^{2}$-Ohtsuki'95)
$Z\left(L^{\nu} \cup \tau\right)$ behaves well under the move KII.
Fact (Bar Natan-Garoufalidis-Rozansky-Thurston'02)
There is a diagrammatic analogue of the Gaussian integration

$$
\int: \mathcal{A}(L \cup \tau)--\rightarrow \mathcal{A}(\tau) .
$$

$Z_{0}(L, \tau):=\int Z\left(L^{\nu} \cup \tau\right)$ is invariant under KII.

Construction of the LMO invariant

(C, τ) : quasi-tangle in a homology cube $\stackrel{?}{\leadsto} \quad Z(C, \tau) \in \mathcal{A}(\tau)$
$L \cup \tau \subset[0,1]^{3}$: surgery presentation of (C, τ)
$Z\left(L^{\nu} \cup \tau\right):=$ (attach a copy of ν to every L-comp. of $\left.Z(L \cup \tau)\right) \in \mathcal{A}(L \cup \tau)$
Fact (Le-Murakami ${ }^{2}$-Ohtsuki' 95)
$Z\left(L^{\nu} \cup \tau\right)$ behaves well under the move KII.
Fact (Bar Natan-Garoufalidis-Rozansky-Thurston'02)
There is a diagrammatic analogue of the Gaussian integration

$$
\int: \mathcal{A}(L \cup \tau)--\rightarrow \mathcal{A}(\tau) .
$$

$Z_{0}(L, \tau):=\int Z\left(L^{\nu} \cup \tau\right)$ is invariant under KII.
$Z(C, \tau):=\underbrace{\frac{Z_{0}(L, \tau)}{Z_{0}(\varnothing O, \varnothing)^{\sigma_{+}(L)} \sqcup Z_{0}(\varnothing O, \varnothing)^{\sigma_{-}(L)}}}_{\text {belongs to } \mathcal{A}(\varnothing)}$ is invariant under KI,
where $\left(\sigma_{+}(L), \sigma_{-}(L)\right)$ is the signature of B_{L}.

(1) Review of the Kontsevich integral
 (2) Review of the LMO invariant

(3) Construction of the LMO functor
(4) The LMO homomorphism

3-dimensional cobordisms

For all $g \in \mathbb{N}$, fix a model surface of genus g :

3-dimensional cobordisms

For all $g \in \mathbb{N}$, fix a model surface of genus g :

$A_{g}:=\left\langle\alpha_{1}, \ldots, \alpha_{g}\right\rangle$ is a Lagrangian subspace of $H_{1}\left(F_{g} ; \mathbb{Q}\right)$.

3-dimensional cobordisms

For all $g \in \mathbb{N}$, fix a model surface of genus g :

$A_{g}:=\left\langle\alpha_{1}, \ldots, \alpha_{g}\right\rangle$ is a Lagrangian subspace of $H_{1}\left(F_{g} ; \mathbb{Q}\right)$.
A cobordism from F_{h} to F_{g} is a compact oriented 3-manifold whose boundary consists of three parts:

- the top boundary: a copy of F_{h};
- the bottom boundary: a copy of $-F_{g}$;
- the vertical boundary: an annulus connecting ∂F_{h} to ∂F_{g}.

3-dimensional cobordisms

For all $g \in \mathbb{N}$, fix a model surface of genus g :

$A_{g}:=\left\langle\alpha_{1}, \ldots, \alpha_{g}\right\rangle$ is a Lagrangian subspace of $H_{1}\left(F_{g} ; \mathbb{Q}\right)$.
A cobordism from F_{h} to F_{g} is a compact oriented 3-manifold whose boundary consists of three parts:

- the top boundary: a copy of F_{h};
- the bottom boundary: a copy of $-F_{g}$;
- the vertical boundary: an annulus connecting ∂F_{h} to ∂F_{g}.

It is Lagrangian if it satisfies certain homological conditions which involve A_{g} and A_{h}.

The monoidal cat. $\mathcal{T}_{q} \mathcal{L C}$ ob of quasi-tangles in Lagrangian cobordisms
Objects: non-associative words in the letters $\bullet,+,-$

The monoidal cat. $\mathcal{T}_{q} \mathcal{L C}$ ob of quasi-tangles in Lagrangian cobordisms
Objects: non-associative words in the letters $\bullet,+,-$
Morphisms: framed, oriented tangles τ in Lagrangian cobordisms M

$$
w:=((\bullet)((+\quad \bullet) \quad-))(+-))
$$

The monoidal cat. $\mathcal{T}_{q} \mathcal{L C}$ ob of quasi-tangles in Lagrangian cobordisms
Objects: non-associative words in the letters $\bullet,+,-$
Morphisms: framed, oriented tangles τ in Lagrangian cobordisms M

$$
\begin{aligned}
& w:=((\bullet \quad((+\quad \bullet) \quad-))(+-)) \\
& \underset{v:=(\bullet}{C} \\
& \in \operatorname{Mor}_{\mathcal{T}_{q} \mathcal{L C} o b}(w, v)
\end{aligned}
$$

Composition: vertical gluing $\left(M_{2}, \tau_{2}\right) \circ\left(M_{1}, \tau_{1}\right):=\frac{\left(M_{1}, \tau_{1}\right)}{\left(M_{2}, \tau_{2}\right)}$

The monoidal cat. $\mathcal{T}_{q} \mathcal{L C}$ ob of quasi-tangles in Lagrangian cobordisms
Objects: non-associative words in the letters $\bullet,+,-$
Morphisms: framed, oriented tangles τ in Lagrangian cobordisms M

$$
w:=((\bullet)((+\quad \bullet) \quad-))(+-))
$$

Composition: vertical gluing $\left(M_{2}, \tau_{2}\right) \circ\left(M_{1}, \tau_{1}\right):=\frac{\left(M_{1}, \tau_{1}\right)}{\left(M_{2}, \tau_{2}\right)}$
Tensor product: horizontal gluing $\left(M_{1}, \tau_{1}\right) \otimes\left(M_{2}, \tau_{2}\right):=\left(M_{1}, \tau_{1}\right)\left(M_{2}, \tau_{2}\right)$

The monoidal cat. $\mathcal{T}_{q} \mathcal{L C}$ ob of quasi-tangles in Lagrangian cobordisms
Objects: non-associative words in the letters $\bullet,+,-$
Morphisms: framed, oriented tangles τ in Lagrangian cobordisms M

$$
\left.\left.\left.\left.\begin{array}{cccc}
((\bullet & ((+ & \bullet
\end{array}\right) \quad-\right)\right)(+-)\right)
$$

Composition: vertical gluing $\left(M_{2}, \tau_{2}\right) \circ\left(M_{1}, \tau_{1}\right):=\frac{\left(M_{1}, \tau_{1}\right)}{\left(M_{2}, \tau_{2}\right)}$
Tensor product: horizontal gluing $\left(M_{1}, \tau_{1}\right) \otimes\left(M_{2}, \tau_{2}\right):=\left(M_{1}, \tau_{1}\right)\left(M_{2}, \tau_{2}\right)$

There is a an embedding $\mathcal{T}_{q} \mathcal{C} u b \longmapsto \mathcal{T}_{q} \mathcal{L C}$ ob.

Colored Jacobi diagrams on 1-manifolds

X : an oriented 1-manifold, $\quad C$: a finite set
A C-colored Jacobi diagram on X is a finite graph whose vertices are either

- trivalent and oriented,
- or, univalent and embedded into X,
- or, univalent and colored by C.

$$
X:=\uparrow_{a} \uparrow_{b}, \quad C:=\{1,2,3,4\}
$$

Colored Jacobi diagrams on 1-manifolds

X : an oriented 1-manifold, $\quad C$: a finite set
A C-colored Jacobi diagram on X is a finite graph whose vertices are either

- trivalent and oriented,
- or, univalent and embedded into X,
- or, univalent and colored by C.

$$
X:=\uparrow_{a} \uparrow_{b}, \quad C:=\{1,2,3,4\}
$$

$$
\mathcal{A}(C, X):=\frac{\mathbb{Q} \cdot\{C \text {-colored Jacobi diagrams on } X\}}{\text { AS, IHX, STU }}
$$

AS

The monoidal category ${ }^{t s} \mathcal{A}$ of top-substantial Jacobi diagrams

The monoidal category ${ }^{\text {ts}} \mathcal{A}$ of top-substantial Jacobi diagrams
Objects: pairs (g, w) where $g \in \mathbb{N}$ and w is an associative word in,+-

The monoidal category ${ }^{\text {ts }} \mathcal{A}$ of top-substantial Jacobi diagrams
Objects: pairs (g, w) where $g \in \mathbb{N}$ and w is an associative word in,+Morphisms: colored Jacobi diagrams on oriented 1-manifolds

$$
\begin{aligned}
\in \mathcal{A}\left(\left\{1^{+},\right.\right. \\
\varnothing
\end{aligned}
$$

$$
\left.4^{+}\right\} \cup\left\{1^{-},\right.
$$

$$
\left., 5^{-}\right\}
$$

$$
\operatorname{Mor}_{t s_{\mathcal{A}}}((4,+-),(5,-+))
$$

The monoidal category ${ }^{t s} \mathcal{A}$ of top-substantial Jacobi diagrams
Objects: pairs (g, w) where $g \in \mathbb{N}$ and w is an associative word in,+Morphisms: colored Jacobi diagrams on oriented 1-manifolds

The monoidal category ${ }^{t s} \mathcal{A}$ of top-substantial Jacobi diagrams
Objects: pairs (g, w) where $g \in \mathbb{N}$ and w is an associative word in,+-
Morphisms: colored Jacobi diagrams on oriented 1-manifolds

Composition: $\begin{aligned} & \text { vertical gluing } \\ & \& \text { contraction }\end{aligned} \quad D_{2} \circ D_{1}:=\frac{D_{1}}{D_{2}} \quad \begin{gathered}\sum \text { of all ways of } \\ \text { githing } i^{-}-\text {-vertices of } D_{1}\end{gathered}$
Tensor product:
horizontal juxtaposition \& "shifts" of colors

$D_{1} \otimes D_{2}:=$| D_{1} | D_{2} |
| :--- | :--- |

Objects: pairs (g, w) where $g \in \mathbb{N}$ and w is an associative word in,+Morphisms: colored Jacobi diagrams on oriented 1-manifolds

Composition: $\begin{aligned} & \text { vertical gluing } \\ & \& \text { contraction }\end{aligned} D_{2} \circ D_{1}:=\frac{D_{1}}{D_{2}} \quad \begin{gathered}\sum \text { of all ways of } \\ \text { gith } i^{i^{+}} i^{-} \text {-vertices of } D_{2} \text {, for all } i\end{gathered}$
Tensor product:
horizontal juxtaposition \& "shifts" of colors

$D_{1} \otimes D_{2}:=$| D_{1} | D_{2} |
| :--- | :--- |

There is an embedding $\mathcal{A} \longleftrightarrow{ }^{t s} \mathcal{A}$.

Theorem (Cheptea-Habiro-M.'08 for $\mathcal{L C}$ ob)
There is a tensor-preserving functor $\tilde{Z}: \mathcal{T}_{q} \mathcal{L C}$ ob $\longrightarrow{ }^{\text {ts }} \mathcal{A}$ which extends the LMO invariant:

Furthermore, (a reduction of) \tilde{Z} is universal among finite-type invariants.

Theorem (Cheptea-Habiro-M.'08 for $\mathcal{L C}$ ob)
There is a tensor-preserving functor $\tilde{Z}: \mathcal{T}_{q} \mathcal{L C}$ ob $\longrightarrow{ }^{\text {ts }} \mathcal{A}$ which extends the LMO invariant:

Furthermore, (a reduction of) \tilde{Z} is universal among finite-type invariants.
(1) The general case with tangles is considered mainly by Nozaki'15 and partly by Katz'15.

Theorem (Cheptea-Habiro-M.' 08 for $\mathcal{L C}$ ob)
There is a tensor-preserving functor $\tilde{Z}: \mathcal{T}_{q} \mathcal{L C}$ ob $\longrightarrow{ }^{\text {ts }} \mathcal{A}$ which extends the LMO invariant:

Furthermore, (a reduction of) \tilde{Z} is universal among finite-type invariants.
(1) The general case with tangles is considered mainly by Nozaki' 15 and partly by Katz' 15 .
(2) There exist other TQFT-like extensions of the LMO invariant by Murakami-Ohtsuki'97 and Cheptea-Le'07.

Construction of the LMO functor $(1 / 3)$

Construction of the LMO functor $(1 / 3)$

Let $(M, \tau) \in \operatorname{Mor}_{\mathcal{T}_{q} \mathcal{L C o b}}(w, v)$.

Construction of the LMO functor $(1 / 3)$

Let $(M, \tau) \in \operatorname{Mor}_{\mathcal{T}_{q} \mathcal{L C o b}}(w, v)$.
Attach a 2-handle to M along every curve β_{j} at the top, and along every curve α_{i} at the bottom, and replace every \bullet by $(+-)$.

Construction of the LMO functor $(1 / 3)$

Let $(M, \tau) \in \operatorname{Mor}_{\mathcal{T}_{q} \mathcal{L C o b}}(w, v)$.
Attach a 2-handle to M along every curve β_{j} at the top, and along every curve α_{i} at the bottom, and replace every \bullet by $(+-)$.

Obtain a quasi-tangle $\gamma \cup \tau$ in a homology cube C, where γ consists of the co-cores of the 2-handles and τ is the initial tangle.

Construction of the LMO functor $(2 / 3)$

$$
\begin{aligned}
& (M, \tau) \in \operatorname{Mor}_{\mathcal{T}_{q} \mathcal{L C o b}}(w, v) \stackrel{?}{\leadsto} \quad Z(M, \tau) \in \operatorname{Mor}_{t s \mathcal{A}}\left(\left(g, w^{\prime}\right),\left(f, v^{\prime}\right)\right) \\
& \text { where } \begin{array}{l}
g:=\sharp\{\bullet \prime \sin w\}, \\
f:=\sharp\left\{w^{\prime}:=\text { (ass. word in } v\right\}, \quad v^{\prime}:=(\text { ass. word in }+,- \text { def. by } w) \\
f \text { def. by } v)
\end{array}
\end{aligned}
$$

Construction of the LMO functor $(2 / 3)$

$$
(M, \tau) \in \operatorname{Mor}_{\mathcal{T}_{q} \mathcal{L C o b}}(w, v) \stackrel{?}{\rightsquigarrow} \quad Z(M, \tau) \in \operatorname{Mor}_{t s_{\mathcal{A}}}\left(\left(g, w^{\prime}\right),\left(f, v^{\prime}\right)\right)
$$

where

$$
\begin{array}{ll}
g:=\sharp\{\bullet \prime \text { 's in } \mathrm{w}\}, & w^{\prime}:=(\text { ass. word in }+,- \text { def. by } w) \\
f:=\sharp\{\bullet ' s \text { in } \mathrm{v}\}, & v^{\prime}:=(\text { ass. word in }+,- \text { def. by } v)
\end{array}
$$

Construction of the LMO functor $(2 / 3)$

$(M, \tau) \in \operatorname{Mor}_{\mathcal{T}_{q} \mathcal{L C o b}}(w, v) \stackrel{?}{\rightsquigarrow} \quad Z(M, \tau) \in \operatorname{Mor}_{t_{s} \mathcal{A}}\left(\left(g, w^{\prime}\right),\left(f, v^{\prime}\right)\right)$
where $g:=\sharp\{\bullet$'s in w$\}, \quad w^{\prime}:=($ ass. word in,+- def. by $w)$ $f:=\sharp\{\bullet \prime s$ in $v\}, \quad v^{\prime}:=($ ass. word in,+- def. by $v)$

Consider the diagrammatic analogue of the PBW isomorphism:

$$
\mathcal{A}\left(\left\{1^{+}, \ldots, g^{+}\right\} \cup\left\{1^{-}, \ldots, f^{-}\right\}, \tau\right) \xrightarrow[\simeq]{\chi} \mathcal{A}(\gamma \cup \tau)
$$

$g=2, w^{\prime}=+-+-, f=2, v^{\prime}=-+$

Construction of the LMO functor $(2 / 3)$

$(M, \tau) \in \operatorname{Mor}_{\mathcal{T}_{q} \mathcal{L C o b}}(w, v) \stackrel{?}{\rightsquigarrow} \quad Z(M, \tau) \in \operatorname{Mor}_{t_{s} \mathcal{A}}\left(\left(g, w^{\prime}\right),\left(f, v^{\prime}\right)\right)$ where $g:=\sharp\{\bullet ’ \mathrm{~s}$ in w$\}, \quad w^{\prime}:=($ ass. word in,+- def. by $w)$ $f:=\sharp\{\bullet ' s$ in $v\}, \quad v^{\prime}:=($ ass. word in,+- def. by $v)$

Consider the diagrammatic analogue of the PBW isomorphism:

$$
\mathcal{A}\left(\left\{1^{+}, \ldots, g^{+}\right\} \cup\left\{1^{-}, \ldots, f^{-}\right\}, \tau\right) \xrightarrow[\simeq]{\chi} \mathcal{A}(\gamma \cup \tau)
$$

$Z(M, \tau):=\chi^{-1} Z(C, \gamma \cup \tau) \in \operatorname{Mor}_{t s_{\mathcal{A}}}\left(\left(g, w^{\prime}\right),\left(f, v^{\prime}\right)\right)$

Construction of the LMO functor $(2 / 3)$

$(M, \tau) \in \operatorname{Mor}_{\mathcal{T}_{q}} \mathcal{L C o b}(w, v) \stackrel{?}{\rightsquigarrow} \quad Z(M, \tau) \in \operatorname{Mor}_{t_{s} \mathcal{A}}\left(\left(g, w^{\prime}\right),\left(f, v^{\prime}\right)\right)$
where $g:=\sharp\{\bullet$'s in $w\}, \quad w^{\prime}:=($ ass. word in,+- def. by $w)$ $f:=\sharp\{\bullet ' s$ in $v\}, \quad v^{\prime}:=($ ass. word in,+- def. by $v)$

Consider the diagrammatic analogue of the PBW isomorphism:

$$
\mathcal{A}\left(\left\{1^{+}, \ldots, g^{+}\right\} \cup\left\{1^{-}, \ldots, f^{-}\right\}, \tau\right) \xrightarrow[\simeq]{\underset{\simeq}{\simeq}} \mathcal{A}(\gamma \cup \tau)
$$

$Z(M, \tau):=\chi^{-1} Z(C, \gamma \cup \tau) \in \operatorname{Mor}_{t_{\mathcal{A}}}\left(\left(g, w^{\prime}\right),\left(f, v^{\prime}\right)\right) \ldots$ is not functorial!

Construction of the LMO functor $(3 / 3)$

$$
\begin{array}{r}
(M, \tau) \in \operatorname{Mor}_{\mathcal{T}_{q}} \mathcal{L C o b}(w, v) \rightsquigarrow Z(M, \tau) \in \operatorname{Mor}_{t s \mathcal{A}}\left(\left(g, w^{\prime}\right),\left(f, v^{\prime}\right)\right) \\
\text { where } \begin{array}{r}
g:=\sharp\{\bullet \prime \text { 's in } w\}, \quad w^{\prime}:=(\text { ass. word in }+,- \text { def. by } w) \\
f:=\sharp\{\bullet ' s \text { in } v\}, \quad v^{\prime}:=(\text { ass. word in }+,- \text { def. by } v)
\end{array}
\end{array}
$$

Construction of the LMO functor $(3 / 3)$

$$
\begin{array}{r}
(M, \tau) \in \operatorname{Mor}_{\mathcal{T}_{q}} \mathcal{L C o b}(w, v) \rightsquigarrow Z(M, \tau) \in \operatorname{Mor}_{t s \mathcal{A}}\left(\left(g, w^{\prime}\right),\left(f, v^{\prime}\right)\right) \\
\text { where } \begin{array}{r}
g:=\sharp\{\bullet \prime \text { in } w\}, \quad w^{\prime}:=(\text { ass. word in }+,- \text { def. by } w) \\
f:=\sharp\{\bullet ' s \text { in } v\}, \quad v^{\prime}:=(\text { ass. word in }+,- \text { def. by } v)
\end{array}
\end{array}
$$

Claim

There is a unique element $\mathrm{T}_{g, w^{\prime}} \in \operatorname{Mor}_{t_{\mathcal{A}}}\left(\left(g, w^{\prime}\right),\left(g, w^{\prime}\right)\right)$ such that $\tilde{Z}(M, \tau):=Z(M, \tau) \circ \mathrm{T}_{g, w^{\prime}}$ defines a functor $\tilde{Z}: \mathcal{T}_{q} \mathcal{L C} o b \longrightarrow{ }^{t s} \mathcal{A}$.

Construction of the LMO functor $(3 / 3)$

$(M, \tau) \in \operatorname{Mor}_{\mathcal{T}_{q} \mathcal{L C o b}}(w, v) \rightsquigarrow Z(M, \tau) \in \operatorname{Mor}_{t \mathcal{S A}_{\mathcal{A}}}\left(\left(g, w^{\prime}\right),\left(f, v^{\prime}\right)\right)$ where

$$
\begin{array}{ll}
g:=\sharp\{\bullet ' s \text { in } w\}, & w^{\prime}:=(\text { ass. word in }+,- \text { def. by } w) \\
f:=\sharp\{\bullet ' s \text { in } v\}, & v^{\prime}:=(\text { ass. word in }+,- \text { def. by } v)
\end{array}
$$

Claim

There is a unique element $\mathrm{T}_{g, w^{\prime}} \in \operatorname{Mor}_{t_{\mathcal{A}}}\left(\left(g, w^{\prime}\right),\left(g, w^{\prime}\right)\right)$ such that $\tilde{Z}(M, \tau):=Z(M, \tau) \circ \mathrm{T}_{g, w^{\prime}}$ defines a functor $\tilde{Z}: \mathcal{T}_{q} \mathcal{L C}$ ob $\longrightarrow{ }^{t s} \mathcal{A}$.

Set

where $\mathrm{T}(x, y) \in \mathcal{A}(\{x, y\})$ is defined in terms of $Z\left(y^{\prime}\right)$ and BCH :

The case of closed surfaces $(1 / 2)$
For all $g \in \mathbb{N}$, set $\widehat{F_{g}}:=F_{g} \cup$ (2-disk).

The case of closed surfaces $(1 / 2)$
For all $g \in \mathbb{N}$, set $\widehat{F_{g}}:=F_{g} \cup$ (2-disk).
There is a category $\mathcal{T}_{q} \mathcal{L C}$ ob with

- objects: non-associative words in the letters,,$+- \bullet$;
- morphisms: framed, oriented tangles τ in Lagrangian cobordisms M between closed surfaces;
- composition: vertical gluing $\left(M_{2}, \tau_{2}\right) \circ\left(M_{1}, \tau_{1}\right):=\frac{\left(M_{1}, \tau_{1}\right)}{\left(M_{2}, \tau_{2}\right)}$.

The case of closed surfaces $(1 / 2)$

For all $g \in \mathbb{N}$, set $\widehat{F_{g}}:=F_{g} \cup$ (2-disk).
There is a category $\mathcal{T}_{q} \mathcal{L C}$ ob with

- objects: non-associative words in the letters,,+- ;
- morphisms: framed, oriented tangles τ in Lagrangian cobordisms M between closed surfaces;
- composition: vertical gluing $\left(M_{2}, \tau_{2}\right) \circ\left(M_{1}, \tau_{1}\right):=\frac{\left(M_{1}, \tau_{1}\right)}{\left(M_{2}, \tau_{2}\right)}$.
$\left\lfloor\right.$ There is no obvious monoidal structure on $\widehat{\mathcal{T}_{q} \mathcal{L C} \text { ob }}$.

The case of closed surfaces $(1 / 2)$

For all $g \in \mathbb{N}$, set $\widehat{F_{g}}:=F_{g} \cup$ (2-disk).
There is a category $\mathcal{T}_{q} \mathcal{L C}$ ob with

- objects: non-associative words in the letters,,+- ;
- morphisms: framed, oriented tangles τ in Lagrangian cobordisms M between closed surfaces;
- composition: vertical gluing $\left(M_{2}, \tau_{2}\right) \circ\left(M_{1}, \tau_{1}\right):=\frac{\left(M_{1}, \tau_{1}\right)}{\left(M_{2}, \tau_{2}\right)}$.

!There is no obvious monoidal structure on $\widehat{\mathcal{T}_{q} \mathcal{L C} \text { ob }}$.

The attachment of a 2-handle defines a functor $\mathcal{T}_{q} \mathcal{L C o b} \longrightarrow \widehat{\mathcal{T}_{q} \mathcal{L C o b}}$.

For all $f, g \in \mathbb{N}$ and for all associative words v, w in,+- , the subspaces of $\operatorname{Mor}_{t_{\mathcal{A}}}((w, g),(v, f))$ spanned by diagrams of the form

define an ideal \mathcal{I} of the category ${ }^{t 5} \mathcal{A}$.

For all $f, g \in \mathbb{N}$ and for all associative words v, w in,+- , the subspaces of $\operatorname{Mor}_{t_{\mathcal{A}}}((w, g),(v, f))$ spanned by diagrams of the form

define an ideal \mathcal{I} of the category ${ }^{t 5} \mathcal{A}$. Set $\widehat{{ }^{5} \mathcal{A}}:={ }^{t s} \mathcal{A} / \mathcal{I}$.

The case of closed surfaces $(2 / 2)$

For all $f, g \in \mathbb{N}$ and for all associative words v, w in,+- , the subspaces of $\operatorname{Mor}_{t_{\mathcal{A}}}((w, g),(v, f))$ spanned by diagrams of the form

define an ideal \mathcal{I} of the category ${ }^{t 5} \mathcal{A}$. Set $\widehat{{ }^{5} \mathcal{A}}:={ }^{t s} \mathcal{A} / \mathcal{I}$.

Theorem (CHM'08 for $\mathcal{L C o b}$)

There exists a unique functor $\tilde{Z}: \widehat{\mathcal{T}_{q} \mathcal{L C o b}} \longrightarrow \widehat{{ }^{5 \mathcal{A}}}$ such that

$$
\begin{aligned}
& \mathcal{T}_{q} \mathcal{L C o b} \xrightarrow{\widetilde{z}}{ }^{t 5 \mathcal{A}} \\
& \frac{\downarrow}{\mathcal{T}_{q} \mathcal{L C o b}}
\end{aligned}
$$

(1) Review of the Kontsevich integral

(2) Review of the LMO invariant
(3) Construction of the LMO functor

4 The LMO homomorphism

The monoid of string-links in homology cylinders
Let $g, n \in \mathbb{N}$.

The monoid of string-links in homology cylinders
Let $g, n \in \mathbb{N}$.
A homology cylinder of genus g is a cobordism M from F_{g} to F_{g} with the same (rational) homology type as $F_{g} \times[0,1]$.

The monoid of string-links in homology cylinders
Let $g, n \in \mathbb{N}$.
A homology cylinder of genus g is a cobordism M from F_{g} to F_{g} with the same (rational) homology type as $F_{g} \times[0,1]$.
An n-strand string-link τ in M is an unframed tangle in M consisting of n non-permuting strands running from top to bottom.

The monoid of string-links in homology cylinders
Let $g, n \in \mathbb{N}$.
A homology cylinder of genus g is a cobordism M from F_{g} to F_{g} with the same (rational) homology type as $F_{g} \times[0,1]$.
An n-strand string-link τ in M is an unframed tangle in M consisting of n non-permuting strands running from top to bottom.
$\left.\mathcal{S C y}\right|_{g, n}:=\{n$-strand string-links in homology cylinders of genus $g\}$

The monoid of string-links in homology cylinders
Let $g, n \in \mathbb{N}$.
A homology cylinder of genus g is a cobordism M from F_{g} to F_{g} with the same (rational) homology type as $F_{g} \times[0,1]$.
An n-strand string-link τ in M is an unframed tangle in M consisting of n non-permuting strands running from top to bottom.
$\left.\mathcal{S C y}\right|_{g, n}:=\{n$-strand string-links in homology cylinders of genus $g\}$

There is a similar monoid $\widehat{\mathcal{S C y}}_{g, n}$ if the surface F_{g} is replaced by \widehat{F}_{g}.

The algebra of symplectic Jacobi diagrams

The algebra of symplectic Jacobi diagrams

The algebra of symplectic Jacobi diagrams

The algebra of symplectic Jacobi diagrams

where

There is an associative multiplication \circ on $\mathcal{A}_{g, n}^{<}$:

The algebra of symplectic Jacobi diagrams

$$
\begin{aligned}
& \text { Set } \mathcal{A}_{g, n}^{<}:=\frac{\mathbb{Q} \cdot\left\{\begin{array}{c}
\text { Jacobi diagrams on } \overbrace{\cdots} \downarrow \text { without free } \\
\text { whose free univalent vert. are colored by } H_{1}\left(F_{g} ; \mathbb{Q}\right) \text { and totally ordered }
\end{array}\right\}}{\text { AS, IHX, STU-like, L, FI }} \\
& \text { where }
\end{aligned}
$$

There is an associative multiplication \circ on $\mathcal{A}_{g, n}^{<}$:

Set $\widehat{\mathcal{A}}_{g, n}^{<}:=\mathcal{A}_{g, n}^{<} / I_{g, n}^{<}$where $I_{g, n}^{<}$is spanned by

Theorem (CHM'08 \& HM'09 for $n=0$)
The LMO functor \tilde{Z} induces monoid homomorphisms

which are universal among finite-type invariants.

The LMO homomorphism

Theorem (CHM'08 \& HM'09 for $n=0$)
The LMO functor \tilde{Z} induces monoid homomorphisms

which are universal among finite-type invariants.
Let $\mathcal{A}_{g, n}^{Y}$ be the subspace of $\mathcal{A}(\left\{1^{ \pm}, \ldots, g^{ \pm}\right\}, \overbrace{\downarrow \cdots \downarrow}^{n}) / F I$ spanned by Jacobi diagrams without free

The LMO homomorphism

Theorem (CHM'08 \& HM'09 for $n=0$)
The LMO functor \tilde{Z} induces monoid homomorphisms

which are universal among finite-type invariants.
Let $\mathcal{A}_{g, n}^{Y}$ be the subspace of $\mathcal{A}(\left\{1^{ \pm}, \ldots, g^{ \pm}\right\}, \overbrace{\downarrow \cdots \downarrow}^{n}) / F I$ spanned by Jacobi diagrams without free

$$
\left.\forall(M, \tau) \in \mathcal{S C y}\right|_{g, n}, \quad \widetilde{Z}(M, \tau)=\exp _{\sqcup}\left(\sum_{i=1}^{g} i_{i^{-}}^{i^{+}}\right) \sqcup \underbrace{\widetilde{Z}^{Y}(M, \tau)}_{\in \mathcal{A}_{g, n}^{Y}}
$$

The LMO homomorphism

Theorem (CHM'08 \& HM'09 for $n=0$)
The LMO functor \tilde{Z} induces monoid homomorphisms

$$
\begin{aligned}
& \left.\mathcal{S C y}\right|_{g, n} \quad z^{<} \quad>\mathcal{A}_{g, n}^{<} \\
& \underset{\mathcal{S C y l}_{g, n} \ldots z^{<}}{\downarrow}>\widehat{\mathcal{A}}_{g, n}^{<}
\end{aligned}
$$

which are universal among finite-type invariants.
Let $\mathcal{A}_{g, n}^{Y}$ be the subspace of $\mathcal{A}(\left\{1^{ \pm}, \ldots, g^{ \pm}\right\}, \overbrace{\downarrow \cdots \downarrow}^{n}) / F I$ spanned by Jacobi diagrams without free

$$
\left.\forall(M, \tau) \in \mathcal{S C y}\right|_{g, n}, \quad \tilde{Z}(M, \tau)=\exp _{\sqcup}\left(\sum_{i=1}^{g} i_{i^{-}}^{i^{+}}\right) \sqcup \underbrace{\tilde{Z}^{\gamma}(M, \tau)}_{\in \mathcal{A}_{\xi, n}^{Y}}
$$

Set $Z^{<}:=\psi \circ \widetilde{Z}^{Y}$ where $\psi: \mathcal{A}_{g, n}^{Y} \xrightarrow{\simeq} \mathcal{A}_{g, n}^{<}$is defined by

Application of the LMO homomorphism to some groups (1/2)

Each of the following groups G embeds into a monoid M of string-links in homology cylinders, and it is thus mapped to a diagrammatic algebra A :

$$
G \underset{z^{<}}{\longrightarrow} M \xrightarrow[z^{<}]{\longrightarrow} A
$$

Application of the LMO homomorphism to some groups (1/2)

Each of the following groups G embeds into a monoid M of string-links in homology cylinders, and it is thus mapped to a diagrammatic algebra A :

$$
G \underset{z^{<}}{\longrightarrow} M \xrightarrow{z^{<}} A
$$

G	M	A
fundamental group $\pi_{1}\left(\widehat{F}_{g}\right)$	$\widehat{\mathcal{S C C y}}_{g, 1}$	$\widehat{\mathcal{A}}_{g, 1}^{<}$

Application of the LMO homomorphism to some groups (1/2)

Each of the following groups G embeds into a monoid M of string-links in homology cylinders, and it is thus mapped to a diagrammatic algebra A :

$$
G \underset{z^{<}}{\longrightarrow} M \xrightarrow{z^{<}} A
$$

G	M	A
fundamental group $\pi_{1}\left(\widehat{F}_{g}\right)$	$\widehat{\mathcal{S C y}}_{g, 1}$	$\widehat{\mathcal{A}}_{g, 1}^{<}$
pure braid group $P B_{n}\left(\widehat{F}_{g}\right)$	$\left.\widehat{\mathcal{S C y}}\right\|_{g, n}$	$\widehat{\mathcal{A}}_{g, n}^{<}$

Application of the LMO homomorphism to some groups (1/2)

Each of the following groups G embeds into a monoid M of string-links in homology cylinders, and it is thus mapped to a diagrammatic algebra A :

G	M	A
fundamental group $\pi_{1}\left(\widehat{F}_{g}\right)$	$\widehat{\mathcal{S C y}}_{g, 1}$	$\widehat{\mathcal{A}}_{g, 1}^{<}$
pure braid group $P B_{n}\left(\widehat{F}_{g}\right)$	$\widehat{\mathcal{S C y}}_{g, n}$	$\widehat{\mathcal{A}}_{g, n}^{<}$
Torelli group $\mathcal{I}\left(\widehat{F}_{g}\right)$	$\widehat{\mathcal{S C y}}_{g, 0}$	$\widehat{\mathcal{A}}_{g, 0}^{<}$

Application of the LMO homomorphism to some groups (1/2)

Each of the following groups G embeds into a monoid M of string-links in homology cylinders, and it is thus mapped to a diagrammatic algebra A :

$$
G \underset{z^{<}}{\longrightarrow} M \xrightarrow{Z^{<}} A
$$

G	M	A
fundamental group $\pi_{1}\left(\widehat{F}_{g}\right)$	$\widehat{\mathcal{S} C y}_{g, 1}$	$\widehat{\mathcal{A}}_{g, 1}^{<}$
pure braid group $P B_{n}\left(\widehat{F}_{g}\right)$	$\widehat{\mathcal{S C y l}}_{g, n}$	$\widehat{\mathcal{A}}_{g, n}^{<}$
Torelli group $\mathcal{I}\left(\widehat{F}_{g}\right)$	${\widehat{\mathcal{S C y}}{ }_{g, 0}}^{\widehat{\mathcal{A}}_{g, 0}^{<}}$	

This map $Z^{<}: G \longrightarrow A$ depends on the associator Φ and the system of meridians \& parallels $\left(\alpha_{1}, \ldots, \alpha_{g}, \beta_{1}, \ldots, \beta_{g}\right)$ on F_{g}.

Application of the LMO homomorphism to some groups $(2 / 2)$

In every case, the algebra homomorphism $Z^{<}: \mathbb{Q}[G] \longrightarrow A$ is filtration-preserving, hence a graded homomorphism:

$$
\operatorname{Gr} Z^{<}: \operatorname{Gr} \mathbb{Q}[G] \longrightarrow \operatorname{Gr} A \simeq A
$$

Application of the LMO homomorphism to some groups $(2 / 2)$

In every case, the algebra homomorphism $Z^{<}: \mathbb{Q}[G] \longrightarrow A$ is filtration-preserving, hence a graded homomorphism:

$$
\operatorname{Gr} Z^{<}: \operatorname{Gr} \mathbb{Q}[G] \longrightarrow \operatorname{Gr} A \simeq A
$$

G	A	$G r \mathbb{Q}[G]$	$G r Z^{<}$	Injectivity of $\mathrm{Gr} Z^{<}$?
$\pi_{1}\left(\widehat{F_{g}}\right)$	$\widehat{\mathcal{A}}_{g, 1}^{<}$	$\frac{T(H)}{\langle\omega\rangle}$ with $H:=H_{1}\left(F_{g} ; \mathbb{Q}\right)$	$h \mapsto h \cdots \cdots$	YES
(Labute'70)				

Application of the LMO homomorphism to some groups (2/2)

In every case, the algebra homomorphism $Z^{<}: \mathbb{Q}[G] \longrightarrow A$ is filtration-preserving, hence a graded homomorphism:

$$
\mathrm{Gr} Z^{<}: \operatorname{Gr} \mathbb{Q}[G] \longrightarrow \mathrm{Gr} A \simeq A
$$

G	A	$\mathrm{Gr} \mathbb{Q}[G]$	$\mathrm{Gr} Z^{<}$	Injectivity of Gr $\chi^{<}$?
$\pi_{1}\left(\widehat{F_{g}}\right)$	$\widehat{\mathcal{A}}_{g, 1}^{<}$	$\begin{gathered} \frac{T(H)}{\langle\omega\rangle} \text { with } H:=H_{1}\left(F_{g} ; \mathbb{Q}\right) \\ (\text { Labute' } 70) \end{gathered}$	$h \mapsto h \cdots$	YES
$P B_{n}\left(\widehat{F_{g}}\right)$	$\widehat{\mathcal{A}}_{g, n}^{<}$	$\begin{gathered} T\left(H^{\oplus n}\right) \\ \langle\text { quad. \& cubic rel. }\rangle \end{gathered}, g \geq 1$		probably YES OK if $g=1$ and $n \in\{2,3\} \text { (Katz'15) }$

Application of the LMO homomorphism to some groups $(2 / 2)$

In every case, the algebra homomorphism $Z^{<}: \mathbb{Q}[G] \longrightarrow A$ is filtration-preserving, hence a graded homomorphism:

$$
\mathrm{Gr} Z^{<}: \operatorname{Gr} \mathbb{Q}[G] \longrightarrow \mathrm{Gr} A \simeq A
$$

G	A	$\mathrm{Gr} \mathbb{Q}[G]$	Gr ${ }^{<}$	Injectivity of Gr $Z^{<}$?
$\pi_{1}\left(\widehat{F_{g}}\right)$	$\widehat{\mathcal{A}}_{g, 1}^{<}$	$\frac{T(H)}{\langle\omega\rangle} \text { with } H:=H_{1}\left(F_{g} ; \mathbb{Q}\right)$ (Labute'70)	$h \mapsto h \cdots$	YES
$P B_{n}\left(\widehat{F_{g}}\right)$	$\widehat{\mathcal{A}}_{g, n}^{<}$	$\begin{gathered} \frac{T\left(H^{\oplus n}\right)}{\langle\text { quad. \& cubic rel. }\rangle}, g \geq 1 \\ \text { (Bezrukavnikov'94, } \\ \text { Nakamura-Takao-Ueno'95) } \end{gathered}$		probably YES OK if $g=1$ and $n \in\{2,3\}(\text { Katz'15 })$
$\mathcal{I}\left(\widehat{F_{g}}\right)$	$\widehat{\mathcal{A}}_{g, 0}^{<}$	$\begin{gathered} \frac{T\left(\Lambda^{3} H / \omega \wedge H\right)}{\langle\text { quad. \& cubic rel. }\rangle}, g \geq 3 \\ \text { (Hain'97) } \end{gathered}$	$x \wedge y \wedge z \mapsto \frac{z}{y} y$ (HM'09)	$\begin{gathered} \text { ??? } \\ \text { OK if } g \geq 6 \text { in deg } \leq 3 \\ \text { (Hain' } 97+\text { Morita' } 99 \text {) } \\ \hline \end{gathered}$

Application of the LMO homomorphism to some groups $(2 / 2)$

In every case, the algebra homomorphism $Z^{<}: \mathbb{Q}[G] \longrightarrow A$ is filtration-preserving, hence a graded homomorphism:

$$
\operatorname{Gr} Z^{<}: \operatorname{Gr} \mathbb{Q}[G] \longrightarrow \operatorname{Gr} A \simeq A
$$

G	A	$\mathrm{Gr} \mathbb{Q}[G]$	Gr $Z^{<}$	Injectivity of Gr $\chi^{<}$?
$\pi_{1}\left(\widehat{F_{g}}\right)$	$\widehat{\mathcal{A}}_{g, 1}^{<}$	$\frac{T(H)}{\langle\omega\rangle}$ with $H:=H_{1}\left(F_{g} ; \mathbb{Q}\right)$ (Labute'70)	$h \mapsto h \cdots$	YES
$P B_{n}\left(\widehat{F_{g}}\right)$	$\widehat{\mathcal{A}}_{g, n}^{<}$	$\begin{gathered} T\left(H^{\oplus n}\right) \\ \langle\text { quad. \& cubic rel. }\rangle \\ \text { (Bezrukavnikov'94, } \\ \text { Nakamura-Takao-Ueno'95) } \end{gathered}$		probably YES OK if $g=1$ and $n \in\{2,3\}$ (Katz'15)
$\mathcal{I}\left(\widehat{F_{g}}\right)$	$\widehat{\mathcal{A}}_{g, 0}^{<}$	$\begin{gathered} \frac{T\left(\wedge^{3} H / \omega \wedge H\right)}{\text { 〈quad. \& cubic rel. }\rangle}, g \geq 3 \\ \text { (Hain'97) } \\ \hline \end{gathered}$	$x \wedge y \wedge z \mapsto{ }_{x}^{z} y$ (HM'09)	$\begin{gathered} ? ? ? \\ \text { OK if } g \geq 6 \text { in deg } \leq 3 \\ \text { (Hain' } 97+\text { Morita'99) } \end{gathered}$

Application of the LMO homomorphism to some groups $(2 / 2)$

In every case, the algebra homomorphism $Z^{<}: \mathbb{Q}[G] \longrightarrow A$ is filtration-preserving, hence a graded homomorphism:

$$
\operatorname{Gr} Z^{<}: \operatorname{Gr} \mathbb{Q}[G] \longrightarrow \operatorname{Gr} A \simeq A
$$

G	A	$\mathrm{Gr} \mathbb{Q}[G]$	$\mathrm{Gr} Z^{<}$	Injectivity of Gr $\chi^{<}$?
$\pi_{1}\left(\widehat{F_{g}}\right)$	$\widehat{\mathcal{A}}_{g, 1}^{<}$	$\begin{gathered} \frac{T(H)}{\langle\omega\rangle} \text { with } H:=H_{1}\left(F_{g} ; \mathbb{Q}\right) \\ (\text { Labute' } 70) \end{gathered}$	$h \mapsto h \cdots$	YES
$P B_{n}\left(\widehat{F_{g}}\right)$	$\widehat{\mathcal{A}}_{g, n}^{<}$	$\begin{gathered} \frac{T\left(H^{\oplus n}\right)}{\langle\text { quad. \& cubic rel. } .}, g \geq 1 \\ \text { (Bezrukavnikov'94, } \\ \text { Nakamura-Takao-Ueno'95) } \end{gathered}$		probably YES OK if $g=1$ and $n \in\{2,3\}(\text { Katz'15 })$
$\mathcal{I}\left(\widehat{F_{g}}\right)$	$\widehat{\mathcal{A}}_{g, 0}^{<}$	$\begin{gathered} T\left(\Lambda^{3} H / \omega \wedge H\right) \\ \text { 〈quad. \& cubic rel. }\rangle \end{gathered}, g \geq 3$	$x \wedge y \wedge z \mapsto{\underset{x}{z}}_{z}^{y}$ (HM'09)	$\begin{gathered} \text { ??? } \\ \text { OK if } g \geq 6 \text { in } \operatorname{deg} \leq 3 \\ \text { (Hain'97+Morita'99) } \end{gathered}$

After "homotopic" reduction, $Z^{<}: \pi_{1}\left(F_{g}\right) \longrightarrow \mathcal{A}_{g, 1}^{<}$is a symplectic expansion built from Φ (M'12).

Application of the LMO homomorphism to some groups $(2 / 2)$

In every case, the algebra homomorphism $Z^{<}: \mathbb{Q}[G] \longrightarrow A$ is filtration-preserving, hence a graded homomorphism:

$$
\operatorname{Gr} Z^{<}: \operatorname{Gr} \mathbb{Q}[G] \longrightarrow \mathrm{Gr} A \simeq A
$$

G	A	$\mathrm{Gr} \mathbb{Q}[G]$	Gr $Z^{<}$	Injectivity of Gr ${ }^{<}$?
$\pi_{1}\left(\widehat{F_{g}}\right)$	$\widehat{\mathcal{A}}_{g, 1}^{<}$	$\begin{gathered} \frac{T(H)}{\langle\omega\rangle} \text { with } H:=H_{1}\left(F_{g} ; \mathbb{Q}\right) \\ (\text { Labute' } 70) \end{gathered}$	$h \mapsto h \cdots$	YES
$P B_{n}\left(\widehat{F_{g}}\right)$	$\widehat{\mathcal{A}}_{g, n}^{<}$	$\begin{aligned} & T\left(H^{\oplus n}\right) \\ & \langle\text { quad. \& cubic rel. }\rangle \\ & \text { (Bezrukavnikov'94, } \\ & \text { Nakamura-Takao-Ueno'95) } \\ & \text { N } \end{aligned}$		probably YES OK if $g=1$ and $n \in\{2,3\}$ (Katz'15)
$\mathcal{I}\left(\widehat{F_{g}}\right)$	$\widehat{\mathcal{A}}_{g, 0}^{<}$	$\begin{gathered} \frac{T\left(\Lambda^{3} H / \omega \wedge H\right)}{\text { 〈quad. \& cubic rel. }\rangle}, g \geq 3 \\ \text { (Hain'97) } \\ \hline \end{gathered}$	$x \wedge y \wedge z \mapsto \stackrel{z}{y}$ (HM'09)	$\begin{gathered} \text { ??? } \\ \text { OK if } g \geq 6 \text { in deg } \leq 3 \\ \text { (Hain'97+Morita'99) } \end{gathered}$

After "homotopic" reduction, $Z^{<}: \pi_{1}\left(F_{g}\right) \longrightarrow \mathcal{A}_{g, 1}^{<}$is a symplectic expansion built from Φ ($\mathrm{M}^{\prime} 12$).

After "homotopic" reduction, $Z^{<}: P B_{2}\left(\widehat{F_{1}}\right) \longrightarrow \widehat{\mathcal{A}_{1,2}}$ recovers Enriquez' formulas building an elliptic associator $(\Phi, X(\Phi), Y(\Phi))$ from Φ (Katz'15).

