Trees and Wheels and Balloons and Hoops Dror Bar-Natan, Nha Trang, May 2013


## 15 Minutes on Algebra

Let $T$ be a finite set of "tail labels" and $H$ a finite set of
"head labels". Set

$$
M_{1 / 2}(T ; H):=F L(T)^{H},
$$

" $H$-labeled lists of elements of the degree-completed free Lie and hoops"
"Ribbonknotted knotted algebra generated by $T^{\prime \prime}$.

$$
F L(T)=\left\{2 t_{2}-\frac{1}{2}\left[t_{1},\left[t_{1}, t_{2}\right]\right]+\ldots\right\} /\binom{\text { anti-symmetry }}{\text { Jacobi }}
$$ ... with the obvious bracket

$M_{1 / 2}(u, v ; x, y)=\left\{\lambda=\left(x \rightarrow \bigvee_{x}^{u}, y \rightarrow \underset{y}{v}-\frac{22}{7}{\underset{y}{v}}_{u}^{v}{ }^{v}\right) \cdots\right\}$
Operations $M_{1 / 2} \rightarrow M_{1 / 2}$.


"the generators"

Tail Multiply $t m_{w}^{u v}$ is $\lambda \mapsto \lambda / /(u, v \rightarrow w)$, satisfies "metaassociativity", $t m_{u}^{u v} / / t m_{u}^{u w}=t m_{v}^{v w} / / t m_{u}^{u v}$.
Head Multiply $h m_{z}^{x y}$ is $\lambda \mapsto(\lambda \backslash\{x, y\}) \cup\left(z \rightarrow \operatorname{bch}\left(\lambda_{x}, \lambda_{y}\right)\right)$, where
$\operatorname{bch}(\alpha, \beta):=\log \left(e^{\alpha} e^{\beta}\right)=\alpha+\beta+\frac{[\alpha, \beta]}{2}+\frac{[\alpha,[\alpha, \beta]]+[[\alpha, \beta], \beta]}{12}+\ldots$ satisfies $\operatorname{bch}(\operatorname{bch}(\alpha, \beta), \gamma)=\log \left(e^{\alpha} e^{\beta} e^{\gamma}\right)=\operatorname{bch}(\alpha, \operatorname{bch}(\beta, \gamma))$ and hence meta-associativity, $h m_{x}^{x y} / / h m_{x}^{x z}=h m_{y}^{y z} / / h m_{x}^{x y}$. Tail by Head Action tha $a^{u x}$ is $\lambda \mapsto \lambda / / R C_{u}^{\lambda_{x}}$, where $C_{u}^{-\gamma}: F L \rightarrow F L$ is the substitution $u \rightarrow e^{-\gamma} u e^{\gamma}$, or mor precisely,

$$
C_{u}^{-\gamma}: u \rightarrow e^{-\operatorname{ad} \gamma}(u)=u-[\gamma, u]+\frac{1}{2}[\gamma,[\gamma, u]]-\ldots,
$$

and $R C_{u}^{\gamma}$ is the inverse of that. Note that $C_{u}^{\mathrm{bch}(\alpha, \beta)}=$ $C_{u}^{\alpha / / R C_{u}^{-\beta}} / / C_{u}^{\beta}$ and hence "meta $u^{x y}=\left(u^{x}\right)^{y "}$,

$$
h m_{z}^{x y} / / t h a^{u z}=t h a^{u x} / / t h a^{u y} / / h m_{z}^{x y}
$$

and $t m_{w}^{u v} / / C_{w}^{\gamma / / t m_{w}^{u v}}=C_{u}^{\gamma / / R C_{v}^{-\gamma}} / / C_{v}^{\gamma} / / t m_{w}^{u v}$ and hence "meta $(u v)^{x}=u^{x} v^{x "}, t m_{w}^{u v} / / t h a^{w x}=t h a^{u x} / / t h a^{v x} / / t m_{w}^{u v}$.

Wheels. Let $M(T ; H):=M_{1 / 2}(T ; H) \times C W(T)$, where $C W(T)$ is the (completed graded) vector space of cyclic words on $T$, or equaly well, on $F L(T)$ :

satisfies R123, VR123, D, and conjecturally (Satoh), that's all.

- Allowing punctures and cuts, $\delta$ is onto.

Operations
Punctures \& Cuts
Connected
Sums.
If $\bar{X} \bar{X}$ is a space, $\bar{\pi}_{1}^{-}(\bar{X})^{--} \bar{K}$ :
is a group, $\pi_{2}(X)$ is an Abelian group, and $\pi_{1}$ acts on $\pi_{2}$.



Operations. On $M(T ; H)$, define $t m_{w}^{u v}$ and $h m_{z}^{x y}$ as before and tha ${ }^{u x}$ by adding some $J$-spice:

$$
(\lambda ; \omega) \mapsto\left(\lambda, \omega+J_{u}\left(\lambda_{x}\right)\right) / / R C_{u}^{\lambda_{x}}
$$

where $J_{u}(\gamma):=\int_{0}^{1} d s \operatorname{div}_{u}\left(\gamma / / R C_{u}^{s \gamma}\right) / / C_{u}^{-s \gamma}$, and


Theorem Blue. All blue identities still hold.
Merge Operation. $\left(\lambda_{1} ; \omega_{1}\right) *\left(\lambda_{2} ; \omega_{2}\right):=\left(\lambda_{1} \cup \lambda_{2} ; \omega_{1}+\omega_{2}\right)$.



- $\delta$ injects u-knots into $\mathcal{K}^{b h}$ (likely u-tangles too).
- $\delta$ maps v-tangles to $\mathcal{K}^{b h}$; the kernel contains the above and

$K / / h m_{z}^{x y}$ :

$\bar{K} \| \bar{t} \bar{m}_{w}^{\bar{u}}$ :

$K / /$ tha ${ }^{u x}$ :

- Associativities: $m_{a}^{a b} / / m_{a}^{a c}=m_{b}^{b c} / / m_{a}^{a b}$, for $m=t m, h m$.
- " $(u v)^{x}=u^{x} v^{x} ": t m_{w}^{u v} / / t h a^{w x}=t h a^{u x} / / t h a^{v x} / / t m_{w}^{u v}$,
- "u $u^{(x y)}=\left(u^{x}\right)^{y "}: h m_{z}^{x y} / / t h a^{u z}=$ tha $a^{u x} / /$ tha $a^{u y} / / h m_{z}^{x y}$.

Tangle concatenations $\rightarrow \pi_{1} \ltimes \pi_{2}$. With $d m_{c}^{a b}:=t h a^{a b} /$ $t m_{c}^{a b} / / h m_{c}^{a b}$,


Finite type invariants make sense in the usual way, and "algebra" is (the primitive part of) "gr" of "topology".

Trees and Wheels and Balloons and Hoops: Why I Care
Moral. To construct an $M$-valued invariant $\zeta$ of (v-)tangles,The $\beta$ quotient is $M$ diviand nearly an invariant on $\mathcal{K}^{b h}$, it is enough to declare $\zeta$ onded by all relations that unithe generators, and verify the relations that $\delta$ satisfies. versally hold when when $\mathfrak{g}$ is ! The Invariant $\zeta$. Set $\zeta\left(\epsilon_{x}\right)=(x \rightarrow 0 ; 0), \zeta\left(\epsilon_{u}\right)=(() ; 0)$, and the 2D non-Abelian Lie alge-

$$
\zeta: \quad{ }_{u} \bigcap_{x} \longmapsto\left(\downarrow_{x}^{u} ; 0\right) \quad \stackrel{x}{u} \longmapsto\left(-\left.\right|_{x} ^{u} ; 0\right)
$$

Theorem. $\zeta$ is ( $\log$ of) the unique homomorphic universal finite type invariant on $\mathcal{K}^{b h}$.
(... and is the tip of an iceberg) Paper in progress with Dancso, $\omega \in \beta /$ wko
 bra. Let $R=\mathbb{Q} \llbracket\left\{c_{u}\right\}_{u \in T} \rrbracket$ and $L_{\beta}:=R \otimes T$ with central $R$ and with $[u, \bar{v}]=c_{u} v-c_{v} u$ for $u, v \in T$. Then $F L \rightarrow L_{\beta}$ and $C W \rightarrow R$. Under this,

$$
\mu \rightarrow\left(\left(\lambda_{x}\right) ; \omega\right) \quad \text { with } \lambda_{x}=\sum_{u \in T} \lambda_{u x} u x, \quad \lambda_{u x}, \omega \in R
$$

$$
\operatorname{bch}(u, v) \rightarrow \frac{c_{u}+c_{v}}{e^{c_{u}+c_{v}}-1}\left(\frac{e^{c_{u}}-1}{c_{u}} u+e^{c_{u}} \frac{e^{c_{v}}-1}{c_{v}} v\right),
$$

$$
\text { if } \gamma=\sum \gamma_{v} v \text { then with } c_{\gamma}:=\sum \gamma_{v} c_{v}
$$

$$
u / / R C_{u}^{\gamma}=\left(1+c_{u} \gamma_{u} \frac{e^{c_{\gamma}}-1}{c_{\gamma}}\right)^{-1}\left(e^{c_{\gamma}} u-c_{u} \frac{e^{c_{\gamma}}-1}{c_{\gamma}} \sum_{v \neq u} \gamma_{v} v\right)
$$

$$
\operatorname{div}_{u} \gamma=c_{u} \gamma_{u} \text {, and } J_{u}(\gamma)=\log \left(1+\frac{e^{c \gamma-1}}{c_{\gamma}} c_{u} \gamma_{u}\right) \text {, so } \zeta \text { is }
$$

il $\frac{1}{\text { an }}$ formula-computable to all orders! Can we simplify?
Repackaging. Given $\left(\left(x \rightarrow \underset{e^{c_{x}-1}}{\lambda_{u x}}\right) ; \omega\right)$, set $c_{x}:=\sum_{v} c_{v} \lambda_{v x}$ replace $\lambda_{u x} \rightarrow \alpha_{u x}:=c_{u} \lambda_{u x} \frac{e^{c_{x}-1}}{c_{x}}$ and $\omega \rightarrow e^{\omega}$, use $t_{u}=e^{c_{u}}$ and write $\alpha_{u x}$ as a matrix. Get " $\beta$ calculus".
See also $\omega \varepsilon \beta /$ tenn, $\omega \varepsilon \beta /$ bonn, $\omega \varepsilon \beta /$ swiss, $\omega \varepsilon \beta /$ portfolio
$\zeta$ is computable! $\zeta$ of the Borromean tangle, to degree 5:


Tensorial Interpretation. Let $\mathfrak{g}$ be a finite dimensional Lie algebra (any!). Then there's $\tau: F L(T) \rightarrow \operatorname{Fun}\left(\oplus_{T} \mathfrak{g} \rightarrow \mathfrak{g}\right)$ and $\tau: C W(T) \rightarrow \operatorname{Fun}\left(\oplus_{T} \mathfrak{g}\right)$. Together, $\tau: M(T ; H) \rightarrow$ Fun $\left(\oplus_{T} \mathfrak{g} \rightarrow \oplus_{H} \mathfrak{g}\right)$, and hence

$$
e^{\tau}: M(T ; H) \rightarrow \operatorname{Fun}\left(\oplus_{T} \mathfrak{g} \rightarrow \mathcal{U}^{\otimes H}(\mathfrak{g})\right)
$$

$S$ and BF Theory. (See Cattaneo-Rossi, arXiv:math-ph/0210037) Let $A$ denote a $\mathfrak{g}$ connection on $S^{4}$ with curvature $F_{A}$, and $B$ a $\mathfrak{g}^{*}$-valued 2 -form on $S^{4}$. For a hoop $\gamma_{x}$, let $\operatorname{hol}_{\gamma_{x}}(A) \in \mathcal{U}(\mathfrak{g})$ be the holonomy of $A$ along $\gamma_{x}$. For a ball $\gamma_{u}$, let $\mathcal{O}_{\gamma_{u}}(B) \in \mathfrak{g}^{*}$ be (roughly) the integral of $B$ (transported via $A$ to $\infty$ ) on $\gamma_{u}$. Loose Conjecture. For $\gamma \in \mathcal{K}(T ; H)$,

$$
\int \mathcal{D} A \mathcal{D} B e^{\int B \wedge F_{A}} \prod_{u} e^{\left.\mathcal{O}_{\gamma_{u}}(B)\right)} \bigotimes_{x} \operatorname{hol}_{\gamma_{x}}(A)=e^{\tau}(\zeta(\gamma))
$$

That is, $\zeta$ is a complete evaluation of the BF TQFT.

$$
\text { where } \epsilon:=1+\alpha,\langle\alpha\rangle:=\sum_{v} \alpha_{v} \text {, and }\langle\gamma\rangle:=\sum_{v \neq u} \gamma_{v} \text {, and let }
$$

On long knots, $\omega$ is the Alexander polynomial!
Why happy? An ultimate Alexander inva-
riant: Manifestly polynomial (time and si-
ze) extension of the (multivariable) Alexan-
der polynomial to tangles. Every step of the
computation is the computation of the inva-
riant of some topological thing (no fishy Gaussian elimination). If there should be an Alexander invariant with a computable algebraic categorification, it is this one.

$$
\begin{aligned}
& \beta \text { Calculus. Let } \beta(T ; H) \text { be }
\end{aligned}
$$

The Most Important Missing Infrastructure Project in Knot Theory
January-23-12
10:12 AM
An "infrastructure project" is hard (and sometimes non-glorious) work that's done now and pays off later.

An example, and the most important one within knot theory, is the tabulation of knots up to 10 crossings. I think it precedes Rolfsen, yet the result is often called "the Rolfsen Table of Knots", as it is famously printed as an appendix to the famous book by Rolfsen. There is no doubt the production of the Rolfsen table was hard and non-glorious. Yet its impact was and is tremendous. Every new thought in knot theory is tested against the Rolfsen table, and it is hard to find a paper in knot theory that doesn't refer to the Rolfsen table in one way or another.

A second example is the Hoste-Thistlethwaite tabulation of knots with up to 17 crossings. Perhaps more fun to do as the real hard work was delegated to a machine, yet hard it certainly was: a proof is in the fact that nobody so far had tried to replicate their work, not even to a smaller crossing number. Yet again, it is hard to overestimate the value of that project: in many ways the Rolfsen table is "not yet generic", and many phenomena that appear to be rare when looking at the Rolfsen table become the rule when the view is expanded. Likewise, other phenomena only appear for the first time when looking at higher crossing numbers.

But as I like to say, knots are the wrong object to study in knot theory. Let me quote (with some variation) my own (with Dancso) "WKO" paper:

Studying knots on their own is the parallel of studying cakes and pastries as they come out of the bakery - we sure want to make them our own, but the theory of desserts is more about the ingredients and how they are put together than about the end products. In algebraic knot theory this reflects through the fact that knots are not finitely generated in any sense (hence they must be made of some more basic ingredients), and through the fact that there are very few operations defined on knots (connected sums and satellite operations being the main exceptions), and thus most interesting properties of knots are transcendental, or nonalgebraic, when viewed from within the algebra of knots and operations on knots (see [AKTCFA]).

The right objects for study in knot theory are thus the ingredients that make up knots and that permit a richer algebraic structure. These are braids (which are already well-studied and tabulated) and even more so tangles and tangled graphs.

(KnotPlot image)
$9 \_42$ is Alexander Stoimenow's favourite



The interchange of I-95 and I-695, northeast of Baltimore. (more)

## Thus in my mind the most important missing infrastructure project in knot theory is the

 tabulation of tangles to as high a crossing number as practical. This will enable a great amount of testing and experimentation for which the grounds are now still missing. The existence of such a tabulation will greatly impact the direction of knot theory, as many tangle theories and issues that are now ignored for the lack of scope, will suddenly become alive and relevant. The overall influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table.Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, etc.)? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs?

In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sieved relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should.

An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access.


From [AKT-CFA]


Overall this would be a major project, well worthy of your time.
Ihe Knot Atlas
Anyone Can Edit http://katlas.org/
(Source: http://katlas.math.toronto.edu/drorbn/AcademicPensieve/2012-01/)


