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"God created the knots, all else
topology is the work of mortals,
Leopold Kronecker (modified)*™

Convolutions statement (Kashiwara-Vergne). Convolutions of
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invariant functions on a Lie group agree with convolutions -
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of invariant functions on its Lie algebra. More accurately, | petesiats: )
let G be a finite dimensional Lie group and let g be its Lie |3 ‘ V
algebra, let 7 : g — R be the Jacobian of the exponential Group-Algebra Subject
map exp : g — (G, and let ® : Fun(G) — Fun(g) be given | " statement flow chart
by ®(f)(z) := 71/2( 2)f(expx). Then if f,¢g € Fun(G) are | v
IAd-invariant and supported near the identity, then Unitary
P(f)xP(g) = B(f xg). statement Free Lic
Group-Algebra statement. There exists w? € Fun(g)® so that - ree Lie
for every ¢, 1/) € Fun(g)® (with small support), the following |* o statement
Y Algebraic
holds in Ll (shhh, w? = j1/2) ‘
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Unitary statement. There exists w € Fun(g)® and an (infinite | |pmd pgee: statement statement
order) tangential differential operator V' defined on Fun(g, x | - ‘
ay) So/t_}ft ~ ) fashiwara Knot-Theoretic True
(1) Vertv = ee?V (allowing U(g)-valued functions) 4 Vergne statement Alekseey, Toros-

(2) VVX = ] (3) Vwa;+l/ = w:l:wy

Free Lie statement (Kashiwara-Vergne). There exist conver-

IAlgebraic statement. With Ig := g* x g, with ¢ : LA{(Ig) —
((Ig)/U(g) = S(g*) the obvious projection, with S the an-
tipode of (Ig), with W the automorphism of /(Ig) induced
by flipping the sign of g*, with r € g* ® g the identity element
bnd with R = e” € U(Ig) ® U(g) there exist w € S(g*) and

gent Lie series F' and G so that with z = loge®e?
T +y— ez:(l_e—adw)F+(eady_
tr(ad )0, F + tr(ad y)0,G =

1 ( adz
tr
1

log e¥ NG

ad z

i)

ady
eady _

1 ﬁad z

V e U(Ig)®? so that
(1) V(A® 1)(R) = R®R®V in U(Ig)®* ® U(g)
(2) V.-SWV =1 3) (@) (VAWw)) =wdw
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element F' € TAut, with
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Diagrammatic statement. Let R = expH € A“(11).
exist w € AY(T) and V € A“(117) so that

z?l

F(z+vy)
and j(F) € imd C try, where for a € try,
d(a) := a(x) + aly) — a(loge®eY).

= loge®eY

Alekseev Torossian

Convolutions and Group Algebras (ignoring all Jacobians). If
G is finite, A is an algebra, 7 : G — A is multiplicative then
(Fun(G),*) = (A,-) via L: f — > f(a)7(a). For Lie (G, g),

(,4) >0 =25 o ¢ §(g) Fun(g) —2> S(g)
e e e
(G,) 3 e — = cv  1i(g) Fun(G) = (g)
with Loy = [¢(z)e"de € S(g) and L1~y = J ¥ta)er
LA{(g) Given 9; € Fun(g) compare ®~1(¢)1) x ®~1(1)2) and

L(ghy > o) in U(g):
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(shhh, Lo/, are “Laplace transforms”)

Unitary = Group-Algebra. // Wiy, € TVo(x)p(y)

not-Theoretic statement. There exists a homomorphic ex-
pansion Z for trivalent w-tangles. In particular, Z should
respect R4 and intertwine annulus and disk unzips:
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Unitary <= Algebraic. The key is to interpret U(Ig) as tan-
gential differential operators on Fun(g):

® © € g* becomes a multiplication operator.

e r € g becomes a tangential derivation, in the direction of
the action of adz: (z¢)(y) = ¢ ([z,¥])-

(.

c:U(Ig) — U(Ig)/U(g) = S(g*) is “the constant term”.
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Just for fun. b/w 2D projec-
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An expansion Z is a choice of a
“progressive scan” algorithm.
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w-tangles | generators relatlons Oerdtlonh ot KK @K1 /K2 K2/ Ks® Ka /Ka® Ka/Ks® K5 /Ko® -+
IThe W—generatori. = o ( )p Brokensurface =OO = adjoin Il I
‘ i - et R ker(K/K4—K/K3)
Q NE @& @ 2D S/rrbol- &~ H [Filtered algebraic structures are cheap and plenty. In any
/ \( = O = = @ £ IC, allow formal linear combinations, let C; be the ideal
% >\/<< ECoo E ¢ Q- E[generated by differences (the “augmentation ideal”), and let
Dim. reduc _ m : 1 ilable “ ducts”

Crossing (OO & Virtual crossing Movier © O & fom = ((K1)™) (us1og 2 aval&} e “products”). . i
Cap Wen Vertices xample: Pure Braids. PDB, is generated by x;;, “strand
)\ )/& /g\goes around strand j once”, modulo “Reidemeister moves”.
S o smootl Ay, := gr PB,, is generated by t;; := z;; — 1, modulo the 4T

relations [t;;,tix +t;jx] = 0 (and some lesser ones too). Much
happens in A,, including the Drinfel’d theory of associators.

IA Ribbon 2- Knot is a surface S embed- Dimensional reduction
ded in R* that bounds an immersed han-
dlebody B, with only “ribbon singular- TQH.
ities”; a ribbon singularity is a disk D {4

of trasverse double points, whose preim-
ages in B are a disk D; in the interior of
IB and a disk Dy with D, N 0B = (‘9D2,
modulo isotopies of S alone.

Example. >/<<

Our case(s). given a “Lie”

Z: high algebra A= algebra g “L{(g)”
solving finitely many gr K low algebra: pic-
equations in finitely tures represent
many unknowns formulas

IC is knot theory or topology; grC is finite combinatorics:
bounded-complexity diagrams modulo simple relations.

he w-realations include R234, VR1234, M, Overcrossings
Commute (OC) but not UC, W? = 1, and funny interactions
between the wen and the Cap and over- and under-crossings:
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From wTT to A”. gr,, wIT := {m—cubes}/{(m+1) cubes}:
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IThe unary w—operations.
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Unzip along an annulus

%ﬁ@?c 1

Unzip along a disk

Diagrammatic to Algebraic. With (z;) and (¢7) dual bases of
g and g* and with [z;, z;] = bejxk, we have A — U via

omomorphic expansions for a filtered algebraic structure K:

ops—K = Ky D K4 D Ko D K3 D...
! lz
ops—erk = Ko /K1 & K1/K2 ® Ko/Ks & K3/Ky & ...
IAn expansion is a filtration respecting Z : K — gr/C that

“covers” the identity on gr K. A homomorphic expansion is
lan expansion that respects all relevant “extra” operations.
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\We skipped... e The Alexander e v-Knots, quantum groups and
polynomial and Milnor numbers. Etingof-Kazhdan.
u-Knots and Drinfel’d associa- ® BF theory and the successful

[1] http://glink.queensu.ca/~4lb11/interesting.html
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tors. religion of path integrals.
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he Orbit Method. By
Fourier analysis, the characters
of (Fun(g)®,*) correspond to
coadjoint orbits in g*. By av-
eraging representation matrices
and using Schur’s lemma to re-
place intertwiners by scalars,
to every irreducible representa-

tion of G we can assign a char-
acter of (Fun(G)%,*).

Measure theoretic statement.
Ignoring all w’s, there exists a
measure preserving and orbit
preserving transformation T :
0: X gy — @z X gy for which
TtV o T = e%eY,

A acts by double and sum, S by reverse and negate.

A concrete example.
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“progressive scan” algorithm.

crop
rotate
adjoin

K/K1 ®K1/Ka@Ka/K3® K3/Ka®Ka/KsDKs/Ke® -+ -+

Il I
R ker(lC/IC4—>IC/IC3)




