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w−Knots from Z to A
Dror Bar−Natan, Luminy, April 2010
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"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified)
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Abstract I will define w-knots, a class of knots wider than
ordinary knots but weaker than virtual knots, and show that
it is quite easy to construct a universal finite invariant Z of
w-knots. In order to study Z we will introduce the “Euler
Operator” and the “Infinitesimal Alexander Module”, at the
end finding a simple determinant formula for Z. With no
doubt that formula computes the Alexander polynomial A,
except I don’t have a proof yet.
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The Finite Type Story. With X := /−G
set Vm := {V : wK → Q : V (X>m) = 0}.
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A Ribbon 2-Knot is a surface S embedded in R4 that bounds
an immersed handlebody B, with only “ribbon singularities”;
a ribbon singularity is a disk D of trasverse double points,
whose preimages in B are a disk D1 in the interior of B and
a disk D2 with D2 ∩ ∂B = ∂D2, modulo isotopies of S alone.
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The Bracket-Rise Theorem. Aw is isomorphic to
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Corollaries. (1) Related to Lie algebras! (2) Only wheels and
isolated arrows persist.
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Tij = |low(#j) ∈ span(#i)|,
si = sign(#i), di = dir(#i),
S = diag(sidi),
A = det

(
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)
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Conjecture. For u-knots, A is the Alexander polynomial.
Theorem. With w : xk 7→ wk = (the k-wheel),

Z = N expAw

(

−w
(

logQJxK A(ex)
))

mod wkwl = wk+l,
Z = N · A−1(ex)

So What? • Habiro-Shima did this already, but not quite. (HS: Finite

Type Invariants of Ribbon 2-Knots, II, Top. and its Appl. 111 (2001).)
• New (?) formula for Alexander, new (?) “Infinitesimal Alexander
Module”. Related to Lescop’s arXiv:1001.4474?
• An “ultimate Alexander invariant”: local, composes well, behaves
under cabling. Ought to also generalize the multi-variable Alexander
polynomial and the theory of Milnor linking numbers.
• Tip of the Alekseev-Torossian-Kashiwara-Vergne iceberg (AT:
The Kashiwara-Vergne conjecture and Drinfeld’s associators,

arXiv:0802.4300).
• Tip of the v-knots iceberg. May lead to other polynomial-time
polynomial invariants. “A polynomial’s worth a thousand exponentials”.

Also see http://www.math.toronto.edu/˜drorbn/papers/WKO/

Proof Sketch. Let E be the Euler operator, “multiply anything by
its degree”, f 7→ xf ′ in QJxK, so Eex = xex and

We need to show that Z−1EZ = N ′
− tr

`

(I − B)−1TSe−xS
´

w1,

with B = T (e−xS
− I). Note that aeb

−eba = (1−ead b)(a)eb implies

so with the matrices Λ and Y defined as

we have EZ − N ′′ = tr(SΛ), Λ = −BY − Te−xSw1, and Y =
BY + Te−xSw1. The theorem follows.
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