Baby(?) Example. $P B_{n}$: pure braids; $I \subset \mathbb{Q} P B_{n}$ the augmentation ideal; $B^{(m)}=\mathbb{Q} P B_{n} / I^{m+1}$ (filtered!); $\hat{B}=$ certificate" in many recent works - "we do A to B, apply the result to C, and $\lim B^{(m)}$ (filtered!). Then gr $B^{(m)}=$ get something related to GT, therefore it must be interesting". Interesting or $C^{(m)}$ and then gr $\hat{B}=\hat{C}$ where $C=$ not, in my talk I will explain how GT arose first, in Drinfel'd's work on asso- $\left\langle\left\langle t^{i j}=t^{j i}:\left[t^{i j}, t^{k l}\right]=\left[t^{i j}, t^{i k}+t^{j k}\right]=0\right\rangle\right.$, so ciators, and how it can be used to show that "every bounded-degree associator $B^{(m)}$ and \hat{B} are isomorphic to $C^{(m)}$ and extends", that "rational associators exist", and that "the pentagon implies the \hat{C}, but not canonically. Me not know that hexagon"*
In a nutshell: the filtered tower of braid groups (with bells and whistles attached) is isomorphic to its associated graded, but the isomorphism is neither canonical nor unique - such an isomorphism is precisely the thing called "an associator". But the set of isomorphisms between two isomorphic objects always has two groups acting simply transitively on it - the group of automorphisms of the first object acting on the right, and the group of automorphisms of the second object acting on the left. In the case of associators, that first group is what Drinfel'd calls the Grothendieck-Teichmuller group GT, and the second group, isomorphic but not canonically to the first and denoted GRT, is the one several recent works seem to refer to.
Almost everything I will talk about is in my old paper "On Associators and the Grothendieck-Teichmuller Group I", also at arXiv:q-alg/9606021.

the groups GT and GRT here have been analyzed.

by successive approximations presents no problems. For this we introduce the
following modification $\operatorname{GRT}(k)$ of the group $\mathrm{GT}(k)$. We denote by $\mathrm{GRT}_{(}(k)$ the set of all $g \in \operatorname{Fr}_{k}(A, B)$ such that

$$
\begin{equation*}
g(B, A)=g(A, B)^{-1}, \tag{5.12}
\end{equation*}
$$

$g(C, A) g(B, C) g(A, B)=1$ for $A+B+C=0$,
$A+g(A, B)^{-1} B g(A, B)+g(A, C)^{-1} C g(A, C)=0$

$$
\text { for } A+B+C=0 \text {, }
$$

$$
g\left(X^{12}, X^{23}+X^{24}\right) g\left(X^{13}+X^{23}, X^{34}\right)
$$

$$
=g\left(X^{23}, X^{34}\right) g\left(X^{12}+X^{13}, X^{24}+X^{34}\right) g\left(X^{12}, X^{23}\right)
$$

(5.15)
where the $X^{i j}$ satisfy (5.1). $\operatorname{GRT}_{1}(k)$ is a group with the operation

$$
\left(g_{1} \circ g_{2}\right)(A, B)=g_{1}\left(g_{2}(A, B) A g_{2}(A, B)^{-1}, B\right) \cdot g_{2}(A, B)
$$

On $\operatorname{GRT}_{1}(k)$ there is an action of k^{*}, given by $\tilde{g}(A, B)=g\left(c^{-1} A, c^{-1} B\right), c \in$ k^{*}. The semidirect product of k^{*} and $\operatorname{GRT}_{1}(k)$ we denote by $\operatorname{GRT}(k)$. The Lie algebra $\operatorname{grt}_{1}(k)$ of the group $\operatorname{GRT}_{1}(k)$ consists of the series $\psi \in \mathfrak{f r}_{k}(A, B)$ such that

$$
\psi(B, A)=-\psi(A, B)
$$

(5.17)
$\psi(C, A)+\psi(B, C)+\psi(A, B)=0$ for $A+B+C=0$.
(5.18) $[B, \psi(A, B)]+[C, \psi(A, C)]=0$ for $A+B+C=0$.
(5.19)

$$
\psi\left(X^{12}, X^{23}+X^{24}\right)+\psi\left(X^{13}+X^{23}, X^{34}\right)
$$

$$
=\psi\left(X^{23}, X^{34}\right)+\psi\left(X^{12}+X^{13}, X^{24}+X^{34}\right)+\psi\left(X^{12}, X^{23}\right)
$$

where the $X^{i j}$ satisfy (5.1). A commutator \langle,$\rangle in \mathfrak{g r t}_{1}(k)$ is of the form

$$
\left\langle\psi_{1}, \psi_{2}\right\rangle=\left[\psi_{1}, \psi_{2}\right]+D_{\psi_{2}}\left(\psi_{1}\right)-D_{\psi_{1}}\left(\psi_{2}\right),
$$

(5.21)
where $\left[\psi_{1}, \psi_{2}\right]$ is the commutator in $\mathfrak{f r}_{k}(A, B)$ and D_{ψ} is the derivation of $\mathrm{fr}_{k}(A, B)$ given by $D_{\psi}(A)=[\psi, A], D_{\psi}(B)=0$. The algebra $\mathrm{grt}_{1}(k)$ is

Proposition 5.1. The action of $\mathrm{GT}(k)$ on $M(k)$ is free and transitive.
Proof. If $(\mu, \varphi) \in M(k)$ and $(\bar{\mu}, \bar{\varphi}) \in M(k)$, then there is exactly one f such that $\bar{\varphi}(A, B)=f\left(\varphi(A, B) e^{A} \varphi(A, B)^{-1}, e^{B}\right) \cdot \varphi(A, B)$. We need to show that $(\lambda, f) \in \mathrm{GT}(k)$, where $\lambda=\bar{\mu} / \mu$. We prove (4.10). Let G_{n} be the semidirect product of S_{n} and $\operatorname{expa} a_{n}^{k}$. Consider the homomorphism $B_{n} \rightarrow G_{n}$ that takes σ_{i} into
$+X \quad, \quad \sigma \quad$ e $\quad \varphi(X+\cdots+X \quad, X \quad)$,
where $\sigma^{i j} \in S_{n}$ transposes i and j. It induces a homomorphism $K_{n} \rightarrow \exp a_{n}^{k}$, and therefore a homomorphism $\alpha_{n}: K_{n}(k) \rightarrow \exp \mathfrak{a}_{n}^{k}$, where $K_{n}(k)$ is the k -pro-unipotent completion of K_{n}. It is easily shown that the left- and right-hand sides of (4.10) have the same images in $\exp \mathfrak{a}_{4}^{k}$. It remains to prove that α_{n} is an isomorphism. The algebra Lie $K(k)$ is topologically generated by the elements $\xi_{i j}, 1 \leq i<j \leq n$, with defining relations obtained from (4.7)-(4.9) by substituting $x_{i j}=\exp \xi_{i j}$. The principal parts of these relations are the same as in (5.1), while $\left(\alpha_{n}\right)_{*}\left(\xi_{i j}\right)=\mu X^{i j}+\{$ lower terms $\}$, where $\left(\alpha_{n}\right)_{*}$: Lie $K_{n}(k) \rightarrow \mathfrak{a}_{n}^{k}$ is induced by the homomorphism α_{n}. Therefore α_{n} is an isomorphism, i.e., (4.10) is proved. (4.3) is obvious. To prove (4.4), we can interpret it in terms of K_{3} and argue as in the proof of (4.10), or, what is equivalent, make the substitution

$$
X_{1}=e^{A}, \quad X_{2}=e^{-A / 2} \varphi(B, A) e^{B} \varphi(B, A)^{-1} e^{A / 2},
$$

$$
X_{3}=\varphi(C, A) e^{C} \varphi(C, A)^{-1}
$$

where $A+B+C=0$.
From Drinfel'd's On quasitriangular Quasi-Hopf algebras and a group closely connected with $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$, Leningrad Math. J. 2 (1991) 829-860.

