of invariant functions on its Lie algebra. More accurately, et G be a finite dimensional Lie group and let \mathfrak{g} be its Lie algebra, let $j: \mathfrak{g} \rightarrow \mathbb{R}$ be the Jacobian of the exponential map $\exp : \mathfrak{g} \rightarrow G$, and let $\Phi: \operatorname{Fun}(G) \rightarrow \operatorname{Fun}(\mathfrak{g})$ be given by $\Phi(f)(x):=j^{1 / 2}(x) f(\exp x)$. Then if $f, g \in \operatorname{Fun}(G)$ are Ad-invariant and supported near the identity, then $\Phi(f) \star \Phi(g)=\Phi(f \star g)$ Group-Algebra statement. There exists $\omega^{2} \in \operatorname{Fun}(\mathfrak{g})^{G}$ so that for every $\phi, \psi \in \operatorname{Fun}(\mathfrak{g})^{G}$ (with small support), the following holds in $\hat{\mathcal{U}}(\mathfrak{g}): \quad\left(\right.$ shhh, $\left.\omega^{2}=j^{1 / 2}\right)$ $\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) \omega_{x+y}^{2} e^{x+y}=\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) \omega_{x}^{2} \omega_{y}^{2} e^{x} e^{y} .$ Unitary statement. There exists $\omega \in \operatorname{Fun}(\mathfrak{g})^{G}$ and an (infinite order) tangential differential operator V defined on $\operatorname{Fun}\left(\mathfrak{g}_{x} \times\right.$ \mathfrak{g}_{y}) so that (1) $V \widehat{e^{x+y}}=\widehat{e^{x}} \widehat{e^{y}} V$ (allowing $\hat{\mathcal{U}}(\mathfrak{g})$-valued functions) (2) $V V^{*}=I$ (3) $V \omega_{x+y}=\omega_{x} \omega_{y}$	

Algebraic statement. With $I \mathfrak{g}:=\mathfrak{g}^{*} \rtimes \mathfrak{g}$, with $c: \hat{\mathcal{U}}(I \mathfrak{g}) \rightarrow$ $\hat{\mathcal{U}}(I \mathfrak{g}) / \hat{\mathcal{U}}(\mathfrak{g})=\hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ the obvious projection, with S the antipode of $\mathcal{U}(I \mathfrak{g})$, with W the automorphism of $\hat{\mathcal{U}}(I \mathfrak{g})$ induced by flipping the sign of \mathfrak{g}^{*}, with $r \in \mathfrak{g}^{*} \otimes \mathfrak{g}$ the identity element and with $R=e^{r} \in \hat{\mathcal{U}}(I \mathfrak{g}) \otimes \hat{\mathcal{U}}(\mathfrak{g})$ there exist $\omega \in \hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ and $V \in \hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2}$ so that
(1) $V(\Delta \otimes 1)(R)=R^{13} R^{23} V$ in $\hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2} \otimes \hat{\mathcal{U}}(\mathfrak{g})$
(2) $V \cdot S W V=1$
(3) $(c \otimes c)(V \Delta(\omega))=\omega \otimes \omega$

Diagrammatic statement. Let $R=\exp \hat{\wedge} \wedge \in \mathcal{A}^{w}(\uparrow \uparrow)$. There exist $\omega \in \mathcal{A}^{w}(\uparrow)$ and $V \in \mathcal{A}^{w}(\uparrow \uparrow)$ so that

\section*{| \square |
| :---: |
| \square |
| \square |}

Knot-Theoretic statement. There exists a homomorphic expansion Z for trivalent w-tangles. In particular, Z should respect $R 4$ and intertwine annulus and disk unzips:
(1)

\hookrightarrow

(2)

(3)

"God created the knots, all else in topology is the work of mortals." Leopold Kronecker (modified)
Convolutions
statement
Group-Algebra

statement \quad| The Orbit |
| :--- |
| Subject |
| flow chart |

statement \quad Free Lie

Algebraic	\uparrow
statement	Alekseev
Diagrammatic	Torossian
statement	statement
$\uparrow \downarrow$	\downarrow

Knot-Theoretic

statement
True Alekseev, Toros-
sian, Meinrenken
Free Lie statement (Kashiwara-Vergne). There exist convergent Lie series F and G so that with $z=\log e^{x} e^{y}$

$$
x+y-\log e^{y} e^{x}=\left(1-e^{-\operatorname{ad} x}\right) F+\left(e^{\operatorname{ad} y}-1\right) G
$$

$\operatorname{tr}(\operatorname{ad} x) \partial_{x} F+\operatorname{tr}(\operatorname{ad} y) \partial_{y} G=$

$$
\frac{1}{2} \operatorname{tr}\left(\frac{\operatorname{ad} x}{e^{\operatorname{ad} x}-1}+\frac{\operatorname{ad} y}{e^{\operatorname{ad} y}-1}-\frac{\operatorname{ad} z}{e^{\operatorname{ad} z}-1}-1\right)
$$

Alekseev-Torossian statement. There is an element $F \in \mathrm{TAut}_{2}$ with

$$
F(x+y)=\log e^{x} e^{y}
$$

and $j(F) \in \operatorname{im} \tilde{\delta} \subset \operatorname{tr}_{2}$, where for $a \in \operatorname{tr}_{1}$, $\tilde{\delta}(a):=a(x)+a(y)-a\left(\log e^{x} e^{y}\right)$.

Alekseev Torossian
Convolutions and Group Algebras (ignoring all Jacobians). If G is finite, A is an algebra, $\tau: G \rightarrow A$ is multiplicative then $(\operatorname{Fun}(G), \star) \cong(A, \cdot)$ via $L: f \mapsto \sum f(a) \tau(a)$. For Lie (G, \mathfrak{g}),

 with $L_{0} \psi=\int \psi(x) e^{x} d x \in \hat{\mathcal{S}}(\mathfrak{g})$ and $L_{1} \Phi^{-1} \psi=\int \psi(x) e^{x} \in$ $\hat{\mathcal{U}}(\mathfrak{g})$. Given $\psi_{i} \in \operatorname{Fun}(\mathfrak{g})$ compare $\Phi^{-1}\left(\psi_{1}\right) \star \Phi^{-1}\left(\psi_{2}\right)$ and $\Phi^{-1}\left(\psi_{1} \star \psi_{2}\right)$ in $\hat{\mathcal{U}}(\mathfrak{g}): \quad$ (shhh, $L_{0 / 1}$ are "Laplace transforms") | \star in $G: \iint \psi_{1}(x) \psi_{2}(y) e^{x} e^{y} \quad \star$ in $\mathfrak{g}: \iint \psi_{1}(x) \psi_{2}(y) e^{x+y}$ |
| :--- |
| Unitary \Longrightarrow Group-Algebra. $\iint \omega_{x+y}^{2} e^{x+y} \phi(x) \psi(y)$ | $=\left\langle\omega_{x+y}, \omega_{x+y} e^{x+y} \phi(x) \psi(y)\right\rangle=\left\langle V \omega_{x+y}, V e^{x+y} \phi(x) \psi(y) \omega_{x+y}\right\rangle$ $=\left\langle\omega_{x} \omega_{y}, e^{x} e^{y} V \phi(x) \psi(y) \omega_{x+y}\right\rangle=\left\langle\omega_{x} \omega_{y}, e^{x} e^{y} \phi(x) \psi(y) \omega_{x} \omega_{y}\right\rangle$ $=\iint \omega_{x}^{2} \omega_{y}^{2} e^{x} e^{y} \phi(x) \psi(y)$.

Unitary \Longleftrightarrow Algebraic. The key is to interpret $\hat{\mathcal{U}}(I \mathfrak{g})$ as tangential differential operators on $\operatorname{Fun}(\mathfrak{g})$:

- $\varphi \in \mathfrak{g}^{*}$ becomes a multiplication operator.
- $x \in \mathfrak{g}$ becomes a tangential derivation, in the direction of the action of ad $x:(x \varphi)(y):=\varphi([x, y])$.
- $c: \hat{\mathcal{U}}(I \mathfrak{g}) \rightarrow \hat{\mathcal{U}}(I \mathfrak{g}) / \hat{\mathcal{U}}(\mathfrak{g})=\hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ is "the constant term".

A Ribbon 2-Knot is a surface S embed- Dimensional reduction ded in \mathbb{R}^{4} that bounds an immersed handlebody B, with only "ribbon singularjities"; a ribbon singularity is a disk D of trasverse double points, whose preimages in B are a disk D_{1} in the interior of B and a disk D_{2} with $D_{2} \cap \partial B=\partial D_{2}$, modulo isotopies of S alone.

Example.
The w-realations include R234, VR1234, M, Overcrossings Commute (OC) but not UC, $W^{2}=1$, and funny interactions between the wen and the cap and over- and under-crossings:

The unary w-operations.

Homomorphic expansions for a filtered algebraic structure \mathcal{K} :
${ }_{\mathrm{ops}} \subset \mathcal{K}=\mathcal{K}_{0} \quad \supset \mathcal{K}_{1} \quad \supset \mathcal{K}_{2} \quad \supset \mathcal{K}_{3} \quad \supset \ldots$
$\Downarrow \quad \mathcal{K}_{2}$
$\operatorname{ops}^{\sigma} \operatorname{gr} \mathcal{K}:=\mathcal{K}_{0} / \mathcal{K}_{1} \oplus \mathcal{K}_{1} / \mathcal{K}_{2} \oplus \mathcal{K}_{2} / \mathcal{K}_{3} \oplus \mathcal{K}_{3} / \mathcal{K}_{4} \oplus \ldots$
An expansion is a filtration respecting $Z: \mathcal{K} \rightarrow$ gr \mathcal{K} that
"covers" the identity on gr \mathcal{K}. A homomorphic expansion is
an expansion that respects all relevant "extra" operations.
[1] http://qlink.queensu.ca/~4lb11/interesting.html
Rendered on Monday $15^{\text {th }}$ June, 2009, at 9:08am tors.
We skipped... • The Alexander • v-Knots, quantum groups and polynomial and Milnor numbers. Etingof-Kazhdan.

- u-Knots and Drinfel'd associa- - BF theory and the successful religion of path integrals.

