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IfX is a space, π1(X)
is a group, π2(X)
is an Abelian group,
and π1 acts on π2.

K � hmxy
z : K � thaux:

u v

x y

u v

z

K:

x y

w

Properties.
• Associativities: mab

a � mac
a = mbc

b � mab
a , for m = tm, hm.

• “(uv)x = uxvx”: tmuv
w � thawx = thaux � thavx � tmuv

w ,
• “u(xy) = (ux)y”: hmxy

z � thauz = thaux � thauy � hmxy
z .

K � tmuv
w :

Connected
Sums.

∗
Punctures & Cuts
Operations

newspeak!

“Meta-Group-Action”

“the generators”

Kbh(T ;H).

“Ribbon-
knotted
balloons
and hoops”

ωεβ:=http://www.math.toronto.edu/~drorbn/Talks/NhaTrang-1305

Dror Bar-Natan, Nha Trang, May 2013

Let T be a finite set of “tail labels” and H a finite set of
“head labels”. Set

M1/2(T ;H) := FL(T )H ,

“H-labeled lists of elements of the degree-completed free Lie
algebra generated by T”.

FL(T ) =

{

2t2 −
1

2
[t1, [t1, t2]] + . . .

}

/(

anti-symmetry
Jacobi

)

. . . with the obvious bracket.

Trees and Wheels and Balloons and Hoops

15 Minutes on Algebra

Operations M1/2 → M1/2.

Tail Multiply tmuv
w is λ 7→ λ � (u, v → w), satisfies “meta-

associativity”, tmuv
u � tmuw

u = tmvw
v � tmuv

u .

Head Multiply hmxy
z is λ 7→ (λ\{x, y}) ∪ (z → bch(λx, λy)),

where

bch(α, β) := log(eαeβ) = α+ β +
[α,β]

2
+

[α,[α,β]]+[[α,β],β]

12
+ . . .

satisfies bch(bch(α, β), γ) = log(eαeβeγ) = bch(α,bch(β, γ))
and hence meta-associativity, hmxy

x � hmxz
x = hmyz

y � hmxy
x .

Tail by Head Action thaux is λ 7→ λ � RCλx
u , where

C−γ
u : FL → FL is the substitution u → e−γueγ , or more

precisely,

C−γ
u : u → e− ad γ(u) = u− [γ, u] +

1

2
[γ, [γ, u]] − . . . ,

and RCγ
u is the inverse of that. Note that C

bch(α,β)
u =

C
α�RC−β

u
u � Cβ

u and hence “meta uxy = (ux)y”,

hmxy
z � thauz = thaux � thauy � hmxy

z ,

and tmuv
w �C

γ�tmuv
w

w = C
γ�RC−γ

v
u �Cγ

v � tmuv
w and hence “meta

(uv)x = uxvx”, tmuv
w � thawx = thaux � thavx � tmuv

w .

Wheels. Let M(T ;H) := M1/2(T ;H) × CW(T ), where
CW(T ) is the (completed graded) vector space of cyclic words
on T , or equaly well, on FL(T ):

vu vu

= −

Operations. On M(T ;H), define tmuv
w and hmxy

z as before,
and thaux by adding some J-spice:

(λ;ω) 7→ (λ, ω + Ju(λx)) � RCλx

u ,

where Ju(γ) :=

∫ 1

0
ds divu(γ�RCsγ

u )�C−sγ
u , and

Theorem Blue. All blue identities still hold.

Merge Operation. (λ1;ω1)∗(λ2;ω2) := (λ1 ∪ λ2;ω1 + ω2).

Tangle concatenations → π1 ⋉ π2. With dmab
c := thaab �

tmab
c � hmab

c ,

dmab
c

mab
ca b c

a b cdivu +

γ

λ =M1/2(u, v;x, y) =

Finite type invariants make
sense in the usual way, and
“algebra” is (the primitive part of) “gr” of “topology”.

T

H

balloons / tails

∞

Examples.

x y z

u v
	 	

S4

R4

hoops / heads

More on

satisfies R123, VR123, D, and
no!

• δ injects u-knots into Kbh (likely u-tangles too).
• δ maps v-tangles to Kbh; the kernel contains the above and
conjecturally (Satoh), that’s all.
• Allowing punctures and cuts, δ is onto.

δ

15 Minutes on Topology

ribbon
embeddings

x

t

x

y

x

uu x

u

Shin Satoh

ǫx:

ρ−ux:ρ+ux:

ǫu:

δδ

δ

δ δ

“v”

http://www.math.toronto.edu/drorbn/Talks/NhaTrang-1305/antiq-ave
http://www.math.toronto.edu/~drorbn/Talks/NhaTrang-1305


ωεβ/meta
With Selmani,

See also ωεβ/tenn, ωεβ/bonn, ωεβ/swiss, ωεβ/portfolio

β Calculus. Let β(T ;H) be


















ω x y · · ·
u αux αuy ·
v αvx αvy ·
... · · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

ω and the αux’s are
rational functions in
variables tu, one for
each u ∈ T .



















,

tmuv
w :

ω · · ·
u α
v β
... γ

7→

ω · · ·
w α+ β
... γ

,

ω1 H1

T1 α1
∗
ω2 H2

T2 α2

=
ω1ω2 H1 H2

T1 α1 0
T2 0 α2

,

hmxy
z :

ω x y · · ·
... α β γ

7→
ω z · · ·
... α+ β + 〈α〉β γ

,

thaux :

ω x · · ·
u α β
... γ δ

7→

ωǫ x · · ·
u α(1 + 〈γ〉/ǫ) β(1 + 〈γ〉/ǫ)
... γ/ǫ δ − γβ/ǫ

,

where ǫ := 1+α, 〈α〉 :=
∑

v αv, and 〈γ〉 :=
∑

v 6=u γv, and let

R+
ux :=

1 x
u tu − 1

R−
ux :=

1 x
u t−1

u − 1
.

On long knots, ω is the Alexander polynomial!

Repackaging. Given ((x → λux);ω), set cx :=
∑

v cvλvx,
replace λux → αux := cuλux

ecx−1
cx

and ω → eω, use tu = ecu ,
and write αux as a matrix. Get “β calculus”.

Why happy? An ultimate Alexander inva-
riant: Manifestly polynomial (time and si-
ze) extension of the (multivariable) Alexan-
der polynomial to tangles. Every step of the
computation is the computation of the inva-
riant of some topological thing (no fishy Gaus-
sian elimination). If there should be an Alexander invariant

with a computable algebraic categorification, it is this one!

See also ωεβ/regina, ωεβ/caen, ωεβ/newton.
“God created the knots, all else in
topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas.org

ζ: ; 0

for trees

+ cyclic colour
permutations,

ζ is computable! ζ of the Borromean tangle, to degree 5:

Loose Conjecture. For γ ∈ K(T ;H),
∫

DADBe
∫
B∧FA

∏

u

eOγu (B))
⊗

x

holγx
(A) = eτ (ζ(γ)).

That is, ζ is a complete evaluation of the BF TQFT.

Tensorial Interpretation. Let g be a finite dimensional Lie
algebra (any!). Then there’s τ : FL(T ) → Fun(⊕T g → g)
and τ : CW(T ) → Fun(⊕T g). Together, τ : M(T ;H) →
Fun(⊕T g → ⊕Hg), and hence

eτ : M(T ;H) → Fun(⊕T g → U⊗H(g)).

ζ and BF Theory. (See Cattaneo-Rossi,
arXiv:math-ph/0210037) Let A denote a g-
connection on S4 with curvature FA, and B a
g
∗-valued 2-form on S4. For a hoop γx, let

holγx
(A) ∈ U(g) be the holonomy of A along γx.

For a ball γu, let Oγu
(B) ∈ g

∗ be (roughly) the
integral of B (transported via A to ∞) on γu.

Cattaneo

The Invariant ζ. Set ζ(ǫx) = (x → 0; 0), ζ(ǫu) = ((); 0), and

Theorem. ζ is (log of) the unique homomor-
phic universal finite type invariant on Kbh.

(. . . and is the tip of an iceberg)

; 0

Paper in progress with Dancso, ωεβ/wko

The β quotient is M divi-
ded by all relations that uni-
versally hold when when g is
the 2D non-Abelian Lie alge-
bra. Let R = QJ{cu}u∈T K and
Lβ := R ⊗ T with central R and with [u, v] = cuv − cvu for
u, v ∈ T . Then FL → Lβ and CW → R. Under this,

µ → ((λx);ω) with λx =
∑

u∈T

λuxux, λux, ω ∈ R,

bch(u, v) →
cu + cv

ecu+cv − 1

(

ecu − 1

cu
u+ ecu

ecv − 1

cv
v

)

,

if γ =
∑

γvv then with cγ :=
∑

γvcv,

u�RCγ
u =

(

1 + cuγu
ecγ − 1

cγ

)−1


ecγu− cu
ecγ − 1

cγ

∑

v 6=u

γvv



 ,

divu γ = cuγu, and Ju(γ) = log
(

1 + ecγ−1
cγ

cuγu

)

, so ζ is

formula-computable to all orders! Can we simplify?

Trees and Wheels and Balloons and Hoops: Why I Care

May class: ωεβ/aarhus Class next year: ωεβ/1350
Paper in progress: ωεβ/kbh

Moral. To construct an M -valued invariant ζ of (v-)tangles,
and nearly an invariant on Kbh, it is enough to declare ζ on
the generators, and verify the relations that δ satisfies.

u x
u

x

x

u
u

x
−

= −

[u, v] cuv cvu= −

http://www.math.toronto.edu/drorbn/Talks/NhaTrang-1305/meta
http://www.math.toronto.edu/drorbn/Talks/NhaTrang-1305/tenn
http://www.math.toronto.edu/drorbn/Talks/NhaTrang-1305/bonn
http://www.math.toronto.edu/drorbn/Talks/NhaTrang-1305/swiss
http://www.math.toronto.edu/drorbn/Talks/NhaTrang-1305/portfolio
http://www.math.toronto.edu/drorbn/Talks/NhaTrang-1305/regina
http://www.math.toronto.edu/drorbn/Talks/NhaTrang-1305/caen
http://www.math.toronto.edu/drorbn/Talks/NhaTrang-1305/newton
www.katlas.org
http://front.math.ucdavis.edu/math-ph/0210037
http://www.math.toronto.edu/drorbn/Talks/NhaTrang-1305/wko
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http://www.math.toronto.edu/drorbn/Talks/NhaTrang-1305/1350
http://www.math.toronto.edu/drorbn/Talks/NhaTrang-1305/kbh


An "infrastructure project" is hard (and sometimes non-glorious) work that's done now and pays 
off later.

An example, and the most important one within knot theory, is the tabulation of knots up to 10 
crossings. I think it precedes Rolfsen, yet the result is often called "the Rolfsen Table of Knots", as 
it is famously printed as an appendix to the famous book by Rolfsen. There is no doubt the 
production of the Rolfsen table was hard and non-glorious.  Yet its impact was and is 
tremendous. Every new thought in knot theory is tested against the Rolfsen table, and it is hard 
to find a paper in knot theory that doesn't refer to the Rolfsen table in one way or another.

A second example is the Hoste-Thistlethwaite tabulation of knots with up to 17 crossings. 
Perhaps more fun to do as the real hard work was delegated to a machine, yet hard it certainly 
was: a proof is in the fact that nobody so far had tried to replicate their work, not even to a 
smaller crossing number. Yet again, it is hard to overestimate the value of that project: in many 
ways the Rolfsen table is "not yet generic", and many phenomena that appear to be rare when 
looking at the Rolfsen table become the rule when the view is expanded. Likewise, other 
phenomena only appear for the first time when looking at higher crossing numbers.

But as I like to say, knots are the wrong object to study in knot theory. Let me quote (with some 
variation) my own (with Dancso) "WKO" paper:

Studying knots on their own is the parallel of studying cakes and pastries as they come out of 
the bakery - we sure want to make them our own, but the theory of desserts is more about 
the ingredients and how they are put together than about the end products. In algebraic 
knot theory this reflects through the fact that knots are not finitely generated in any sense 
(hence they must be made of some more basic ingredients), and through the fact that there 
are very few operations defined on knots (connected sums and satellite operations being the 
main exceptions), and thus most interesting properties of knots are transcendental, or non -
algebraic, when viewed from within the algebra of knots and operations on knots (see [ AKT-
CFA]).

The right objects for study in knot theory are thus the ingredients that make up knots and 
that permit a richer algebraic structure. These are braids (which are already well -studied and 
tabulated) and even more so tangles and tangled graphs.

Thus in my mind the most important missing infrastructure project in knot theory is the 
tabulation of tangles to as high a crossing number as practical. This will enable a great amount 
of testing and experimentation for which the grounds are now still missing. The existence of such 
a tabulation will greatly impact the direction of knot theory, as many tangle theories and issues 
that are now ignored for the lack of scope, will suddenly become alive and relevant. The overall 
influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen 
table.

Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? 
Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? 
Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, 
etc.)? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs?

In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet 
good tabulators would try to tabulate the more general things from which the more special ones can be sieved 
relatively easily, and would see that their programs already contain all that would be easy to implement within 
their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done 
along with the enumeration itself, and so it should.

An even better tabulation should come with a modern front-end - a set of programs for basic 
manipulations of tangles, and a web-based "tangle atlas" for an even easier access.

Overall this would be a major project, well worthy of your time.

K11n150

The interchange of I-95 and I-695,

northeast of Baltimore. (more)

From [AKT-CFA]

From [FastKh]

http://katlas.org/

(Source: http://katlas.math.toronto.edu/drorbn/AcademicPensieve/2012-01/)

The Most Important Missing Infrastructure Project in Knot Theory
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