Meta-Groups, Meta-Bicrossed-Products, and the Alexander Polynomial, 1
 Dror Bar-Natan at the Newton Institute, January 2013.
 http://www.math.toronto.edu/ /drorbn/Talks/Newton-1301

Abstract. I will define "meta-groups" and explain how one specificAlexander Issues.
meta-group, which in itself is a "meta-bicrossed-product", gives rise \bullet Quick to compute, but computation departs from topology
to an "ultimate Alexander invariant" of tangles, that contains the Alexander polynomial (multivariable, if you wish), has extremely

- Extends to tangles, but at an exponential cost. good composition properties, is evaluated in a topologically meaningful way, and is least-wasteful in a computational sense. If you believe in categorification, that's a wonderful playground.

Idea. Given a group G and two "YB" This will be a repeat of a talk I gave in Regina in August 2012to xings and "multiply along", so that
 and in a number of other places, and I plan to repeat it a good further number of places. Though here at the Newton Institute I plan to make the talk a bit longer, giving me more time to give some further fun examples of meta-structures, and perhaps I will learn from the audience that these meta-structures should really be called something else.
This work is closely related to work by Le Dimet (Comment. Math. Helv. 67 (1992) 306-315), Kirk, Livingston and Wang (arXiv:math/9806035) and Cimasoni and Turaev arXiv:math.GT/0406269).

$\stackrel{Z}{\longrightarrow}\binom{g_{o}^{+} g_{u}^{+} g_{o}^{+} g_{u}^{-} g_{o}^{-} g_{u}^{+} g_{o}^{+} g_{u}^{+}}{g_{u}^{-} g_{o}^{-}}$

This Fails! R 2 implies that $g_{o}^{ \pm} g_{o}^{\mp}=e=g_{u}^{ \pm} g_{u}^{\mp}$ and then R 3 implies that g_{o}^{+}and g_{u}^{+}commute, so the result is a simple counting invariant.
A Group Computer. Given G, can store group elements and perform operations on them:

Also has S_{x} for inversion, e_{x} for unit insertion, d_{x} for register deletion, $\Delta_{x y}^{z}$ for element cloning, ρ_{y}^{x} for renamings, and $\left(D_{1}, D_{2}\right) \mapsto$ $D_{1} \cup D_{2}$ for merging, and many obvious composition axioms relat ing those.
$P=\left\{x: g_{1}, y: g_{2}\right\} \Rightarrow P=\left\{d_{y} P\right\} \cup\left\{d_{x} P\right\}$
A Meta-Group. Is a similar "computer", only its internal structure is unknown to us. Namely it is a collection of sets $\left\{G_{\gamma}\right\}$ indexed by all finite sets γ, and a collection of operations $m_{z}^{x y}, S_{x}, e_{x}, d_{x}, \Delta_{x y}^{z}$ (sometimes), ρ_{y}^{x}, and \cup, satisfying the exact same linear properties.
Example 1. The non-meta example, $G_{\gamma}:=G^{\gamma}$.
Example 2. $G_{\gamma}:=M_{\gamma \times \gamma}(\mathbb{Z})$, with simultaneous row and column operations, and "block diagonal" merges. Here if $P=\left(\begin{array}{lll}x: & a & b \\ y: & c & d\end{array}\right)$ then $d_{y} P=(x: a)$ and $d_{x} P=(y: d) \mathrm{so}$ $\left\{d_{y} P\right\} \cup\left\{d_{x} P\right\}=\left(\begin{array}{lll}x: & a & 0 \\ y: & 0 & d\end{array}\right) \neq P$. So this G is truly meta.
A Standard Alexander Formula. Label the arcs 1 through $n+1)=1$, make an $n \times n$ matrix as below, delete one row and one column, and compute the determinant:

[^0] Claim. From a meta-group G and YB elements $R^{ \pm} \in G_{2}$ we can construct a knot/tangle invariant.
Bicrossed Products. If $G=H T$ is a group presented as a product of two of its subgroups, with $H \cap T=\{e\}$, then also $G=T H$ and G is determined by H, T, and the "swap" map $s w^{t h}:(t, h) \mapsto\left(h^{\prime}, t^{\prime}\right)$ defined by $t h=h^{\prime} t^{\prime}$. The map $s w$ satisfies (1) and (2) below; conversely, if $s w: T \times H \rightarrow H \times T$ satisfies (1) and (2) (+ lesser conditions), then (3) defines a group structure on $H \times T$, the "bicrossed product".

Meta－Groups，Meta－Bicrossed－Products，and the Alexander Polynomial， 2

A Meta－Bicrossed－Product is a collection of sets $\beta(\eta, \tau)$ and ${ }^{I}$ mean business！
operations $t m_{z}^{x y}, h m_{z}^{x y}$ and $s w_{x y}^{t h}$（and lesser ones），such that ${ }^{\beta \text { Simp }=\text { Factor；setatributes［Bcollect，Iistable］}}$
$t m$ and $h m$ are＂associative＂and（1）and（2）hold（＋lesser
conditions）．A meta－bicrossed－product defines a meta－group with $G_{\gamma}:=\beta(\gamma, \gamma)$ and $g m$ as in（3）．
Example．Take $\beta(\eta, \tau)=M_{\tau \times \eta}(\mathbb{Z})$ with row operations for the tails，column operations for the heads，and a trivial swap
β Calculus．Let $\beta(\eta, \tau)$ be
$\left\{\begin{array}{c|ccc|l}\omega & h_{1} & h_{2} & \cdots & \\ \hline t_{1} & \alpha_{11} & \alpha_{12} & \cdot & h_{j} \in \eta, t_{i} \in \tau, \text { and } \omega \text { and } \\ t_{2} & \alpha_{21} & \alpha_{22} & \cdot & \text { the } \alpha_{i j} \text { are rational func－} \\ \vdots & \cdot & \cdot & \cdot & \text { tions in a variable } X\end{array}\right\}$,

ω	\cdots			
$\operatorname{tm}_{z}^{x y}:$	$\begin{array}{c}\omega \\ t_{x}\end{array}$	α	ω	\cdots
	t_{y}	β		t_{z}
\vdots	γ		\vdots	γ

$$
\begin{array}{l|l|l}
\omega_{1} & \eta_{1} \\
\hline \tau_{1} & \alpha_{1}
\end{array} \frac{\omega_{2}}{} \eta_{2}
$$

$h m_{z}^{x y}:$| ω | h_{x} | h_{y} | \cdots |
| :---: | :---: | :---: | :---: |
| \vdots | α | β | γ |\mapsto| ω | h_{z} | \cdots |
| :---: | :---: | :---: |
| \vdots | $\alpha+\beta+\langle\alpha\rangle \beta$ | γ |,

$s w_{x y}^{t h}:$| ω | h_{y} | \cdots |
| :---: | :---: | :---: |
| t_{x} | α | β |
| \vdots | γ | δ |\quad| $\omega \epsilon$ | h_{y} | \cdots | |
| :---: | :---: | :---: | :---: |
| t_{x} | $\alpha(1+\langle\gamma\rangle / \epsilon)$ | $\beta(1+\langle\gamma\rangle / \epsilon)$ | |
| | \vdots | γ / ϵ | $\delta-\gamma \beta / \epsilon$ |,

Theorem．Z^{β} is a tangle invariant（and more）．Restricted to
$\left\{\beta=B\left[\omega, \operatorname{Sum}\left[\alpha_{10}{ }_{i+j} t_{i} h_{j},\{i,\{1,2,3\}\},\{j,\{4,5\}\}\right]\right]\right.$ ， $\left.\left(\beta / / \mathrm{tm}_{12 \rightarrow 1} / / \mathrm{sw}_{14}\right)=\left(\beta / / \mathbf{s w}_{24} / / \mathbf{s w}_{14} / / \mathrm{tm}_{12 \rightarrow 1}\right)\right\} \square$ $\left\{\left(\begin{array}{ccc}\omega & h_{4} & h_{5} \\ t_{1} & \alpha_{14} & \alpha_{15} \\ t_{2} & \alpha_{24} & \alpha_{25} \\ t_{3} & \alpha_{34} & \alpha_{35}\end{array}\right)\right.$, True $\} \quad \underset{=}{(1)}=\begin{gathered}\text { Some } \\ \text { testing }\end{gathered}$

$$
=\begin{array}{c|cc}
\omega_{1} \omega_{2} & \eta_{1} & \eta_{2} \\
\hline \tau_{1} & \alpha_{1} & 0 \\
\tau_{2} & 0 & \alpha_{2}
\end{array}
$$

where $\epsilon:=1+\alpha$ and $\langle c\rangle:=\sum_{i} c_{i}$ ，and let

$$
R_{x y}^{p}:=\begin{array}{c|cc}
1 & h_{x} & h_{y} \\
\hline t_{x} & 0 & X-1 \\
t_{y} & 0 & 0
\end{array} \quad R_{x y}^{m}:=\begin{array}{c|cc}
1 & h_{x} & h_{y} \\
\hline t_{x} & 0 & X^{-1}-1 . \\
t_{y} & 0 & 0
\end{array} .
$$ ollect $\left[\mathrm{B}\left[\omega, A_{1}\right]\right]:=\mathrm{B}[\mathrm{SSimp}[\omega]$ ．

 orm［fol＿，A＿l］：＝Module $[t$ ts，hs，w］ ts $=$ Union $\left[\right.$ Cases $\left[B[\omega, 4], \mathrm{t}_{-2} \rightarrow s, \operatorname{Infinity]];}\right.$ hs $=$ Union［Cases $\left[\mathrm{B}[\omega, \Lambda], \mathrm{h}_{s_{-}} \Rightarrow s\right.$ ，Infinity］］； $M=\operatorname{Outer}\left[\beta\right.$ Simp［Coefficient $\left.\left[\Lambda, h_{* 1} \mathrm{t}_{* 2}\right]\right] \&$ ，hs，ts］ PrependTo［ $\left.M, t_{\neq \&} \& / @ t s\right]$ ； $M=$ Prepend［Transpose［M］，Prepend $\left.\left[h_{H 1} \& / @ \mathrm{hs}, \omega\right]\right]$ ； MatrixForm［M］］；
Form［else＿］$:=$ else $/ . \beta B: \beta$ Form $[\beta]$ ．
ormat $\left[\beta\right.$ B ${ }^{-}$，StandardForm $]$：$=\beta$ Form $[\beta]$ ； knots，the ω part is the Alexander polynomial．On braids，it ${ }^{D}$ is equivalent to the Burau representation．A variant for links contains the multivariable Alexander polynomial．
Why Happy？• Applications to w－knots．
－Everything that I know about the Alexander polynomial can be expressed cleanly in this language（even if without proof），except HF，but including genus，ribbonness，cabling， v－knots，knotted graphs，etc．，and there＇s potential for vast generalizations．
－The least wasteful＂Alexander for tangles＂I＇m aware of．
－Every step along the computation is the invariant of some－ thing．
－Fits on one sheet，including implementation \＆propaganda． 2 Further meta－monoids．Π（and variants）， \mathcal{A}（and quotients） $v T, \ldots$
Further meta－bicrossed－products．Π（and variants）， $\overrightarrow{\mathcal{A}}$（and quotients），$M_{0}, M, \mathcal{K}^{b h}, \mathcal{K}^{r b h}, \ldots$
Meta－Lie－algebras． \mathcal{A}（and quotients） \mathcal{S}, \ldots Meta－Lie－bialgebras． $\overrightarrow{\mathcal{A}}$（and quotients），．．．

Do $\left[\beta=\beta / / \operatorname{gm}_{1 \mathrm{k} \rightarrow 1},\{\mathrm{k}, 11,16\}\right] ; \beta$
James
Waddell
Alexander
$\operatorname{tm}_{x_{X_{-}} \rightarrow z_{-}}\left[\beta_{-}\right]:=\beta \operatorname{Collect}\left[\beta \quad 1, \mathrm{t}_{\mathrm{x} \mid \mathrm{y}} \rightarrow \mathrm{t}_{z}\right]$ ；
$\mathrm{hm}_{x_{-} y_{-} \rightarrow z_{-}}\left[\mathrm{B}\left[\omega_{-}, A_{-}\right]\right]:=$Module
$\left\{\alpha=\mathrm{D}\left[\Lambda, \mathrm{h}_{\mathrm{x}}\right], \beta=\mathrm{D}\left[\Lambda, \mathrm{h}_{y}\right], \gamma=\Lambda /, \mathrm{h}_{\mathrm{x} \mid \mathrm{y}} \rightarrow 0\right\}$, ${ }^{\mathrm{B}}\left[\omega,(\alpha+(1+\langle\alpha\rangle) \beta) \mathrm{h}_{\mathrm{z}}+\gamma\right] / / \beta$ Collect $]$ ； $\operatorname{sw}_{x_{x} y_{-}}\left[\mathrm{B}\left[\omega_{-}, \Lambda_{-}\right]\right]:=\operatorname{Module}[\{\alpha, \beta, \gamma, \delta, e\}$ ， $\alpha=\operatorname{Coefficient}\left[\Lambda, h_{y} \mathrm{t}_{\mathrm{x}}\right] ; \beta=\mathrm{D}\left[\Lambda, \mathrm{t}_{\mathrm{x}}\right] / . \mathrm{h}_{y} \rightarrow 0$ $\gamma=\mathrm{D}\left[\Lambda, \mathrm{h}_{\mathrm{y}}\right] / . \mathrm{t}_{\mathrm{x}} \rightarrow 0 ; \quad \delta=\Lambda /, \mathrm{h}_{y} \mid \mathrm{t}_{\mathrm{x}} \rightarrow 0 ;$ $e=1+\alpha ;$
$\mathrm{B}\left[\omega * e, \alpha(1+(\gamma) / e) h_{y} t_{x}+\beta(1+\langle\gamma\rangle / e) t_{x}\right.$ ］$/ \begin{aligned} & +\gamma / \in \mathrm{h}_{y} \\ & \beta \text { Collect }\end{aligned}$
$\mathrm{gm}_{x-y} \rightarrow z_{-}\left[\beta_{-}\right]:=\beta / / \mathrm{sw}_{x Y} / / \mathrm{hm}_{x y+z} / / \mathrm{tm}_{x y+z} ;$ $\mathrm{B} /: \mathrm{B}[\omega 1,412] \mathrm{B}[\omega 2, \Delta 2]:=\mathrm{B}[\omega 1 * \omega 2, \Delta 1+\Delta 2]$ ； $\mathrm{Rp}_{x_{-y}}:=\mathrm{B}\left[1,(\mathrm{X}-1) \mathrm{t}_{\mathrm{x}} \mathrm{h}_{\mathrm{y}}\right]$ ； $\mathrm{Rm}_{x_{-} y_{-}}:=B\left[1,\left(\mathrm{X}^{-1}-1\right) \mathrm{t}_{\mathrm{x}} \mathrm{h}_{y}\right]$ ；

8_{17} ，cont．

Partial To Do List．1．Where does it more simply come from？
2．Remove all the denominators．
3．How do determinants arise in this context？

4．Understand links．
5．Find the＂reality condition＂．
6．Do some＂Algebraic Knot Theory＂．
7．Categorify．
8．Do the same in other natural quotients of the v／w－story．
＂God created the knots，all else in topology is the work of mortals．＂
Leopold Kronecker（modified）
www．katlas．org The knot \mathcal{H} thas

[^0]: $-1+4 X-8 x^{2}+11 X^{3}-8 X^{4}+4 X^{5}-X^{6}$

