I understand Drinfel'd and Alekseev-Torossian, I don't understand Etingof-Kazhdan yet, and I'm clueless about Kontsevich

Dror Bar-Natan, June 2010

Abstract

The title, minus the last 5 words, completely describes what I want to share with you while we are in Montpellier. I'll tell you that Drinfel'd associators are the solutions of the homomorphic expansion problem for u-knots (really, knotted trivalent graphs), that Kashiwara-Vergne-Alekseev-Torossian series are the same for w-knots, that the two are related because u - and w - knots are related, and that there are strong indications that " v knots" are likewise related to the Etingof-Kazhdan theory of quantization of Lie bialgebras, though some gaps remain and significant ideas are probably still missing. Kontsevich's quantization of Poisson structures seems like it could be similar, but I am completely clueless as for how to put it under the same roof. I want as much as your air-time and attention as I can get! So I'll talk for as long as you schedule me or until you stop me, following parts of the following 8 handouts in an order that will be negotiated in real time.

Contents

$1 \quad{ }^{\prime} \operatorname{proj} \mathcal{K}^{w}\left(\uparrow_{n}\right) \cong_{j} \mathcal{U}\left(\left(\mathbf{a}_{n} \oplus \operatorname{tder}_{n}\right) \ltimes \operatorname{tr}_{n}\right) "$, Montpellier, June $2010 \quad 2$
2 "w-Knots, Alekseev-Torossian, and baby Etingof-Kazhdan", — 4
3 "w-Knots and Convolutions", Bonn, August 2009 6
4 "w-Knots from Z to A", Goettingen, April $2010 \quad 8$
5 "18 Conjectures", Toronto, May 2010 9
6 "Algebraic Knot Theory", Copenhagen, October 200810
7 "Pentagon and Hexagon Equations Following Furusho", by Zsuzsanna Dancso 12
8 "From Stonehenge to Witten", Oporto, July 2004

$1 \quad " \operatorname{proj} \mathcal{K}^{w}\left(\uparrow_{n}\right) \cong_{j} \mathcal{U}\left(\left(\mathbf{a}_{n} \oplus \operatorname{tder}_{n}\right) \ltimes \operatorname{tr}_{n}\right) "$, Montpellier, June 2010

1. $\operatorname{proj} \mathcal{K}^{w}\left(\uparrow_{n}\right) \cong_{j} \mathcal{U}\left(\left(\mathfrak{a}_{n} \oplus \mathfrak{t d e r}_{n}\right) \ltimes \mathfrak{t r}_{n}\right)$ - All Signs Are Wrong! -

Dror Bar-Natan, Montpe
Cans and Can't Yets.
$\binom{$ arbitrary algebraic }{ structure }$\xrightarrow[\text { machine }]{\text { projectivization }}\binom{$ a problem in }{ graded algebra }

- Feed knot-things, get Lie algebra things.
- (u-knots) \rightarrow (Drinfel'd associators).
- (w-knots) \rightarrow (K-V-A-E-T).
- Dream: (v-knots) \rightarrow (Etingof-Kazhdan).
- Clueless: (???) \rightarrow (Kontsevich)?
- Goals: add to the Knot Atlas, produce a working AKT and touch ribbon 1-knots, rip benefits from truly understanding quantum groups.

u-Knots
(PA :=Planar Algebra) R123:

$$
\left.: ~ ’=\rangle, \lambda^{\prime}=\right\rangle\left\langle, \lambda^{-\lambda=}=\lambda^{\prime}\right\rangle_{0 \operatorname{legs}}
$$

$$
\left\{\begin{array}{l}
\mathrm{v}-\mathrm{knots} \\
\& \text { links }
\end{array}\right\}=\mathrm{CA}\langle
$$

(CA $:=$ Circuit Algebra)

$$
\langle | F
$$

$$
\mathrm{R} 23:
$$

$$
\left.\lambda^{\prime}=\right\rangle\left\langle,{ }^{\prime}\langle=\rangle\langle\prime\rangle\right.
$$

$$
\{\mathrm{w}-\text { Tangles }\}=\mathrm{v} \text {-Tangles } / \mathrm{OC}:{ }^{\prime} \times
$$

 0
0
0
0
0
A Ribbon 2-Knot is a surface S embedded in \mathbb{R}^{4} that bounds an immersed handlebody B, with only "ribbon singularities"; a ribbon singularity is a disk D of trasverse double points, whose preimages in B are a disk D_{1} in the interior of B and a disk D_{2} with $D_{2} \cap \partial B=\partial D_{2}$, modulo isotopies of $\underline{S}_{\text {S }}$ alone.

The w-relations include R234, VR1234, D, Overcrossings Commute (OC) but not UC:

as

"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified)
Also see http://www.math.toronto.edu/~drorbn/papers/WKO

I understand Drinfel'd and Alekseev-Torossian, I don't understand
I understand Drinfel'd and Alekseev-Torossian, I don't understand
Etingof-Kazhdan yet, and I'm clueless about Kontsevich

- Has kinds, objects, operations, and maybe constants.
- Perhaps subject to some axioms.
- We always allow formal linear combinations.

Homomorphic expansions for a filtered algebraic structure \mathcal{K} :

ops $\propto \mathcal{K}$
\Downarrow

$\mathrm{ops}^{\circ} \operatorname{gr} \mathcal{K}:=\mathcal{K}_{0} / \mathcal{K}_{1} \oplus \mathcal{K}_{1} / \mathcal{K}_{2} \oplus \mathcal{K}_{2} / \mathcal{K}_{3} \oplus \mathcal{K}_{3} / \mathcal{K}_{4} \oplus \ldots$
An expansion is a filtered $Z: \mathcal{K} \rightarrow \operatorname{gr} \mathcal{K}$ that "covers" the identity on $\operatorname{gr} \mathcal{K}$. A homomorphic expansion is an expansion that respects all relevant "extra" operations.
Reality. gr \mathcal{K} is often too hard. An \mathcal{A}-expansion is a graded "guess" \mathcal{A} with a surjection $\tau: \mathcal{A} \rightarrow \operatorname{gr} \mathcal{K}$ and a filtered $Z:$ $\mathcal{K} \rightarrow \mathcal{A}$ for which $(\operatorname{gr} Z) \circ \tau=I_{\mathcal{A}}$. An \mathcal{A}-expansion confirms \mathcal{A} and yields an ordinary expansion. Same for "homomorphic".

Filtered algebraic structures are cheap and plenty. In any \mathcal{K}, allow formal linear combinations, let $\mathcal{K}_{1}=\mathcal{I}$ be the ideal generated by differences (the "augmentation ideal"), and let $\mathcal{K}_{m}:=\left\langle\left(\mathcal{K}_{1}\right)^{m}\right\rangle$ (using all available "products"). In this case, set $\operatorname{proj} \mathcal{K}:=\operatorname{gr} \mathcal{K}$.
Examples. 1. The projectivization of a group is a graded associative algebra.
2. Pure braids - $P B_{n}$ is generated by $x_{i j}$, "strand i goes around strand j once", modulo "Reidemeister moves". $A_{n}:=$ $\operatorname{gr} P B_{n}$ is generated by $t_{i j}:=x_{i j}-1$, modulo the $4 T$ relations $\left[t_{i j}, t_{i k}+t_{j k}\right]=0$ (and some lesser ones too). Much happens in A_{n}, including the Drinfel'd theory of associators.
3. Quandle: a set Q with an op \wedge s.t.

$$
\begin{gathered}
1 \wedge x=1, \quad x \wedge 1=x, \quad \text { (appetizers) } \\
(x \wedge y) \wedge z=(x \wedge z) \wedge(y \wedge z) \quad \text { (main) }
\end{gathered}
$$

$\operatorname{proj} Q$ is a graded Leibniz algebra: Roughly, set $\bar{v}:=(v-1)$ (these generate $I!$), feed $1+\bar{x}, 1+\bar{y}, 1+\bar{z}$ in (main), collect the surviving terms of lowest degree:
$(\bar{x} \wedge \bar{y}) \wedge \bar{z}=(\bar{x} \wedge \bar{z}) \wedge \bar{y}+\bar{x} \wedge(\bar{y} \wedge \bar{z})$.

1． $\operatorname{proj} \mathcal{K}^{w}\left(\uparrow_{n}\right) \cong_{j} \mathcal{U}\left(\left(\mathfrak{a}_{n} \oplus \mathfrak{t d e r}_{n}\right) \ltimes \mathfrak{t r}_{n}\right)$ ，continued．Wheels and Trees．With \mathcal{P} for \mathcal{P} rimitives，

exact?

$$
\text { So proj } \mathcal{K}^{w}\left(\uparrow_{n}\right) \cong \mathcal{U}(\langle\text { trees }\rangle \ltimes\langle\text { wheels }\rangle) .
$$

Imperfect Thumb－Rule．Take R3（say），substitute $\mathbb{K} \rightarrow X+$ Some A－T Notions． \mathfrak{a}_{n} is the vector space with basis $\xrightarrow{\infty}$ ，keep the lowest degree terms that don＇t immediately die：
 $x_{1}, \ldots, x_{n}, \mathfrak{l i} e_{n}=\mathfrak{l i e}\left(\mathfrak{a}_{n}\right)$ is the free Lie algebra， $\mathrm{Ass}_{n}=$ $\mathcal{U}\left(\mathrm{Fie}_{n}\right)$ is the free associative algera＂of words＂， $\operatorname{tr}: \mathrm{Ass}_{n}^{+} \rightarrow$ $\mathfrak{t r}_{n}=\operatorname{Ass}_{n}^{+} /\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=x_{i_{2}} \cdots x_{i_{m}} x_{i_{1}}\right)$ is the＂trace＂into ＂cyclic words＂， $\mathfrak{d e r}{ }_{n}=\mathfrak{d e r}\left(\mathfrak{l i e}_{n}\right)$ are all the derivations，and

$$
\mathfrak{t d e r}_{n}=\left\{D \in \mathfrak{d e r}_{n}: \forall i \exists a_{i} \text { s.t. } D\left(x_{i}\right)=\left[x_{i}, a_{i}\right]\right\}
$$

are＂tangential derivations＂，so $D \leftrightarrow\left(a_{1}, \ldots, a_{n}\right)$ is a vec－ tor space isomorphism $\mathfrak{a}_{n} \oplus \mathfrak{t d e r}_{n} \cong \bigoplus_{n} \mathfrak{l i e}_{n}$ ．Finally，div ： $\mathfrak{t d e r}_{n} \rightarrow \mathfrak{t r}_{n}$ is $\left(a_{1}, \ldots, a_{n}\right) \mapsto \sum_{k} \operatorname{tr}\left(x_{k}\left(\partial_{k} a_{k}\right)\right)$ ，where for $a \in \mathrm{Ass}_{n}^{+}, \partial_{k} a \in \mathrm{Ass}_{n}$ is determined by $a=\sum_{k}\left(\partial_{k} a\right) x_{k}$ ， and $j: \mathrm{TAut}_{n}=\exp \left(\mathfrak{t d e r}_{n}\right) \rightarrow \mathfrak{t r}_{n}$ is $j\left(e^{D}\right)=\frac{e^{D}-1}{D} \cdot \operatorname{div} D$ ．
Theorem．Everything matches．〈trees〉 is $\mathfrak{a}_{n} \oplus \mathfrak{d d e r}_{n}$ as Lie algebras，$\left\langle\right.$ wheels〉 is $\mathfrak{t r}_{n}$ as $\left\langle\right.$ trees $/ \mathfrak{t d e r}_{n}$－modules， $\operatorname{div} D=$ ${\iota^{-1}}^{-1}(u-l)(D)$ ，and $e^{u D} e^{-l D}=e^{j D}$ ．
Differential Operators．Interpret $\hat{\mathcal{U}}(I \mathfrak{g})$ as tangential differen－ tial operators on $\operatorname{Fun}(\mathfrak{g})$ ：
－$\varphi \in \mathfrak{g}^{*}$ becomes a multiplication operator．
－$x \in \mathfrak{g}$ becomes a tangential derivation，in the direction of the action of ad $x:(x \varphi)(y):=\varphi([x, y])$ ．
Trees become vector fields and $u D \mapsto l D$ is $D \mapsto D^{*}$ ．So $\operatorname{div} D$ is $D-D^{*}$ and $j D=\log \left(e^{D}\left(e^{D}\right)^{*}\right)=\int_{0}^{1} d t e^{t D} \operatorname{div} D$ ．
Special Derivations．Let $\mathfrak{s d e r}_{n}=\left\{D \in \mathfrak{t o e r}_{n}: D\left(\sum x_{i}\right)=0\right\}$ ． Theorem． $\mathfrak{s d e r}_{n}=\pi \alpha$（proju－tangles），where α is the obvious map proju－tangles \rightarrow proj w－tangles．
Proof．After decoding，this becomes Lemma 6.1 of Drinfel＇d＇s amazing $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ paper．
The Alexander Theorem．$\quad T_{i j}=|\operatorname{low}(\# j) \in \operatorname{span}(\# i)|$ ，

Proof．

The Bracket－Rise Theorem． $\mathcal{A}^{w}\left(\uparrow_{1}\right)$ is isomorphic to

Corollaries．（1）Related to Lie algebras！（2）Only wheels and isolated arrows persist．
To Lie Algebras．With $\left(x_{i}\right)$ and $\left(\varphi^{j}\right)$ dual bases of \mathfrak{g} and \mathfrak{g}^{*} and with $\left[x_{i}, x_{j}\right]=\sum b_{i j}^{k} x_{k}$ ，we have $\mathcal{A}^{w} \rightarrow \mathcal{U}$ via

$$
\longrightarrow \sum_{i, j, k, l, m, n=1}^{\operatorname{dim} \mathfrak{g}} b_{i j}^{k} b_{k l}^{m} \varphi^{i} \varphi^{j} x_{n} x_{m} \varphi^{l} \in \mathcal{U}\left(I \mathfrak{g}:=\mathfrak{g}^{*} \rtimes \mathfrak{g}\right)
$$

Theorem（PBW，＂U（Ig）${ }^{\otimes n} \cong \mathcal{S}(I \mathfrak{g})^{\otimes n ")}$ ．As vector spaces， $\mathcal{A}^{w}\left(\uparrow_{n}\right) \cong \mathcal{B}_{n}$ ，where

Conjecture．For u－knots，A is the Alexander polynomial． Theorem．With $w: x^{k} \mapsto w_{k}=($ the k－wheel），

$$
Z=N \exp _{\mathcal{A}^{w}}\left(-w\left(\log _{\mathbb{Q} \llbracket x \rrbracket} A\left(e^{x}\right)\right)\right) \quad \begin{array}{r}
\bmod w_{k} w_{l}=w_{k+l} \\
Z=N \cdot A^{-1}\left(e^{x}\right)
\end{array}
$$

This is the ultimate Alexander invariant！computable in poly－ nomial time，local，composes well，behaves under cabling． Seems to significantly generalize the multi－variable Alexander polynomial and the theory of Milnor linking numbers．But it＇s ugly，and much work remains．

2 "w-Knots, Alekseev-Torossian, and baby Etingof-Kazhdan",

2. w-Knots, Alekseev-Torossian, and

I understand Drinfel'd and Alekseev-Torossian, I don't understand baby Etingof-Kazhdan
Trivalent w-Tangles. Dror Bar-Natan, Montpellier, June 2010, http://www.math.toronto.edu/~drorbn/Talks/Montpellier-1006/
$\mathrm{wTT}=\mathrm{CA}\left\langle\begin{array}{c|c|c}\mathrm{w}- & \begin{array}{c}\mathrm{w}- \\ \text { generators }\end{array} & \begin{array}{c}\text { unary w- } \\ \text { relations } \\ \text { operations }\end{array}\end{array}\right\rangle$

The w-relations include R234, VR1234, D, Overcrossings Commute (OC) but not UC, $W^{2}=1$, and funny interactions between the wen and the cap and over- and under-crossings:

w-Jacobi diagrams and $\mathcal{A} . \mathcal{A}^{w}(Y \uparrow) \cong \mathcal{A}^{w}(\uparrow \uparrow \uparrow)$ is

An Associator:

$$
(A B) C \xrightarrow{\Phi \in \mathcal{U}(\mathfrak{g})^{\otimes 3}} A(B C)
$$

satisfying the "pentagon",

$$
\begin{gathered}
((A B) C) D \underset{(\Delta 11) \Phi}{\longrightarrow}(A B)(C D) \\
V_{\Phi 1} \quad(11 \Delta) \Phi \\
(A(B C)) D \quad A(B(C D)) \\
(1 \Delta 1) \Phi \\
A(B C) D)
\end{gathered}
$$

$\Phi 1 \cdot(1 \Delta 1) \Phi \cdot 1 \Phi=(\Delta 11) \Phi \cdot(11 \Delta) \Phi$
The hexagon? Never heard of it.
(1)

Knot-Theoretic statement. There exists a homomorphic expansion Z for trivalent w-tangles. In particular, Z should respect $R 4$ and intertwine annulus and disk unzips:
(1)
2)

(3)

Diagrammatic statement. Let $R=\exp \hat{\wedge} \hat{\not} \in \mathcal{A}^{w}(\uparrow \uparrow)$. There exist $\omega \in \mathcal{A}^{w}(\uparrow)$ and $V \in \mathcal{A}^{w}(\uparrow \uparrow)$ so that
2. w-Knots, Alekseev-Torossian, and baby Etingof-Kazhdan, continued.

Claim. With $\Phi:=Z(\Delta)$, the above relation becomes equivalent to the Drinfel'd's pentagon of the theory of quasi-Hopf algebras.
Proof.

as above, yet allow only "compact" knots - nothing runs to ∞.
$\mathcal{K}^{w} \leftrightarrow \mathcal{K}^{\bar{w}}$ equivalence. \mathcal{K}^{w} has a homomorphic expansion of $\mathcal{K}^{\bar{w}}$ has a homomorphic expansion.
\Longrightarrow Puncture \mathcal{A} and Z :

Theorem. The generators of $\mathcal{K}^{\bar{w}}$ can be written in terms of the generators of \mathcal{K}^{u} (i.e., given Φ, can write a formula for V.
Sketch.
$\overparen{\square} \rightarrow$ and $\rightarrow \rightarrow \rightarrow \square$, so enough to write any T

Note.

$\mathcal{C}^{\bar{w}}$. Allow tubes and strands and tube-strand vertices

$\{$ SolkV $\} \rightarrow\left\{{ }^{\prime \prime}\right.$ sssociators' $\}:$ Trivial - a tetrahedron has 4 vertices.

3 "w-Knots and Convolutions", Bonn, August 2009

Filtered algebraic structures are cheap and plenty. In any The w-relations include R234, VR1234, M, Overcrossings \mathcal{K}, allow formal linear combinations, let \mathcal{K}_{1} be the ideal Commute (OC) but not UC, $W^{2}=1$, and funny interactions generated by differences (the "augmentation ideal"), and let $\mathcal{K}_{m}:=\left\langle\left(\mathcal{K}_{1}\right)^{m}\right\rangle$ (using all available "products").

Convolutions on Lie Groups and Lie Algebras and Ribbon 2-Knots, Page 2

Knot-Theoretic statement. There exists a homomorphic ex- From wTT to $\mathcal{A}^{w} . \mathrm{gr}_{m}$ wTT $:=\{m-\mathrm{cubes}\} /\{(m+1)-\mathrm{cubes}\}$: pansion Z for trivalent w-tangles. In particular, Z should respect $R 4$ and intertwine annulus and disk unzips:
(1)

ς

(3)

Diagrammatic statement. Let $R=\exp \hat{\uparrow} \hat{\wedge} \in \mathcal{A}^{w}(\uparrow \uparrow)$. There exist $\omega \in \mathcal{A}^{w}(\uparrow)$ and $V \in \mathcal{A}^{w}(\uparrow \uparrow)$ so that
(1)

Algebraic statement. With $I \mathfrak{g}:=\mathfrak{g}^{*} \rtimes \mathfrak{g}$, with $c: \hat{\mathcal{U}}(I \mathfrak{g}) \rightarrow$ $\hat{\mathcal{H}}(I \mathfrak{g}) / \hat{\mathcal{U}}(\mathfrak{g})=\hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ the obvious projection, with S the antipode of $\hat{\mathcal{U}}(I \mathfrak{g})$, with W the automorphism of $\hat{\mathcal{U}}(I \mathfrak{g})$ induced by flipping the sign of \mathfrak{g}^{*}, with $r \in \mathfrak{g}^{*} \otimes \mathfrak{g}$ the identity element and with $R=e^{r} \in \hat{\mathcal{U}}(I \mathfrak{g}) \otimes \hat{\mathcal{U}}(\mathfrak{g})$ there exist $\omega \in \hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ and $V \in \hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2}$ so that
(1) $V(\Delta \otimes 1)(R)=R^{13} R^{23} V$ in $\hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2} \otimes \hat{\mathcal{U}}(\mathfrak{g})$
(2) $V \cdot S W V=1$
(3) $(c \otimes c)(V \Delta(\omega))=\omega \otimes \omega$

Unitary statement. There exists $\omega \in \operatorname{Fun}(\mathfrak{g})^{G}$ and an (infinite order) tangential differential operator V defined on $\operatorname{Fun}\left(\mathfrak{g}_{x} \times\right.$ \mathfrak{g}_{y}) so that
(1) $V \widehat{e^{x+y}}=\widehat{e^{x}} \widehat{e^{y}} V$ (allowing $\hat{\mathcal{U}}(\mathfrak{g})$-valued functions)
(2) $V V^{*}=I \quad$ (3) $V \omega_{x+y}=\omega_{x} \omega_{y}$

Group-Algebra statement. There exists $\omega^{2} \in \operatorname{Fun}(\mathfrak{g})^{G}$ so that for every $\phi, \psi \in \operatorname{Fun}(\mathfrak{g})^{G}$ (with small support), the following holds in $\hat{\mathcal{U}}(\mathfrak{g})$:
$\left(\operatorname{shhh}, \omega^{2}=j^{1 / 2}\right)$

$$
\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) \omega_{x+y}^{2} e^{x+y}=\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) \omega_{x}^{2} \omega_{y}^{2} e^{x} e^{y}
$$

Convolutions statement (Kashiwara-Vergne). Convolutions of invariant functions on a Lie group agree with convolutions of invariant functions on its Lie algebra. More accurately, let G be a finite dimensional Lie group and let \mathfrak{g} be its Lie algebra, let $j: \mathfrak{g} \rightarrow \mathbb{R}$ be the Jacobian of the exponential map $\exp : \mathfrak{g} \rightarrow G$, and let $\Phi: \operatorname{Fun}(G) \rightarrow \operatorname{Fun}(\mathfrak{g})$ be given by $\Phi(f)(x):=j^{1 / 2}(x) f(\exp x)$. Then if $f, g \in \operatorname{Fun}(G)$ are Ad-invariant and supported near the identity, then

$$
\Phi(f) \star \Phi(g)=\Phi(f \star g) .
$$

Diagrammatic to Algebraic. With $\left(x_{i}\right)$ and $\left(\varphi^{j}\right)$ dual bases of \mathfrak{g} and \mathfrak{g}^{*} and with $\left[x_{i}, x_{j}\right]=\sum b_{i j}^{k} x_{k}$, we have $\mathcal{A}^{w} \rightarrow \mathcal{U}$ via

Unitary \Longleftrightarrow Algebraic. The key is to interpret $\hat{\mathcal{U}}(I \mathfrak{g})$ as tangential differential operators on $\operatorname{Fun}(\mathfrak{g})$:

- $\varphi \in \mathfrak{g}^{*}$ becomes a multiplication operator.
- $x \in \mathfrak{g}$ becomes a tangential derivation, in the direction of the action of $\operatorname{ad} x:(x \varphi)(y):=\varphi([x, y])$.
- $c: \hat{\mathcal{U}}(I \mathfrak{g}) \rightarrow \hat{\mathcal{U}}(I \mathfrak{g}) / \hat{\mathcal{U}}(\mathfrak{g})=\hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ is "the constant term". Unitary \Longrightarrow Group-Algebra. $\iint \omega_{x+y}^{2} e^{x+y} \phi(x) \psi(y)$
$=\left\langle\omega_{x+y}, \omega_{x+y} e^{x+y} \phi(x) \psi(y)\right\rangle=\left\langle V \omega_{x+y}, V e^{x+y} \phi(x) \psi(y) \omega_{x+y}\right\rangle$ $=\left\langle\omega_{x} \omega_{y}, e^{x} e^{y} V \phi(x) \psi(y) \omega_{x+y}\right\rangle=\left\langle\omega_{x} \omega_{y}, e^{x} e^{y} \phi(x) \psi(y) \omega_{x} \omega_{y}\right\rangle$
$=\iint \omega_{x}^{2} \omega_{y}^{2} e^{x} e^{y} \phi(x) \psi(y)$.
Convolutions and Group Algebras (ignoring all Jacobians). If G is finite, A is an algebra, $\tau: G \rightarrow A$ is multiplicative then $(\operatorname{Fun}(G), \star) \cong(A, \cdot)$ via $L: f \mapsto \sum f(a) \tau(a)$. For Lie (G, \mathfrak{g}),

with $L_{0} \psi=\int \psi(x) e^{x} d x \in \hat{\mathcal{S}}(\mathfrak{g})$ and $L_{1} \Phi^{-1} \psi=\int \psi(x) e^{x} \in$ $\hat{\mathcal{U}}(\mathfrak{g})$. Given $\psi_{i} \in \operatorname{Fun}(\mathfrak{g})$ compare $\Phi^{-1}\left(\psi_{1}\right) \star \Phi^{-1}\left(\psi_{2}\right)$ and $\Phi^{-1}\left(\psi_{1} \star \psi_{2}\right)$ in $\hat{\mathcal{U}}(\mathfrak{g}): \quad$ (shhh, $L_{0 / 1}$ are "Laplace transforms")
\star in $G: \iint \psi_{1}(x) \psi_{2}(y) e^{x} e^{y}$ \star in $\mathfrak{g}: \iint \psi_{1}(x) \psi_{2}(y) e^{x+y}$
We skipped... • The Alexander • v-Knots, quantum groups and polynomial and Milnor numbers. Etingof-Kazhdan.
- u-Knots, Alekseev-Torossian, - BF theory and the successful and Drinfel'd associators. religion of path integrals.
- The simplest problem hyperbolic geometry solves.

4 "w-Knots from Z to A", Goettingen, April 2010

w-Knots from Z to A Dror Bar-Natan, Luminy, April 2010
http://www.math.toronto.edu/~drorbn/Talks/Luminy-1004/
Abstract I will define w-knots, a class of knots wider than ordinary knots but weaker than virtual knots, and show that it is quite easy to construct a universal finite invariant Z of w-knots. In order to study Z we will introduce the "Euler Operator" and the "Infinitesimal Alexander Module", at the end finding a simple determinant formula for Z. With no doubt that formula computes the Alexander polynomial A, except I don't have a proof yet.

A Ribbon 2-Knot is a surface S embedded in \mathbb{R}^{4} that bounds an immersed handlebody B, with only "ribbon singularities"; a ribbon singularity is a disk D of trasverse double points, whose preimages in B are a disk D_{1} in the interior of B and a disk D_{2} with $D_{2} \cap \partial B=\partial D_{2}$, modulo isotopies of S alone.
 w-Knots.

$$
w K=C A\langle>\rangle\rangle / \mathrm{R} 23, \mathrm{OC}
$$

 $=P A\langle X$

R23, VR123, D, OC
Winter

The Finite Type Story. With $\not \subset \alpha:=$ メー \times
$\oplus \mathcal{V}_{m} / \mathcal{V}_{m-1}$ set $\mathcal{V}_{m}:=\left\{V: w K \rightarrow \mathbb{Q}: V\left(\not{ }_{2}>m\right)=0\right\}$.

TC arrow diagrams
$\mathcal{R}=\left\langle\frac{\mathrm{TC}}{4 \mathrm{~T}}\right\rangle \rightarrow \mathcal{D}=\left\langle\underset{m \text { arrows }}{\sim_{n}}\right\rangle \rightarrow \bigoplus\left\langle\nmid \chi^{m}\right\rangle /\left\langle\chi^{m+1}\right\rangle \rightarrow 0$

R3.
"God created the knots, all else in topology is the work of mortals." Leopold Kronecker (modified)

The Bracket-Rise Theorem. \mathcal{A}^{w} is isomorphic to Proof.

$\overrightarrow{I H X}:$

Corollaries. (1) Related to Lie algebras! (2) Only wheels and isolated arrows persist.

Habiro - can you do better? The Alexander Theorem. $\quad T_{i j}=|\operatorname{low}(\# j) \in \operatorname{span}(\# i)|$,

Conjecture. For u-knots, A is the Alexander polynomial. Theorem. With $w: x^{k} \mapsto w_{k}=($ the k-wheel $)$,

$$
Z=N \exp _{\mathcal{A}^{w}}\left(-w\left(\log _{\mathbb{Q} \llbracket x \rrbracket} A\left(e^{x}\right)\right)\right) \quad \begin{array}{r}
\bmod w_{k} w_{l}=w_{k+l}, \\
Z=N \cdot A^{-1}\left(e^{x}\right)
\end{array}
$$

Proof Sketch. Let E be the Euler operator, "multiply anything by its degree", $f \mapsto x f^{\prime}$ in $\mathbb{Q} \llbracket x \rrbracket$, so $E e^{x}=x e^{x}$ and
WZ $=\stackrel{\text { need to show that } Z^{-1} E Z=N^{\prime}-\operatorname{tr}\left((I-B)^{-1} T S e^{-x S}\right) w_{1}}{+}$ with $B=T\left(e^{-x S}-I\right)$. Note that $a e^{b}-e^{b} a=\left(1-e^{\text {ad } b}\right)(a) e^{b}$ implies

 $B Y+T e^{-x S} w_{1}$. The theorem follows.
So What? - Habiro-Shima did this already, but not quite. (HS: Finite Type Invariants of Ribbon 2-Knots, II, Top. and its Appl. 111 (2001).) - New (?) formula for Alexander, new (?) "Infinitesimal Alexander Module". Related to Lescop's arXiv:1001.4474?

- An "ultimate Alexander invariant": local, composes well, behaves under cabling. Ought to also generalize the multi-variable Alexander polynomial and the theory of Milnor linking numbers.
- Tip of the Alekseev-Torossian-Kashiwara-Vergne iceberg (AT: The Kashiwara-Vergne conjecture and Drinfeld's associators, arXiv:0802.4300).
- Tip of the v-knots iceberg. May lead to other polynomial-time polynomial invariants. "A polynomial's worth a thousand exponentials". Also see http://www.math.toronto.edu/~drorbn/papers/WKO/

5 "18 Conjectures", Toronto, May 2010

18 Conjectures

Dror Bar-Natan, Luminy, April 2010
http://www.math.toronto.edu/~drorbn/Talks/Luminy-1004/
Abstract. I will state $18=3 \times 3 \times 2$ "fundamental" conjectures on finite type invariants of various classes of virtual knots. This done, I will state a few further conjectures about these conjectures and ask a few questions about how these 18 conjectures may or may not interact.

Following "Some Dimensions of Spaces of Finite Type Invariants of Virtual Knots", by B-N, Halacheva, Leung, and Roukema, http://www.math.

Circuit Algebras

A J-K Flip Flop

Infineon HYS64T64020HDL-3.7-A 512MB RAM

$$
\mathcal{V}_{n}=\left(v \mathcal{K} / \mathcal{I}^{n+1}\right)^{*}
$$

is one thing we measure...

"arrow diagrams"
$\left(\mathcal{V}_{n} / \mathcal{V}_{n-1}\right)^{*}$

$\mathcal{W}_{n}=\left(\mathcal{D}_{n} / \mathcal{R}_{n}^{D}\right)^{*}=\left(\mathcal{A}_{n}\right)^{*}$ is the other thing we measure... The Polyak Technique

$$
v \mathcal{K}=\mathrm{CA}_{\mathbb{Q}}\langle\mathcal{Q}\rangle / \mathcal{R}^{\circ}=\{8 T, \text { etc. }\}
$$

fails in
the u case

8T:

This is a computable space!
$\left\{\begin{array}{c}\mathrm{CA}_{\mathbb{\mathbb { Q }}}^{\leq n}\langle\mathscr{X}\rangle / \mathcal{R}^{\circ \leq n}=v \mathcal{K} / \mathcal{I}^{n+1} \\ \longrightarrow \mathcal{D}_{n} \xrightarrow{\tau} \mathcal{I}^{n} / \mathcal{I}^{n+1}\end{array}\right.$
$\mathcal{R}_{n}^{D} \longleftrightarrow\left\{\begin{array}{c}\text { degree } n \\ \text { "bottoms" of } \\ \text { relations in } \mathcal{R}^{\circ}\end{array}\right\} \longrightarrow \mathcal{D}_{n} \xrightarrow{\tau} \mathcal{I}^{n} / \mathcal{I}^{n+1}$
Warning!

Theorem. For u-knots, $\operatorname{dim} \mathcal{V}_{n} / \mathcal{V}_{n-1}=\operatorname{dim} \mathcal{W}_{n}$ for all n.
Proof. This is the Kontsevich integral, or the "Fundamental Theorem of Finite Type Invariants". The known proofs use QFT-inspired differential geometry or associators and some homological computations.
Two tables. The following tables show $\operatorname{dim} \mathcal{V}_{n} / \mathcal{V}_{n-1}$ and $\operatorname{dim} \mathcal{W}_{n}$ for $n=$ $1, \ldots, 5$ for 18 classes of v-knots:

relations \backslash skeleton		round (○)	long (\longrightarrow)	flat (${ }^{\text {K }}={ }^{\text {x }}$)
standard	$\bmod R 1$	0, 0, 1, 4, 17 •	0, 2, 7, 42, 246 -	0, 0, 1, 6, 34 •
R2b R2c R3b	no R1	1, 1, 2, 7, 29	2, 5, 15, 67, 365	1, 1, 2, 8, 42
braid-like	\bmod R1	$0,0,1,4,17$ •	0, 2, 7, 42, 246 -	0, 0, 1, 6, 34 •
R2b R3b	no R1	1, 2, 5, 19, 77	2, 7, 27, 139, 813	1,2,6, 24, 120
R2 only	mod R1	0, 0, 4, 44, 648	0, 2, 28, 420, 7808	0, 0, 2, 18, 174
R2b R2c	no R1	1, 3, 16, 160, 2248	2, 10, 96, 1332, 23880	1,2, 9, 63, 570

18 Conjectures. These 18 coincidences persist.

Comments. $0,0,1,4,17$ and $0,2,7,42,246$. These are the "standard" virtual knots.
$2,7,27,139,813$. These best match Lie bi-algebra. Leung computed the bi-algebra dimensions to be \geq $2,7,27,128$. (Comments, Pierre?)
$\bullet \bullet$ We only half-understand these equalities.
 $1,2,6,24,120$. Yes, we noticed. Karene Chu is proving all about this, including the classification of flat knots.
$1,1,2,8,42,258,1824,14664, \ldots$, which is probably http://www. research.att.com/~njas/sequences/A013999.
What about w? See other side.
What about v-braids? I don't know.

One bang! and five compatible transfer principles.

Bang. Recall the surjection $\bar{\tau}: \mathcal{A}_{n}=\mathcal{D}_{n} / \mathcal{R}_{n}^{D} \rightarrow \mathcal{I}^{n} / \mathcal{I}^{n+1}$. A filtered map $Z: v \mathcal{K} \rightarrow \mathcal{A}=\bigoplus \mathcal{A}_{n}$ such that $(\operatorname{gr} Z) \circ \bar{\tau}=I$ is called a universal finite type invariant, or an "expansion". Theorem. Such Z exist iff $\bar{\tau}: \mathcal{D}_{n} / \mathcal{R}_{n}^{D} \rightarrow \mathcal{I}^{n} / \mathcal{I}^{n+1}$ is an isomorphism for every class and every n, and iff the 18 conjectures hold true.
The Big Bang. Can you find a "homomorphic expansion" Z - an expansion that is also a morphism of circuit algebras? Perhaps one that would also intertwine other operations, such as strand doubling? Or one that would extend to v-knotted trivalent graphs?

- Using generators/relations, finding Z is an exercise in solving equations in graded spaces.
- In the u case, these are the Drinfel'd pentagon and hexagon equations.
- In the w case, these are the Kashiwara-Vergne-AlekseevTorossian equations. Composed with $\mathcal{T}_{\mathfrak{g}}: \mathcal{A} \rightarrow \mathcal{U}$, you get that the convolution algebra of invariant functions on a Lie group is isomorphic to the convolution algebra of invariant functions on its Lie algebra.
- In the v case there are strong indications that you'd get the equations defining a quantized universal enveloping algebra and the Etingof-Kazhdan theory of quantization of Lie bialgebras. That's why I'm here!

[^0]www.katlas.org The Knot Mot Mas

6 "Algebraic Knot Theory", Copenhagen, October 2008

 (27) H8 \% 8
 88,88 ,

The Three-Colouring Invariant

 ?

Problem Prove that $\bigcirc \neq ?$.

So many interesting propertics of knots are definable using knotted Trivalunt Graphs (KTas) (frinath framul:
and the basec oporations between them:

Algebraic Knot Theory, Copenhagen

7 "Pentagon and Hexagon Equations Following Furusho", by Zsuzsanna Dancso

PENTAGON AND HEXAGON EQUATIONS - FOLLOWING FURUSHO

Zsuzsanna Dancso, University of Toronto, www.math.toronto.edu/zsuzsi
May 25, 2010

GOAL. Understand and simplify Furusho's proof [F] that the pentagon equation implies the hexagons.
NOTATION. $\mathcal{F}_{2}:=\operatorname{Lie}(X, Y)$, over k
$\mathcal{U} \mathcal{F}_{2}:=$ univ. envelopping alg. $=k \ll X, Y \gg$ non-comm. power series
$\mathcal{U} \mathcal{F}_{2}^{(k)}:=$ non-comm. poly, degree $\leq k$
$\mathcal{A}_{4}:=$ "pure 4-braid Lie alg."
graded completion of:

PRINCIPLE. The restriction $A S S^{(m+1)} \rightarrow A S S^{(m)}$ is surjective. I.e. if $\Phi^{m} \in \mathcal{U} \mathcal{F}_{2}^{(m)}$ is an associator $\bmod \operatorname{deg}(m+1)$, then it extends to $\Phi^{(m+1)}$, an associator mod deg ($m+2$).
Proof. See [Dr]; [BN] Section 4.
Application. \exists rational associator. [D], [BN]
Proof. Suppose $\Phi^{(k)} \in \mathcal{U} \mathcal{F}_{2}^{(k)}$ rational assoc. mod deg (k+1). Base case: $1 \in \mathcal{U F}_{2}^{(0)}$.
Want $\Phi^{(k+1)}=\Phi^{(k)}+\varphi_{k+1}$ homog. deg. $(k+1)$
$\left.\left.\left.\begin{array}{l}\text { Pentagon } \\ \text { Hexagons }\end{array}\right\} \Rightarrow \begin{array}{l}\text { lin. eqns for } \\ \varphi_{k+1} \mathrm{w} / \mathbb{Q} \text {-coeff }\end{array}\right\} \Rightarrow \begin{array}{l}\exists \text { soln } \\ \text { by PRINCIPLE }\end{array}\right\} \Rightarrow \exists \mathbb{Q}$-soln
THEOREM. [F] If $\Phi \in \mathcal{U F}_{2}$ group-like;
$c_{2}(\Phi):=$ coeff. of $X Y=\frac{1}{24}$;
Φ satisfies pentagon in \mathcal{A}_{4} :
$\Phi\left(t_{12}, t_{23}+t_{24}\right) \Phi\left(t_{13}+t_{23}, t_{34}\right)=$

$$
=\Phi\left(t_{23}, t_{34}\right) \Phi\left(t_{12}+t_{13}, t_{24}+t_{34}\right) \Phi\left(t_{12}, t_{23}\right),
$$

then Φ satisfies hexagons in \mathcal{A}_{3} :
$e\left(\frac{t_{12}+t_{23}}{2}\right)=\Phi\left(t_{13}, t_{12}\right) e\left(\frac{t_{13}}{2}\right) \Phi\left(t_{13}, t_{23}\right)^{-1} e\left(\frac{t_{23}}{2}\right) \Phi\left(t_{12}, t_{13}\right)$,
$e\left(\frac{t_{12}+t_{13}}{2}\right)=\Phi\left(t_{23}, t_{13}\right)^{-1} e\left(\frac{t_{13}}{2}\right) \Phi\left(t_{12}, t_{13}\right) e\left(\frac{t_{12}}{2}\right) \Phi\left(t_{12}, t_{23}\right)^{-1}$,
i.e. Φ is an associator.

PROOF. Induction: if Φ satisfies pentagon, and satisfies hexagons $\bmod \operatorname{deg} k$, we prove that it satisfies hexagons $\bmod \operatorname{deg}(k+1) \Rightarrow \Phi$ is an associator.
Base case. Pentagon \Rightarrow the abelianization $\Phi^{(a b)}=1 \Rightarrow \Phi$ is 0 in degree 1. Therefore, $\Phi^{(2)}=1+\frac{1}{24}$, which satisfies the pentagon up to degree $2 . \Rightarrow k \geq 3$.
Induction Step. PRINCIPLE $\Rightarrow \exists$ an associator Φ^{\prime} (grouplike + pentagon + hexagons), s.t. $\Phi=\Phi^{\prime} \bmod \operatorname{deg} k$.
$\Phi-\Phi^{\prime}=\varphi_{k}+$ higher order terms
$\widetilde{C}_{\text {homog. deg. } k}$
$\varphi_{k}=\Phi-\Phi^{\prime} \bmod \operatorname{deg}(\mathrm{k}+1) \Rightarrow \varphi_{k}$ primitive;
Φ, Φ^{\prime} satisfy pentagon $\Rightarrow \quad$ MAIN LEMMA -
$\underset{k}{\Rightarrow} \varphi_{k}$ satisfies "linearized pentagon"; $]_{\text {(see below) }} \gg$
$\Rightarrow \varphi_{k}$ satisfies "linearized hexagons".
Then since Φ^{\prime} satisfies hexagons; $\Phi=\Phi^{\prime}+\varphi_{k} \bmod \operatorname{deg}(k+1)$ $\Rightarrow \Phi$ satisfies hexagons mod $\operatorname{deg}(k+1)$.
Done!

THE HARD PART.

Main Lemma (Linearization). Let $\varphi \in \mathcal{U F}_{2}$ be commutatorprimitive (i.e. $\varphi \in\left[\mathcal{F}_{2}, \mathcal{F}_{2}\right]$),
$\mathrm{w} / c_{2}(\varphi):=$ coeff. of $X Y$ (eqv. $\left.[X, Y]\right)=0$,
and φ satisfies 5 -cycle (linearized pentagon) in \mathcal{A}_{4} :
(5) : $\varphi\left(t_{12}, t_{23}+t_{24}\right)+\varphi\left(t_{13}+t_{23}, t_{34}\right)=$

$$
=\varphi\left(t_{23}, t_{34}\right)+\varphi\left(t_{12}+t_{13}, t_{24}+t_{34}\right)+\varphi\left(t_{12}, t_{23}\right) .
$$

Then φ satisfies 2 -cycle and 3 -cycle (lin. hexagons) in \mathcal{F}_{2} :
(2): $\varphi(X, Y)+\varphi(Y, X)=0$,
(3): $\varphi(X, Y)+\varphi(Y,-X-Y)+\varphi(-X-Y, X)=0$.

PROOF.
I. $(5) \Rightarrow(2)$
the projection $q: \mathcal{A}_{4} \rightarrow \mathcal{F}_{2}$ defined by:
sends (5) to (2).

II. (5) $+(2) \Rightarrow(3)$

Step 1. Using (2), rearrange (5):
$\varphi\left(t_{12}, t_{23}\right)+\varphi\left(t_{34}, t_{13}+t_{23}\right)+\varphi\left(t_{23}+t_{24}, t_{12}\right)+$ $+\varphi\left(t_{23}, t_{34}\right)+\varphi\left(t_{12}+t_{13}, t_{24}+t_{34}\right)=0$
Denote the left hand side by P (for Pentagon).
Use shorthands: $\varphi\left(t_{12}, t_{23}\right)=:(123)$,
$\varphi\left(t_{34}, t_{13}+t_{23}\right)=:(43(12))=(43(21))$, etc.
So $P=(123)+(43(12))+((34) 21)+(234)+(1(23) 4)=0$.
Denote LHS of (3) by $R(X, Y)$ (for tRiangle).
Let $R(123):=R(X, Y)$ w/ subst. $X=t_{12}, Y=t_{23}$; $R((34) 21):=R(X, Y)$ w/ subst. $X=t_{23}+t_{24}, Y=t_{12}$; etc.

Step 2: A fact about φ.
Since $\varphi \in\left[\mathcal{F}_{2}, \mathcal{F}_{2}\right]$, "commuting parts can be dropped":
$[B, C]=0 \Rightarrow \varphi(A+B, C)=\varphi(A, C) ; \varphi(C, A+B)=\varphi(C, A)$.
Application to R.
$R(123)=\varphi\left(t_{12}, t_{23}\right)+\varphi\left(t_{23},-t_{12}-t_{23}\right)+\varphi\left(-t_{12}-t_{23}, t_{12}\right)$.
In $\mathcal{A}_{3},\left(t_{12}+t_{23}+t_{31}\right)$ is central (in fact, generates the center).
$\Rightarrow R(123)=\varphi\left(t_{12}, t_{23}\right)+\varphi\left(t_{23},\left(t_{12}+t_{23}+t_{31}\right)-t_{12}-t_{23}\right)+$ $\varphi\left(\left(t_{12}+t_{23}+t_{31}\right)-t_{12}-t_{23}, t_{12}\right)=\varphi\left(t_{12}, t_{23}\right)+\varphi\left(t_{23}, t_{31}\right)+$ $\varphi\left(t_{31}, t_{12}\right)=(123)+(231)+(312)$.
Note that this also implies $\left\{(3) \Longleftrightarrow R(123)=0\right.$ in $\left.\mathcal{A}_{3}\right\}$.
Step3: The hard part of the hard part.
Permutation group S_{4} acts on $\mathcal{A}_{4} . \forall \sigma \in S_{4}, \sigma P=0$.
Want: $\sum_{i} \sigma_{i} P=\sum R^{\prime}$ s with various substitutions.
This works: $\sigma_{1}:=i d, \sigma_{2}:=4231, \sigma_{3}:=1342, \sigma_{4}:=4312$.
$0=\sum_{i=1}^{4} \sigma_{i} P=$
$\quad(123)+(43(12))+((34) 21)+(234)+(1(23) 4)+$
$+(423)+(13(42))+((31) 24)+(231)+(4(23) 1)+$
$+(134)+(24(13))+((42) 31)+(342)+(1(34) 2)+$ Cancel
$+(431)+(31(43))+((12) 34)+(312)+(4(31) 2)=$ by (2).
$=(123)+(231)+(312)+$
$+(423)+(234)+(342)+$
$+((34) 21)+(21(34))+(1(34) 2)+$
$+((31) 24)+(24(31))+(4(31) 2)=$
$=$
$R(123)+R(423)+R((34) 21)+R((31) 24)$

On the RHS, \forall chord ends on strand 2 , so
RHS $\in<t_{12}, t_{23}, t_{24}>\cong \mathcal{F}_{3} \subseteq \mathcal{A}_{4}$

- No relations!

FLIP OVER!

PENTAGON AND HEXAGON EQUATIONS - FOLLOWING FURUSHO, continued.

Step 4: Finish.
Note that $(2) \Rightarrow R(Y, X)=-R(X, Y) \Rightarrow R(X, X)=0$.
Use projections $\mathcal{F}_{3} \rightarrow \mathcal{F}_{2}$, applied to the equation
$0=R(123)+R(423)+R((34) 21)+R((31) 24)$.
$p_{1}: \mathcal{F}_{3} \rightarrow \mathcal{F}_{2} \quad p_{1} \Rightarrow$
$t_{12} \mapsto X \quad 0=R(X, Y)+R(X, Y)+R(X+Y, X)+$
$t_{23} \mapsto Y \quad R(X+Y, X)$
$t_{24} \mapsto X \quad \Rightarrow R(X+Y, X)=-R(X, Y)$
$p_{1}: \mathcal{F}_{3} \rightarrow \mathcal{F}_{2} \quad p_{2} \Rightarrow$
$t_{12} \mapsto X \quad 0=R(X, X)+R(Y, X)+R(X+Y, X)+$
$t_{23} \mapsto Y \quad R(2 X, Y)$
$t_{24} \mapsto X \quad \Rightarrow R(2 X, Y)=2 R(X, Y)$
Expand this (orange) equation in a linear basis \Rightarrow
$R(X, Y)=\sum_{n=1}^{\infty} a_{n}(a d Y)^{n-1}(X)$.
But $R(Y, X)=-R(X, Y) \Rightarrow a_{n}=0$ when $n \neq 2$.
$\Rightarrow R(X, Y)=a_{2}[Y, X]$.
But $c_{2}(\varphi)=0 \Rightarrow a_{2}=0 \Rightarrow R(X, Y)=0$. Done!
NOTE. In the THEOREM, if $c_{2}(\Phi) \neq \frac{1}{24}$, then Φ satisfies a rescaled version of the hexagons: each exponent is multiplied by $\mu= \pm \sqrt{24 c_{2}(\Phi)}$.
ASIDE: q is nice!
The map q in part I of the "hard part" has a nice property:

This is a braid-theoretic analog of $p: S_{4} \rightarrow S_{3}$:
$S_{4}=$ symmetries of the tetrahedron,

Topological interpretation of q :
$q: \mathcal{A}_{4} \rightarrow \mathcal{F}_{2}$ is induced by \bar{q} :

$p B_{i}=$ pure braids on i strands
$s p B_{4}=$ pure spherical braids on 4 strands (live in $S^{2} \times I$).
Means:

$\bar{q}_{1}=$ obvious quotient map
$\bar{q}_{2}=$ pull strand 4 straight, call this point of $S^{2} " \infty$ ".
\Rightarrow get std pure 3 -braid on strands $1,2,3$, except:

$$
\text { 愔 }\left|\left\lvert\, \begin{array}{l}
\Rightarrow \text { full twist of first } 3 \text { strands is trivial } \\
\Rightarrow \text { have to mod out by full twist. }
\end{array}\right.\right.
$$

$\bar{q}=\bar{q}_{2} \bar{q}_{1}$.

WHAT WAS SIMPLIFIED?

Removed $G T, G R T$ and algebraic geometry, and replaced by use of the "Principle". (GT, GRT and algebraic geometry are used in the proof of the Principle.)
Removed the spherical 5-braid Lie-algebra \mathcal{B}_{5} by translating the proof of the Main Lemma to \mathcal{A}_{4}.
The proof of the main lemma was NOT changed. The "translation" is easy, as \mathcal{A}_{4} and \mathcal{B}_{5} are almost isomorphic.

REFERENCES.

[BN] D. Bar-Natan, On associators and the Grothendieck-
Teichmuller group I, Selecta Math, New Series 4 (1998) 183-

212

[Dr] V.G. Drinfel'd, On quasitriangular Quasi-Hopf algebras and a group closely connected with $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$, Leningrad Math. J. 2 (1991) 829-860.
[F] H. Furusho, Pentagon and hexagon equations Annals of Math, Vol. 171 (2010), No 1, 545-556.

8 "From Stonehenge to Witten", Oporto, July 2004

From Stonehenge to Witten Skipping all the Details
Oporto Meeting on Geometry, Topology and Physics, July 2004
Dror Bar-Natan, University of Toronto

It is well known that when the Sun rises on midsummer's morning over the "Heel Stone" at Stonehenge, its first rays shine right through the open arms of the horseshoe arrangement. Thus astrological lineups, one of the pillars of modern thought, are much older than the famed Gaussian linking number of two knots.
$\langle D, K\rangle_{\text {而 }}:=\binom{$ The signed Stonehenge }{ pairing of D and $K}:$

Thus we consider the generating function of all stellar coincidences:
$Z(K):=\lim _{N \rightarrow \infty} \sum_{3 \text {-valent } D} \frac{1}{2^{c} c!\binom{N}{e}}\langle D, K\rangle_{\Pi} D \cdot\left(\begin{array}{c}\text { framing- } \\ \text { dependent } \\ \text { counter-term }\end{array}\right) \in \mathcal{A}(\circlearrowleft)$

Theorem. Modulo Relations, $Z(K)$ is a knot invariant!
When deforming, catastrophes occur when:

A plane moves over an intersection point Solution: Impose IHX,

(see below)

An intersection line cuts through the knot Solution: Impose STU,

(similar argument)

The Gauss curve slides over a star -
Solution: Multiply by a framing-dependent counter-term.
(not shown here)

The IHX Relation

(a) the red star is your eye

It all is perturbative Chern-Simons-Witten theory:
$\int_{\mathfrak{g} \text {-connections }} \mathcal{D} A \operatorname{hol}_{K}(A) \exp \left[\frac{i k}{4 \pi} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)\right]$

$$
\rightarrow \sum_{\substack{D: \text { Feynman } \\ \text { diagram }}} W_{\mathfrak{g}}(D) \sum \mathcal{E}(D) \rightarrow \sum_{\substack{D: \text { Feynman } \\ \text { diagram }}} D \sum \mathcal{E}(D)
$$

Shiing-shen Chern

James H Simons

Recall that the latter is itself an astrological construct: one of the standard ways to compute the Gaussian linking number is to place the two knots in space and then count (with signs) the number of shade points cast on one of the knots by the other knot, with the only lighting coming from some fixed distant star.

The

Gaussian linking number

$)=\frac{1}{2} \sum_{\begin{array}{c}\text { vertical } \\ \text { chopsticks }\end{array}}$
(signs)

$l k=2$

Carl Friedrich Gauss

Dylan Thurston

N	$:=\#$ of stars	$\mathcal{A}(\circlearrowleft)$
c	$:=\#$ of chopsticks	$:=S p a n$
e	$:=\#$ of edges of D	\square

In our case,

$* Q$ is d, so Q^{-1} is an integral operator.
$\star P$ is $\frac{2}{3} A \wedge A \wedge A$

* H is the holonony, itself
a sum of integrals ado y
the knot K,

\& when the dust settles, we get $Z(k)$ 。
The Fourier Transform:
$(f: V \rightarrow \mathbb{C}) \Longrightarrow\left(F^{\circ}: V \rightarrow C\right)$
Via $\tilde{F}(\varphi)=\int_{V} F(v) e^{-i\langle\varphi, V\rangle} d v$.
simple farts:

1. $\tilde{F}(0)=\int_{\nabla} f(v) d v$.
2. $\frac{\partial}{\partial V_{i}} \widetilde{f} \sim \widetilde{V}^{\prime} f$.
3. $\left(e^{Q / 2}\right) \sim l^{-Q-1 / 2}$
where $Q^{-1}(\varphi):=\left\langle\varphi, L^{-1} \varphi\right\rangle$
(that's the heart of the Fourier Inversion Formally).

Differentiation and Pairings:

So $\int_{V} H(v) e^{\frac{1}{2} Q+\rho} d v$

$=\sum_{\text {Dingrans }} C(D)\left(\begin{array}{l}\text { Products of } \\ Q^{-1 / s} \text { ops } \\ \text { and one } H\end{array}\right)$

"God created the knots, all else in topology is the work of man."

Leopold Kronecker (modified)

This handout is at http://www.math.toronto.edu/~drorbn/Talks/Oporto-0407

[^0]: (a) "God created the knots, all else in topology is the work of mortals."
 Leopold Kronecker (modified)

