1. $\operatorname{proj} \mathcal{K}^{w}\left(\uparrow_{n}\right) \cong_{j} \mathcal{U}\left(\left(\mathfrak{a}_{n} \oplus \mathfrak{t d e r} \mathfrak{r}_{n}\right) \ltimes \mathfrak{t r}_{n}\right)$

I understand Drinfel'd and Alekseev-Torossian, I don't understand - All Signs Are Wrong! Dror Bar-Natan, Montpellier, June 2010, http://www.math.toronto.edu/~drorbn/Talks/Montpellier-1006/ Cans and Can't Yets.
$\binom{$ arbitrary algebraic }{ structure }$\xrightarrow[\text { machine }]{\text { projectivization }}\binom{$ a problem in }{ graded algebra }$\xrightarrow[\text { Trathen }]{\text { and }}$ - Feed knot-things, get Lie algebra things.

- (u-knots) \rightarrow (Drinfel'd associators).
- (w-knots) \rightarrow (K-V-A-E-T).
- Dream: (v-knots) \rightarrow (Etingof-Kazhdan).
- Clueless: (???) \rightarrow (Kontsevich)?
- Goals: add to the Knot Atlas, produce a working AKT and touch ribbon 1-knots, rip benefits from truly understanding quantum groups.

- Has kinds, objects, operations, and maybe constants.
- Perhaps subject to some axioms.
- We always allow formal linear combinations.

Homomorphic expansions for a filtered algebraic structure \mathcal{K} :

$$
\mathrm{ops}^{\mathcal{K}}=\mathcal{K}_{0} \quad \supset \mathcal{K}_{1} \quad \supset \mathcal{K}_{2} \quad \supset \mathcal{K}_{3} \supset \ldots
$$

$\operatorname{ops} \subset \operatorname{gr} \mathcal{K}:=\mathcal{K}_{0} / \mathcal{K}_{1} \oplus \mathcal{K}_{1} / \mathcal{K}_{2} \oplus \mathcal{K}_{2} / \mathcal{K}_{3} \oplus \mathcal{K}_{3} / \mathcal{K}_{4} \oplus \ldots$ An expansion is a filtered $Z: \mathcal{K} \rightarrow$ gr \mathcal{K} that "covers" the

Circuit Algebras

A J-K Flip Flop
v -Tangles and w-Tangles

Infineon HYS64T64020HDL-3.7-A 512MB RAM
(CA :=Circuit Algebra)

$$
\left\{\begin{array}{l}
\text { v-knots } \\
\& \text { links }
\end{array}\right\}=\mathrm{CA}\langle/|
$$

A Ribbon 2-Knot is a surface S embedded in \mathbb{R}^{4} that bounds an immersed handlebody B, with only "ribbon singularities"; a ribbon singularity is a disk D of trasverse double points, whose preimages in B are a disk D_{1} in the interior of B and a disk D_{2} with $D_{2} \cap \partial B=\partial D_{2}$ modulo isotopies of S alone.
 identity on gr \mathcal{K}. A homomorphic expansion is an expansion
that respects all relevant "extra" operations.
Reality. gr \mathcal{K} is often too hard. An \mathcal{A}-expansion is a graded
R23:

$$
\left.\nu^{\prime}=\right\rangle\left\langle, x^{\prime \prime}=\lambda^{\prime} \lambda^{\prime}\right\rangle
$$

$\{$ w-Tangles $\}=\mathrm{v}$-Tangles $/ \mathrm{OC}:$

 "guess" \mathcal{A} with a surjection $\tau: \mathcal{A} \rightarrow \operatorname{gr} \mathcal{K}$ and a filtered $Z:$ $\mathcal{K} \rightarrow \mathcal{A}$ for which $(\operatorname{gr} Z) \circ \tau=I_{\mathcal{A}}$. An \mathcal{A}-expansion confirms \mathcal{A} and yields an ordinary expansion. Same for "homomorphic".

$$
\left.\left.=\operatorname{PA}\left\langle\not /, X \left\lvert\, \begin{array}{|c}
\mathrm{VR} 123: \\
\mathrm{R} 23
\end{array}\right.\right\rangle=\right\rangle, \chi=\right\rangle\langle, \nless \chi=X ; \mathrm{D}: \nless \chi=\chi\rangle
$$

Sust for fun.

Filtered algebraic structures are cheap and plenty. In any \mathcal{K}, allow formal linear combinations, let $\mathcal{K}_{1}=\mathcal{I}$ be the ideal generated by differences (the "augmentation ideal"), and let $\mathcal{K}_{m}:=\left\langle\left(\mathcal{K}_{1}\right)^{m}\right\rangle$ (using all available "products"). In this case, set $\operatorname{proj} \mathcal{K}:=\operatorname{gr} \mathcal{K}$.
Examples. 1. The projectivization of a group is a graded associative algebra.
2. Pure braids $-P B_{n}$ is generated by $x_{i j}$, "strand i goes around strand j once", modulo "Reidemeister moves". $A_{n}:=$ $\operatorname{gr} P B_{n}$ is generated by $t_{i j}:=x_{i j}-1$, modulo the $4 T$ relations $\left[t_{i j}, t_{i k}+t_{j k}\right]=0$ (and some lesser ones too). Much happens in A_{n}, including the Drinfel'd theory of associators.
3. Quandle: a set Q with an op \wedge s.t.

$$
\begin{aligned}
& 1 \wedge x=1, \quad x \wedge 1=x, \quad \text { (appetizers) } \\
& (x \wedge y) \wedge z=(x \wedge z) \wedge(y \wedge z) . \quad \text { (main) }
\end{aligned}
$$

$\operatorname{proj} Q$ is a graded Leibniz algebra: Roughly, set $\bar{v}:=(v-1)$ (these generate $I!$), feed $1+\bar{x}, 1+\bar{y}, 1+\bar{z}$ in (main), collect the surviving terms of lowest degree:
$(\bar{x} \wedge \bar{y}) \wedge \bar{z}=(\bar{x} \wedge \bar{z}) \wedge \bar{y}+\bar{x} \wedge(\bar{y} \wedge \bar{z})$.
 Torossian.

1． $\operatorname{proj} \mathcal{K}^{w}\left(\uparrow_{n}\right) \cong_{j} \mathcal{U}\left(\left(\mathfrak{a}_{n} \oplus \mathfrak{t d e r}_{n}\right) \ltimes \mathfrak{t r}_{n}\right)$ ，continued．
 Imperfect Thumb－Rule．Take R3（say），substitute $天 \rightarrow X+$ $\xrightarrow{\longrightarrow}$ ，keep the lowest degree terms that don＇t immediately die：

Wheels and Trees．With \mathcal{P} for \mathcal{P} rimitives， $0 \longrightarrow\langle$ wheels $\rangle \xrightarrow{\iota} \mathcal{P} \mathcal{A}^{w}\left(\uparrow_{n}\right) \xrightarrow[l]{\stackrel{u}{\pi}}\langle$ trees $\rangle \longrightarrow 0$, with $\underbrace{2}_{2} \xrightarrow[2]{(u, l)}(\underbrace{2}_{2})$
So proj $\mathcal{K}^{w}\left(\uparrow_{n}\right) \cong \mathcal{U}(\langle$ trees $\rangle \ltimes\langle$ wheels $\rangle)$.

trees atop a wheel and a little prince Some A－T Notions． \mathfrak{a}_{n} is the vector space with basis $x_{1}, \ldots, x_{n}, \mathfrak{l i e}=\mathfrak{l i e}\left(\mathfrak{a}_{n}\right)$ is the free Lie algebra， $\operatorname{Ass}_{n}=$ $\mathcal{U}\left(\mathfrak{l i e}_{n}\right)$ is the free associative algera＂of words＂， $\operatorname{tr}: \mathrm{Ass}_{n}^{+} \rightarrow$ $\mathfrak{t r}_{n}=\mathrm{Ass}_{n}^{+} /\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=x_{i_{2}} \cdots x_{i_{m}} x_{i_{1}}\right)$ is the＂trace＂into ＂cyclic words＂， $\mathfrak{d e r}_{n}=\mathfrak{d e r}\left(\mathfrak{l i e}_{n}\right)$ are all the derivations，and
$\mathfrak{t} \mathfrak{e r}_{n}=\left\{D \in \mathfrak{d e r}_{n}: \forall i \exists a_{i}\right.$ s．t．$\left.D\left(x_{i}\right)=\left[x_{i}, a_{i}\right]\right\}$ are＂tangential derivations＂，so $D \leftrightarrow\left(a_{1}, \ldots, a_{n}\right)$ is a vec－ tor space isomorphism $\mathfrak{a}_{n} \oplus \mathfrak{t d e r} \mathfrak{r}_{n} \cong \bigoplus_{n} \mathfrak{l i} \mathfrak{e}_{n}$ ．Finally，div ： $\mathfrak{t d e r}{ }_{n} \rightarrow \mathfrak{t r}_{n}$ is $\left(a_{1}, \ldots, a_{n}\right) \mapsto \sum_{k} \operatorname{tr}\left(x_{k}\left(\partial_{k} a_{k}\right)\right)$ ，where for $a \in \mathrm{Ass}_{n}^{+}, \partial_{k} a \in \mathrm{Ass}_{n}$ is determined by $a=\sum_{k}\left(\partial_{k} a\right) x_{k}$ ， and $j:$ TAut $_{n}=\exp \left(\mathfrak{t} \mathfrak{e r}_{n}\right) \rightarrow \mathfrak{t r}_{n}$ is $j\left(e^{D}\right)=\frac{e^{D}-1}{D} \cdot \operatorname{div} D$ ．
Theorem．Everything matches．〈trees〉 is $\mathfrak{a}_{n} \oplus \mathfrak{t d e r}{ }_{n}$ as Lie algebras，〈wheels〉 is $\mathfrak{t r}_{n}$ as 〈trees〉／ $\mathfrak{t d e r} \mathfrak{r}_{n}$－modules，div $D=$ $\iota^{-1}(u-l)(D)$ ，and $e^{u D} e^{-l D}=e^{j D}$ ．
Differential Operators．Interpret $\hat{\mathcal{U}}(I \mathfrak{g})$ as tangential differen－ tial operators on $\operatorname{Fun}(\mathfrak{g})$ ：
－$\varphi \in \mathfrak{g}^{*}$ becomes a multiplication operator．
－$x \in \mathfrak{g}$ becomes a tangential derivation，in the direction of the action of ad $x:(x \varphi)(y):=\varphi([x, y])$ ．
Trees become vector fields and $u D \mapsto l D$ is $D \mapsto D^{*}$ ．So $\operatorname{div} D$ is $D-D^{*}$ and $j D=\log \left(e^{D}\left(e^{D}\right)^{*}\right)=\int_{0}^{1} d t e^{t D} \operatorname{div} D$ ．
Special Derivations．Let $\mathfrak{s d e r} r_{n}=\left\{D \in \mathfrak{t d e r}_{n}: D\left(\sum x_{i}\right)=0\right\}$ ．
Theorem． $\mathfrak{s d e r}_{n}=\pi \alpha$（proju－tangles），where α is the obvious map proju－tangles \rightarrow proj w－tangles．
Proof．After decoding，this becomes Lemma 6.1 of Drinfel＇d＇s amazing $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ paper．
The Alexander Theorem．$\quad T_{i j}=|\operatorname{low}(\# j) \in \operatorname{span}(\# i)|$ ，

Proof．

Corollaries．（1）Related to Lie algebras！（2）Only wheels and isolated arrows persist．
To Lie Algebras．With $\left(x_{i}\right)$ and $\left(\varphi^{j}\right)$ dual bases of \mathfrak{g} and \mathfrak{g}^{*} and with $\left[x_{i}, x_{j}\right]=\sum b_{i j}^{k} x_{k}$ ，we have $\mathcal{A}^{w} \rightarrow \mathcal{U}$ via

Conjecture．For u－knots，A is the Alexander polynomial． Theorem．With $w: x^{k} \mapsto w_{k}=($ the k－wheel $)$ ，

$$
Z=N \exp _{\mathcal{A}^{w}}\left(-w\left(\log _{\mathbb{Q} \llbracket x \rrbracket} A\left(e^{x}\right)\right)\right) \quad \begin{array}{r}
\bmod w_{k} w_{l}=w_{k+l} \\
Z=N \cdot A^{-1}\left(e^{x}\right)
\end{array}
$$

This is the ultimate Alexander invariant！computable in poly－ nomial time，local，composes well，behaves under cabling． Seems to significantly generalize the multi－variable Alexander polynomial and the theory of Milnor linking numbers．But it＇s ugly，and much work remains．

2. w-Knots, Alekseev-Torossian, and baby Etingof-Kazhdan Trivalent w-Tangles.

$$
\mathrm{wTT}=\mathrm{CA}\left\langle\left.\begin{array}{c|c|c}
\mathrm{w}- & \mathrm{w}- & \text { unary w- } \\
\text { generators }
\end{array} \right\rvert\, \begin{array}{c}
\text { relations } \\
\text { operations }
\end{array}\right\rangle
$$

The w-relations include R234, VR1234, D, Overcrossings Commute (OC) but not UC, $W^{2}=1$, and funny interactions between the wen and the cap and over- and under-crossings:

w-Jacobi diagrams and $\mathcal{A} . \mathcal{A}^{w}(Y \uparrow) \cong \mathcal{A}^{w}(\uparrow \uparrow \uparrow)$ is

An Associator:
$(A B) C \xrightarrow{\Phi \in \mathcal{U}(\mathfrak{g})^{\otimes 3}} A(B C)$
satisfying the "pentagon",
$((A B) C) D \longrightarrow(A B)(C D)$

$\Phi 1 \cdot(1 \Delta 1) \Phi \cdot 1 \Phi=(\Delta 11) \Phi \cdot(11 \Delta) \Phi$
The hexagon? Never heard of it.

I understand Drinfel'd and Alekseev-Torossian, I don't understand Etingof-Kazhdan yet, and I'm clueless about Kontsevich Dror Bar-Natan, Montpellier, June 2010, http://www.math.toronto.edu/~drorbn/Talks/Montpellier-1006/ Knot-Theoretic statement. There exists a homomorphic expansion Z for trivalent w-tangles. In particular, Z should respect $R 4$ and intertwine annulus and disk unzips:

\hookrightarrow

Diagrammatic statement. Let $R=\exp \hat{\wedge} \hat{\wedge} \in \mathcal{A}^{w}(\uparrow \uparrow)$. There exist $\omega \in \mathcal{A}^{w}(\uparrow)$ and $V \in \mathcal{A}^{w}(\uparrow \uparrow)$ so that

(1) $V \cdot(\Delta \otimes 1)(R)=R^{13} R^{23} V$ in $\mathcal{A}^{w}(\uparrow \uparrow \uparrow)$

(2) $V V^{*}=I$ in $\mathcal{A}^{w}(\uparrow \uparrow)$

(3) $V \cdot \Delta(\omega)=\omega \otimes \omega$ in $\mathcal{A}^{w}(\bullet \upharpoonleft)$ Alekseev-Torossian statement. There are elements $F \in \mathrm{TAut}_{2}$ and $a \in \mathfrak{t r}_{1}$ such that
$F(x+y)=\log e^{x} e^{y} \quad$ and $\quad j F=a(x)+a(y)-a\left(\log e^{x} e^{y}\right)$. Theorem. The Alekseev-Torossian statement is equivalent to the knot-theoretic statement.
Proof. Write $V=e^{c} e^{u D}$ with $c \in \mathfrak{t r}_{2}, D \in \mathfrak{t d e r}_{2}$, and $\omega=e^{b}$ with $b \in \mathfrak{t r}_{1}$. Then (1) $\Leftrightarrow e^{u D}(x+y) e^{-u D}=\log e^{x} e^{y}$,
(2) $\Leftrightarrow I=e^{c} e^{u D}\left(e^{u D}\right)^{*} e^{c}=e^{2 c} e^{j D}$, and
$(3) \Leftrightarrow e^{c} e^{u D} e^{b(x+y)}=e^{b(x)+b(y)} \Leftrightarrow e^{c} e^{b\left(\log e^{x} e^{y}\right)}=e^{b(x)+b(y)}$
$\Leftrightarrow c=b(x)+b(y)-b\left(\log e^{x} e^{y}\right)$.
The Alekseev-Torossian Correspondence.
$\{$ Drinfel'd Associators $\} \leftrightarrows\{$ Solutions of KV $\}$
We need an even bigger algebraic structure!
$\binom{$ green knotted trivalent }{ graphs in $\mathbb{R}^{3}(u)} \xrightarrow{\alpha_{e}}\binom{$ blue tubes and red }{ strings in $\mathbb{R}^{4}(\overline{\mathrm{w}})}$

2. w-Knots, Alekseev-Torossian, and baby Etingof-Kazhdan, continued.
 and the tetrahedron

All strands

Modulo the relation (s):

Claim. With $\Phi:=Z(\Delta)$, the above relation becomes equivalent to the Drinfel'd's pentagon of the theory of quasi-Hopf algebras.

Proof.

Light
$=(\Phi \otimes 1) \cdot(1 \otimes \Delta \otimes 1)(\Phi) \cdot(1 \otimes \Phi) \in \mathcal{A}\left(\uparrow_{4}\right)$

SSolkv \rightarrow "Associators $\left.^{\prime \prime}\right]:$ Trivial - a tetrahedron has 4 vertices.

Theorem. The generators of $\mathcal{K}^{\bar{w}}$ can be written in terms of the generators of \mathcal{K}^{u} (ie., given Φ, can write a formula for V.
Sketch.

